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Abstract: This paper presents the Park model of a solid-rotor induction motor. In this model, the
dynamic state of the motor is described by integer and noninteger order differential equations. The
skin effect in the solid rotor was represented by resistance and inductance with lumped constants, and
the fractional inductance was dependent on the frequency of the eddy current induced in the rotor.
The parameters of the equivalent circuit were determined by the standstill frequency response test
with the stationary machine on the basis of the finite element method analysis of the electromagnetic
field. A simulation of the dynamic states of the induction motor with a solid rotor was carried out
based on the calculated parameters. The simulation was carried out using a program written in
the Matlab environment. The simulations show that the electromagnetic moment during the motor
start-up is about 2 times greater than the initial torque in the steady state. On the other hand, the
maximum value of the stator current during the start-up is about 1.5 times greater than the effective
value of the inrush current in the steady state. A good agreement was obtained between the results
calculated from the distribution of the magnetic field by the finite element method and the results
obtained on the basis of the equivalent circuit and, in the case of the electromagnetic torque, with the
results obtained from the transient state during motor reversal.

Keywords: induction motor; solid rotor; parameter identification; finite element method; fractional-order
derivatives; fractional-order impedance

1. Introduction

The analysis of the phenomena occurring in induction machines and synchronous
machines is carried out using circuit models [1–4] as well as field-circuit models [5,6].
Comprehensive consideration of all phenomena occurring in electrical machines is possible
in the field-circuit model [7–10], based on the finite element method. In this model, the
nonlinear partial differential equations of the electromagnetic field are simultaneously
solved with the Kirchhoff equations of electrical circuits and the equation of motion.
However, the use of field-circuit models is limited due to the long computation times and,
thus, the need to use computers with large computing power. For these reasons, circuit
models are still often used in the analysis of dynamic states of electrical machines.

The parameters of the equivalent circuit model may be determined by measurement
or in a computational manner using the machine design data. In the classic model, in
which one equivalent circuit in the rotor is assumed, the electromagnetic parameters are
determined via design calculations [1,11] or by measurement of the no-load and of the
locked rotor test [12]. The use of classical models in the dynamic-state analysis leads to
significant discrepancies between the measured waveforms and the results obtained from
computer simulations [13]. Particularly large errors occur in high-power squirrel cage
induction machines, in which there is a skin effect in the rotor cage bars, and in induction
and synchronous machines with a solid rotor. Therefore, it is necessary to use higher-
order circuit models [14,15] that more accurately account for electromagnetic phenomena
occurring in the solid rotor of induction and synchronous machines. In these models, the
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action of eddy currents in the solid rotor of the machine is represented by a greater number
of equivalent circuits in the form of two-terminal RL networks. To achieve the required
approximation accuracy, a sufficiently large number of rotor equivalent circuits must be
used, but then numerical identification of the parameters of the equivalent scheme is very
difficult. An alternative solution [16–18], presented in this paper, is to represent the skin
effect in a solid rotor by means of resistance and inductance with fixed values and fractional-
order inductance depending on the frequency of induced eddy currents. This model more
accurately reflects the physical phenomena occurring in a solid rotor. In the classical model
with four equivalent circuits, the number of parameters to be identified is nine. However,
for the noninteger order model, the number of identified parameters is five, which is an
advantage of using this model. Physical phenomena occurring in ferromagnetic elements
of electrical machines or in the rotor cage bars of induction or synchronous machines
can be described using fractional-order differential calculus [19–22]. The fractional-order
operational inductance in the frequency domain represents the impedance whose resistance
and inductance are a function of the frequency of the eddy current induced in the solid
rotor of the machine. Fractional differential calculus in the analysis of transient states of
synchronous machines with a solid rotor was already used in the 1970s. The paper [23]
presents an analysis of the transient states of a solid-rotor turbogenerator, where the rotor
circuit was represented by the fractional-order operational inductance. In order to more
accurately reproduce the skin effect in ferromagnetic elements or in the bars of the rotor
cage, hybrid elements should be used [24–26]. These elements are a series connection of
integer and noninteger order elements. The equivalent circuit of a coil with ferromagnetic
core in paper [24] as well as the equivalent circuit of the rotor cage in paper [25] are
shown as a series connection of resistance and fractional order inductance.Based on a
simplified analysis of the electromagnetic field, using the expansion of the Bessel function
into the Taylor series, it was shown in [26] that the solid-rotor circuit of a synchronous
machine can be replaced by the resistance and inductance with lumped constants and the
fractional inductance.

