
 
 

 

 
Energies 2022, 15, 6338. https://doi.org/10.3390/en15176338 www.mdpi.com/journal/energies 

Article 

A Period-Based Neural Network Algorithm for Predicting 
Building Energy Consumption of District Heating 
Zhengchao Xie 1,2, Xiao Wang 3,*, Lijun Zheng 1, Hao Chang 1 and Fei Wang 2 

1 Huadian Electric Power Research Institute Co., Ltd., Hangzhou 310030, China 
2 State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China 
3 Zhejiang Gas & Thermoelectricity Design Institute Co., Ltd., Hangzhou 310030, China 
* Correspondence: 21427111@zju.edu.cn 

Abstract: Northern China is vigorously promoting cogeneration and clean heating technologies. 
The accurate prediction of building energy consumption is the basis for heating regulation. In this 
paper, the daily, weekly, and annual periods of building energy consumption are determined by 
Fourier transformation. Accordingly, a period-based neural network (PBNN) is proposed to predict 
building energy consumption. The main innovation of PBNN is the introduction of a new data struc-
ture, which is a time-discontinuous sliding window. The sliding window consists of the past 24 h, 
24 h for the same period last week, and 24 h for the same period the previous year. When predicting 
the building energy consumption for the next 1 h, 12 h, and 24 h, the prediction errors of the PBNN 
are 2.30%, 3.47%, and 3.66% lower than those of the traditional sliding window PBNN (TSW-
PBNN), respectively. The training time of PBNN is approximately half that of TSW-PBNN. The 
time-discontinuous sliding window reduces the energy consumption prediction error and neural 
network model training time. 

Keywords: period-based neural network; energy consumption; sliding window structure; Fourier 
transform 
 

1. Introduction 
The construction industry produces significant carbon dioxide emissions and leads 

to considerable energy consumption in modern society [1–3]. In China, heating in north-
ern cities consumes 20% of the total energy consumption of buildings [4,5]. Since the mid-
1990s, China has begun to develop central heating with power plants as heat sources. The 
heating mode is mainly based on cogeneration supplemented by new energy sources, 
such as ground source heat pumps. The fuel for cogeneration is coal, and haze has become 
a severe environmental problem [6,7]. With China’s emphasis on environmental protec-
tion, urban district heating (DH) has become mainstream. However, the operation man-
agement and control technology of heating systems are still relatively simple. Overall, 
intelligent heating cannot keep up with the development of the scale of heating required. 

DH is an essential public energy service consisting of heat sources, heat supply net-
works, and heat consumers. Due to the lack of accurate DH loads, energy system operat-
ing strategies often operate inefficiently [8,9]. This results in a vast and unnecessary waste 
of energy. Excessive and uneven heating is currently China’s largest source of heat loss. 
Because the heating system has the characteristics of a large heating scale, strong cou-
pling, high thermal inertia, and challenging-to-determine thermal parameters, there is al-
ways a time lag between the balance of supply and demand [10–12]. 

The traditional control method of DH is to keep the outlet water temperature of the 
power plant unchanged. The temperature of the water entering the building fluctuates, 
as shown in Figure 1. However, under ideal conditions, the indoor temperature of the 
building remains constant, at 20 °C or 18 °C, for example [13]. As a result, the outlet water 
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temperature of the power plant fluctuates. Accurate heat load prediction can reduce this 
imbalance between heating supply and demand, thereby reducing the energy consump-
tion of DH. 

 
Figure 1. Two control modes of DH. One is the regulation method in which the temperature of the 
outlet water of the power plant is constant. The other is the regulation method in which the temper-
ature of hot water entering the building is stable. 

To achieve the above ideal state, building energy consumption prediction is needed. 
Currently, there are two main methods for producing energy prediction: physics models 
and data-driven models [14,15]. The physics model, also known as the white-box model, 
refers to the modeling of building energy consumption based on the heat transfer mecha-
nism. The relevant heat transfer equations are then solved to obtain building energy con-
sumption predictions. Commercial software such as EnergyPlus [16], Transient System 
Simulation Tool (TRNSYS) [17,18], and Designer’s Simulation Toolkit (DeST) [19,20] uti-
lize physics models to predict building thermal loads. However, these models often re-
quire a large number of building characteristic parameters. Some parameters are not read-
ily available. Additionally, some parameters will change over time, so we can only esti-
mate these parameters and cannot obtain accurate values. At the same time, the calcula-
tion time is prolonged. Due to the inability to obtain accurate parameters, complex physics 
models often cannot achieve the expected prediction accuracy. Although some of the 
above shortcomings can be avoided if simple physics models are applied, their prediction 
accuracy often struggles to meet application requirements. 

With the development of big data technology and machine learning (including deep 
learning), these technologies are gradually being introduced into building energy con-
sumption prediction, resulting in data-driven models [21–23]. The data-driven model re-
fers to the energy consumption prediction model formed by mining historical heating 
data, training, and fitting. It predicts heating energy consumption based on heating data 
as the core basis. This energy consumption prediction model does not need to know the 
physical relationship between the heating data, which simplifies the model [24]. Data-
driven models require considerable data and computational effort. Without a powerful 
GPU, some data-driven models may take tens of hours to complete model training. How-
ever, these shortcomings are no longer significant with recent advances in instrumenta-
tion and computing power. Standard data-driven models include linear models [25], de-
cision trees [26,27], support vector machines (SVMs) [28,29], gradient-boosted trees 
[30,31], and deep learning models [32–34]. 

We propose a periodic-based neural network (PBNN) to predict building energy con-
sumption. The main innovation of this work is the application of a new data structure 
based on the periodicities of building energy consumption. According to the period of 
energy consumption data, a time-discontinuous sliding window is proposed. Periodic fea-
tures are triangularly transformed. After data preprocessing, the training data enter the 
CNN-LSTM model. The convolution kernel scale of the convolutional neural network 
(CNN) is set to 12 according to the period of energy consumption data. Long Short-Term 
Memory (LSTM), traditional sliding window PBNN (TSW-PBNN), and PBNN are com-
pared to demonstrate the effectiveness of the data structure introduced in