Applying the Laplace transform to a mathematical model containing fractional-order
inductances is possible in the analysis of transient states of induction and synchronous
machines only at a constant rotational speed. Then, a model in the form of operational
transmittances is obtained. The conversion from the operational transfer function form
to the time form for the fractional-order operational transmittances is difficult. In the
paper [27], for the operational transmittance containing fractional-order derivatives (the
coefficients of the polynomial of the numerator and denominator of the Laplace operator p
are multiples of 0.5), the field current waveform of a synchronous generator at a sudden
short-circuit was determined, using the error function erfc of the complex argument. On
the other hand, the analysis of the dynamic states of induction and synchronous machines
with the use of a fractional-order equivalent circuit model for a variable rotational speed
of the rotor is performed using the Grünwald–Letnikow method to solve equations with
fractional-order derivatives [19,20].

The parameters of the equivalent circuit of induction and synchronous machines
can be identified on the basis of the stator current, rotational speed or torque waveforms
registered in the dynamic states [15,17,28]. These parameters are determined by minimizing
the mean-square error between the measured waveforms and those calculated using the
simulation model.

Among the many different methods of determining the parameters of the equivalent
circuit, the methods of determining the parameters based on measurements made at the
machine standstill deserve special attention [29–32]. These methods require supplying the
machine’s stator windings with a direct voltage-dc decay current test [31,32] or with single-
phase sinusoidal voltage with an adjustable frequency–standstill frequency response test
(SSFR) [29,30]. The standstill frequency response test, in which the frequency characteristics
of spectral inductances are determined on the basis of measurements or machine design
data, turned out to be particularly useful. By approximating these characteristics, the
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parameters are determined by the multiloop equivalent circuit with lumped constant
parameters R and L or the equivalent circuit with fractional impedance as a function of the
frequency of the eddy currents induced in the rotor circuit.

This article consists of five chapters and is organized as follows. In the Introduction,
the method of presenting the electric circuits of the rotor in the equivalent circuit of an
induction machine and the methods of identifying the parameters of induction machines
are discussed. The second chapter presents a multicircuit model of an induction machine
and a circuit model with a fractional rotor impedance. The next chapter describes the
method of determining the parameters of the equivalent circuit of an induction machine.
The parameters of the equivalent circuit for the fractional impedance of the rotor were
determined by the standstill frequency response test. The frequency characteristics of the
complex spectral inductances were calculated from the electromagnetic field distribution
using the finite element method. The calculations of the magnetic field distribution were
carried out by forcing a sinusoidal current with a frequency of 0 ÷ 1000 Hz in two stator
phases connected in series. By approximating the magnitude and phase characteristics of
the spectral inductances with the functions of the fractional order of the Laplace operator
p, the parameters of the equivalent circuit were calculated. The fourth chapter discusses
the simulation of the dynamic states of a solid-rotor induction motor. The integration
of differential equations with integer order derivatives was performed using the Euler
extrapolation algorithm. On the other hand, the Grünwald–Letnikov method was used
for differential equations containing derivatives of the fractional-order. The fifth chapter
presents the steady state of a solid-rotor induction motor. On the basis of the stator
spectral inductance Ls(jω) determined from the electromagnetic field distribution, the
stator current and the electromagnetic torque in the slip range from 0 to 1 were calculated.
These values were compared with the characteristics obtained on the basis of the equivalent
circuit and, in the case of the electromagnetic torque, with the mechanical characteristics
determined directly from the transient state during the reversal of the induction motor. A
good agreement of the results was obtained, which proves the correct identification of the
parameters and the correctness of the calculations of the dynamic states of the induction
motor with a solid rotor.

2. Mathematical Model

The transient analysis of solid-rotor induction machines can be conveniently per-
formed in the d, q rotor reference frame [3,4] (by utilizing Park’s transform) because then
the rotation voltage is absent in the equivalent circuit of the rotor circuit. In the case of a
solid-rotor induction machine, replacing the electric circuit of the rotor with a single circuit
with lumped constant parameters in the equivalent circuit leads to large errors.

There are two possible approaches to the problem:

â The solid-rotor damping system can be replaced with a larger number of electric
circuits in the form of two-terminal RL networks with lumped constants and with
different time constants;

â The solid-rotor damping system is treated as a one-fractional-order RL network.

2.1. Park’s Transform Circuit Model

In order to accurately represent the phenomena occurring in a solid rotor, the rotor’s
electric circuit should be replaced by a system consisting of a greater number of parallel
branch RL with lumped parameters with different time constants. Figure 1 shows Park’s
multicircuit equivalent circuit with lumped parameters.
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Figure 1. Multiloop equivalent circuit of an induction machine. 
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where: Lσ—stator winding leakage inductance, and Lσrk—leakage inductance of the k-th 

rotor electric circuit. 

Figure 1. Multiloop equivalent circuit of an induction machine.

This scheme allows for the formulation of the following voltage differential equations
with constant coefficients:

us = Rsis +
d Ψs

dt + jω Ψs

0 = Rr1ir1 +
d Ψr1

dt
0 = Rr2ir2 +

d Ψr2
dt

...
0 = Rrkirk +

d Ψrk
dt


(1)

where: us, is—stator complex voltage and stator complex current, Ψs—stator flux linkage,
Rs, Rrk—the stator resistance and the resistance of the k-th rotor circuit, respectively, irk,
Ψrk—the current and flux linkage of the k-th rotor circuit, respectively, and ω—electric
rotor angular velocity.

The flux linkages of the stator and rotor are of the form

Ψs = Lsis + Lr1ir1 + Lr2ir2 + · · ·+ Lrkirk
Ψr1 = Lr1ir1 + Lm( is + ir2 + · · ·+ irk)
Ψr2 = Lr2ir2 + Lm( is + ir1 + ir3 · · ·+ irk)
...
Ψrk = Lrkirk + Lm( is + ir1 + · · ·+ irk−1)


(2)

where: Ls—self-inductance of the stator winding, Lrk—leakage inductance of the k-th rotor
electric circuit, and Lm—magnetization inductance, where

Ls = Lσ s + Lm
Lr1 = Lσ r1 + Lm
Lr2 = Lσ r2 + Lm
...
Lrk = Lσ rk + Lm


(3)

where: Lσ—stator winding leakage inductance, and Lσrk—leakage inductance of the k-th
rotor electric circuit.

The electromagnetic torque of a solid-rotor induction motor is conveniently calculated
from the relationship [4]

Me =
3
2

pbRe(jΨs i∗s ) =
3
2

pb(Ψsdisq −Ψsqisd) (4)

where: pb—number of pole pairs, Ψsd, Ψsq—the real and imaginary components of the
complex flux, respectively, and Ψs, isd, isq—the real and the imaginary components of the
complex stator current is, respectively.

The differential Equation (1) is a complex equation describing the dynamic state of
an induction motor. In order to solve these equations with digital machines, they must
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be transformed into the domain of real variables using substitution g = gd + jgq, where
g = u, i, Ψ.

2.2. Equivalent Circuit of an Inductance Motor with a Fractional Rotor Impedance

In order to increase the accuracy of the approximation of the spectral impedance of a
solid rotor by circuits with lumped constants, the number of equivalent circuits in the rotor
should be increased. An alternative solution may be to present the electric circuit of a solid
rotor by the fractional-order impedance (Figure 2).
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In the work [26], on the basis of the analysis of the electromagnetic field in the cylin-
drical coordinate system, an analytical dependence was derived for the spectral inductance
of the stator, in which the Bessel functions of the complex argument occur. Using the
expansion of the function into a power series, the expression for the rotor operational
impedance of the following form was obtained

Zr(p) = Rk + pLkσ +
pLm√

pTe
= Rk + pLkσ +

p0.5Lm

T0.5
e

(5)

where: p—Laplace operator, Rk, Lkσ—rotor circuit resistance and inductance with constant
values, and Te—synthetic time constant of the solid-rotor circuit [4].

The operational impedance Zr(p) defined by Equation (5) consists of three components:
the resistance Rk and the inductance Lkσ with constant values, and the fractional-order
operational impedance order 0.5. The rotor operational impedance can be generalized for
any order:

Zr(p) = Rk + pLσ k +
p Lm

(pTe)
β
= Rk + pLσ k + pα Lm

Tβ
e

(6)

where: α—the order of the fractional derivative, and β = 1 − α.
The dynamic state of a solid-rotor induction motor with a fractional-order impedance

(6) is described by the stator voltage differential equation and the rotor differential equation
containing the derivative of the fractional order

us = Rsis + Ls
d Ψs

dt + jω Ψs

es =
d Ψm

dt = −(Rkir + Lσ k
d iR
dt + Lm

Tβ
e

Dα(ir)

}
(7)

and flux linkages equations

Ψs = Lsis + Lmir = Lσ sis + Lm( is + ir) = Lσ sis + Ψm
Ψm = Lm( is + ir)

}
(8)

These equations must be completed with the equation of the electromagnetic torque

Me =
3
2

pbRe( j Ψs i∗s ) (9)
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as well as the equation of motion

J
dΩ
d t

= Me −DΩ−Mm (10)

where: Ω—mechanical angular velocity, D—viscous friction coefficient, Mm—torque of
mechanical load, and J—moment of inertia, being

Ω =
ω

pb
(11)

The stator complex voltage in the d, q rotor reference frame has the form

us = Usme
j(ωst+

t∫
0

ω d t+ψu)
(12)

where: Usm—amplitude of stator voltage, and ψu—initial phase of voltage.

3. Identification of the Parameters of the Equivalent Circuit

The equivalent circuit in Figure 2 forms the basis of the stator operational inductance
circuit shown in Figure 3.
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The following relationship is formed from this circuit

pΨs(p) = Zs(p) is(p) = pLs(p) is(p) = ( pLσ s + pLi(p) ) is(p) (13)

where: Li(p)—internal operational inductance, where

pLi(p) =
1

1
pLm

+ 1
Zr(p)

=
pLm Zr(p)

pLm + Zr(p)
(14)

Taking into account the dependence (6), the stator operator inductance Ls(p) will take
the form

Ls(p) = Lσ s + Lm

1 + p Lσ k
Rk

+ pα Lm
Rk

1
Tβ

e

1 + p
(

Lσ k
Rk

+ Lm
Rk

)
+ pα Lm

Rk
1

Tβ
e

(15)

Substituting the Laplace operator p in relation (15) for the operator p = jω, the fre-
quency characteristics of the spectral inductance Ls(jω) are obtained.

The spectral inductance was determined on the basis of the results of the calculations of
the electromagnetic field distribution with the machine stationary using the finite element
method. The calculations were performed in FEMM 4.2 [33], by forcing in two phases of
the stator winding connected in series (Figure 4) a sinusoidal current with a constant value
in the frequency range from 0 to 1000 Hz.
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Figure 4. Connection scheme for the SFFR test.

Figure 5 shows the distribution of the magnetic field in the machine cross-section,
produced by the current flowing in the stator winding with a frequency of 0 Hz and 1.0 Hz.
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For the frequency of 1.0 Hz, the skin effect is visible in the solid rotor.
The spectral inductance for a given current pulsation ω is calculated from the for-

mula [6]

Ls(jω) =
1
2

Zs(jω)− 2Rs

jω
(16)

where: Rs—resistance of one stator phase, and Zs(jω)—complex stator impedance, where
according to Figure 4

Zs(jω) =
Uab
Is

(17)

The FEMM 4.2 program [33] allows you to directly calculate the complex impedance
Zs for a given stator current frequency. The spectral inductance (16) of the stator should be
increased by the end winding leakage inductance of the stator, because the analysis of the
magnetic field in a two-dimensional system does not take into account the end winding
leakage flux.

Parameters of the equivalent circuit χ = [Lm Rk Lσk Te α] and, thus, the approximating
function (15) should be selected in such a way that the magnitude of this function |Ls(jω)|
and its argument argLs(jω) approximate the function Ls(jω) obtained from the analysis
of the electromagnetic field with the smallest possible error. The values of the parameter
vector χ are calculated by minimizing the error of the sum of squared deviations

ε =
N

∑
i=1

{
(|Ls(fi)| − |L∗s (fi, χ)|)2wm i + (argLs(fi)− argL∗s (fi, χ))2wa i

}
(18)

where: N—number of measurement points, f—stator current frequency, Ls—spectral in-
ductance of the winding determined on the basis of the electromagnetic field distribution
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using the finite element method, and Ls*—spectral inductance of the winding determined
from the dependence (15) with p = jω = j2πf, wi being weight coefficients.

The Levenberg–Marquardt method implemented in the Matlab [34] environment was
used to solve the Equation (18). As a result of optimization, the following values of the
sought vector χ coefficients were obtained:

Lm = 0.298 H, Rk = 0.8548 Ω, Lσk = 0.000012 H, Te = 0.13547 s, α = 0.4682

Figure 6 shows the obtained frequency characteristics of the spectral inductance Ls(jf).
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Figure 6. Frequency characteristics of the spectral inductance Ls(jf): (a) magnitude, (b) phase.

To compare the magnitude and phase characteristics of the spectral inductances
calculated by the finite element method and obtained as a result of the approximation by
means of the fractional-order transform functions (15), the relative error defined as [28]
was used

εY = 100

√
1
N

N
∑

i=1
(Yi − Y∗i )

2

1
N

N
∑

i=1
Yi

(19)
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where: Y—actual value, and Y*—value obtained on the basis of the approximating function.
The obtained relative errors for the magnitude εm = 1.5% and for the phase εϕ = 2.6%

prove a very good accuracy of the approximation.

4. Dynamic-State Simulation

The simulation of dynamic states was carried out for the Sg 160 M-4 squirrel-cage
induction motor with rated data: PN = 11 kW, UN = 380 V (∆), IN = 22 A, fN = 50 Hz,
nN = 1460 rpm, MN = 72 Nm. In this motor, the squirrel cage rotor has been replaced by a
solid rotor.

The dynamic states of an induction motor, in the rotor d, q coordinate system, are
described by the following equations:

d Ψs
dt

= us − Rsis − jω Ψs (20)

1
Tβ

e
Dα(ir) +

(
Lσ k
Lm

+ Lσ s
Ls

)
dir
dt +

(
Rk
Lm

+ Rs
Ls

)
ir =

= − 1
Lm

(
us − Lσ s

Ls

d Ψs
dt −

Rs
Ls

Ψs − jω Ψs

) (21)

dω

dt
=

pb
j

Me −
D
J

ω−
pb
J

Mm (22)

d ϑ

d t
= ω (23)

where: ϑ—the electric angle between the stator and rotor axes of phase a.
The differential Equations (20) and (21) result from the transformation of the differ-

ential Equation (7) and the flux Equation (8). Equation (22) is the equation of motion,
while Equation (23) determines the relationship between the electric rotor speed ω and the
angle ϑ. The stator current is determined from the relationship

is =
1
Ls

Ψs −
Lm

Ls
ir (24)

Taking the dependence (23) into account, the complex voltage of the stator (12) in the
rotor coordinate system will take the form

us = Usmej(ωst+ϑ+ψu) (25)

The integration of the differential Equations (20), (22) and (23) was performed using the
Euler extrapolation algorithm. On the other hand, the differential Equation (21), containing
the derivative of the fractional order, was solved by the Grünwald–Letnikov method [19,20]
from the relationship

t0Dα
t = lim

∆t→0

1
∆tα

[
t−t0

∆t ]

∑
j=0

(−1)j
(

α
j

)
f(t− j ∆t) (26)

according to the algorithm implemented in the Matlab program given in [35].
Figures 7–10 show the stator current is, rotational speed n, electromagnetic torque Me

and the trajectory Me(n) during the start-up of a solid-rotor induction motor for the load
torque Mm = 0 and the moment of inertia J = 4JN.
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Figure 7. The stator current waveform of a solid-rotor induction motor.
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Figure 8. Rotational speed waveform of a solid-rotor induction motor.
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Figure 10. Torque–speed Me(n) trajectory of a solid-rotor induction motor during the start-up.
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On the other hand, Figure 11 shows the torque–speed trajectory Me(n) during the
reversion of the motor for the load torque Mm = 0 and the moment of inertia J = 20 JN.
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In Figure 12, a flowchart of the calculation process is presented.
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5. Steady State of Solid-Rotor Induction Motor

The stator voltage equation in the operator form (7) is obtained

us(p) = Rs(p) is(p) + (p + jω)Ψs(p) = Rs(p) is(p) + (p + jω)Ls(p) is(p) (27)

Hence, the stator current

is(p) =
us(p)

Rs(p) + (p + jω)Ls(p)
(28)

Applying the Laplace transform to Equation (12)

us(p) =
Usm

p− jωss
(29)

The operator form of the stator current (28) at a constant angular velocity ω takes
the form

is(p) =
Usm

(p− jωss) [Rs(p) + (p + jω)Ls(p)]
=

N(p)
(p− jωss)M(p)

(30)

The complex amplitude of the stator current results from the relationship (30)

Ism(jωss) =
N(jωss)
M(jωss)

=
Usm

Rs + jωsLs(jωss)
=

Usm
Rs + Zs(jωss)

(31)

The dependence (31) shows that the equivalent circuit for the steady state is obtained
on the basis of the equivalent circuit in Figure 3 by replacing each element of this circuit
with an element Z(p = jωss)/s (Figure 13).
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The resulting rotor impedance is given by the relationship

Zr(s) =
Rk
s

+ jωsLσ k +
jωs Lm

(jωss Te)
β
=

Rk
s

+ jXσ k +
jXm

(jωss Te)
β
=

Rr(s)
s

+ jXr(s) (32)

Hence, the resistance and reactance of a solid rotor will be, respectively:

Rr(s) = sRe(Zr(s)) = Rk +
sXm

(ωss Te)
β cos π

2 α

Xr(s) = Im(Zr(s)) = Xσ k +
Xm

(ωss Te)
β sin π

2 α

 (33)

For the coefficients β = 0.5 and α = 1 − β = 0.5, the resistance and reactance of the rotor
will take the form

Rr(s) = Rk +
Xm√
2ωsTe

√
s

Xσ r(s) = Xσ k +
Xm√
2ωsTe

1√
s

}
(34)

Figure 14 shows the relationship of solid-rotor resistance and reactance on frequency.
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Figure 14. Relationship of resistance and reactance of a solid rotor and of frequency; full lines—
resistance, dashed lines—reactance.

We calculate the electromagnetic moment in the steady state from the relationship

Me =
3
2

pbRe{ j Ψsmi∗sm} (35)

where: Ψsm, Ism—the amplitude of the flux linkage of the stator winding and the amplitude
of the stator current, respectively, where

Ψsm = Ls(jωss)Ism =
Ls(jωss)

Rs + jωsLs(jωss)
Usm (36)

Substituting the relations (31) and (36) into the expression for the electromagnetic
torque (35), we obtain

Me(s) =
3
2

pb
ωs

U2
sm

|Rs + jωsLs(jωss)|2
Re[j ωsLs(jωss)] (37)

Figure 15 shows the relationship of the stator current and the rotational speed, while
the dependence of the electromagnetic torque on the rotational speed is shown in Figure 16.
The calculations of the characteristics Is = f(n) and Me = f(n) were made on the basis of the
spectral inductance Ls(jω) determined from the distribution of the magnetic field and on
the basis of the equivalent circuit. On the other hand, in the case of the electromagnetic
moment, the mechanical characteristic Me = f(n) was also determined from the steady state
during the motor reversal at high engine torque.
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Figure 15. The dependence of the stator current on the rotational speed.



Energies 2022, 15, 6371 14 of 16

Energies 2022, 15, x FOR PEER REVIEW 16 of 18 
 

 

 

Figure 15. The dependence of the stator current on the rotational speed. 

 

Figure 16. Dependence of the electromagnetic torque on the rotational speed. 

The comparison of the characteristics presented in Figures 15 and 16 shows a good 

agreement between the results calculated from the distribution of the magnetic field by 

the finite element method and the results obtained on the basis of the equivalent circuit, 

and in the case of the electromagnetic torque, with the results obtained from the transient 

state during the motor reversal. It proves the correct identification of the equivalent circuit 

parameters and the correctness of the calculation of the dynamic states of the induction 

motor with a solid rotor. 

6. Conclusions 

The transient analysis of solid-rotor induction machines can be conveniently per-

formed in the d, q rotor reference frame (by utilizing Park’s transform) because then the 

rotation voltage is absent in the equivalent circuit of the rotor circuit. Therefore, the solu-

tion of differential equations containing fractional-order derivatives is simplified. The use 

of a fractional-order operator impedance in the equivalent circuit of the rotor, which is a 

series combination of resistance and inductance with constant values and the fractional-

order inductance, allows for a more accurate representation of the skin effect in a solid 

rotor. The frequency method presented in this paper, based on the calculation of the spec-

tral inductance by the finite element method in a large frequency range, is particularly 

useful for determining the parameters of higher-order models and models with fractional 

impedance of the rotor. This method also makes it possible to take into account the satu-

ration of the magnetic circuit of the machine and does not require the use of an extra drive 

motor. However, determining the parameters by this method in an experimental way en-

counters significant difficulties related to carrying out measurements in the low-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

n/n
s

I s
  

[A
]

 

 

FEM method

approximation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

n/n
s

M
e
  

[N
m

]

 

 

FEM  SSFR test

Steady state model

Transient model

Figure 16. Dependence of the electromagnetic torque on the rotational speed.

The comparison of the characteristics presented in Figures 15 and 16 shows a good
agreement between the results calculated from the distribution of the magnetic field by
the finite element method and the results obtained on the basis of the equivalent circuit,
and in the case of the electromagnetic torque, with the results obtained from the transient
state during the motor reversal. It proves the correct identification of the equivalent circuit
parameters and the correctness of the calculation of the dynamic states of the induction
motor with a solid rotor.

6. Conclusions

The transient analysis of solid-rotor induction machines can be conveniently per-
formed in the d, q rotor reference frame (by utilizing Park’s transform) because then the
rotation voltage is absent in the equivalent circuit of the rotor circuit. Therefore, the solution
of differential equations containing fractional-order derivatives is simplified. The use of a
fractional-order operator impedance in the equivalent circuit of the rotor, which is a series
combination of resistance and inductance with constant values and the fractional-order
inductance, allows for a more accurate representation of the skin effect in a solid rotor.
The frequency method presented in this paper, based on the calculation of the spectral
inductance by the finite element method in a large frequency range, is particularly useful for
determining the parameters of higher-order models and models with fractional impedance
of the rotor. This method also makes it possible to take into account the saturation of
the magnetic circuit of the machine and does not require the use of an extra drive motor.
However, determining the parameters by this method in an experimental way encounters
significant difficulties related to carrying out measurements in the low-frequency range
due to the need to use high-power voltage sources for low frequencies and the dependence
of the stator winding resistance on the temperature during the measurement. For the solid-
rotor induction motor model presented in this paper, the relative error of the approximation
of the magnitude and phase characteristics of the spectral inductance is εm = 1.5% and
εϕ = 2.6%, respectively. On the basis of the equivalent diagram of the noninteger order
Park, the stator voltage differential equations with integer order derivatives and the rotor
voltage equations containing fractional-order derivatives were formulated. In order to
simulate the dynamic states of an induction motor, an equation of motion must be added.
Integration of differential equations with integer order derivatives was performed using
the Euler extrapolation algorithm. On the other hand, the Grünwald–Letnikov method was
used for differential equations containing derivatives of the fractional order. Integration
of differential equations was carried out with a constant integration step of t = 0.1 ms.
Simulation of the dynamic states of the induction motor was carried out using a program
written in the Matlab environment. The simulations show that the maximum value of the
electromagnetic torque during the start-up of the induction motor occurs in the second
half of the first period of the torque waveform. This torque is approx. 2 times greater
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than the static initial starting torque of the motor in a steady state. On the other hand,
the maximum value of the stator current during start-up is approx. 1.5 times the rms
value of the steady-state starting current. The obtained agreement between the results
calculated from the distribution of the magnetic field by the finite element method and the
results obtained on the basis of the equivalent circuit proves the correct identification of the
parameters and the correctness of the calculation of the dynamic states of the induction
motor with a solid rotor.

7. Future Work

In the future, I intend to work on modeling induction and synchronous machines,
taking into account the saturation of the magnetic circuit on the basis of fractional-order
circuit models and field-circuit models.
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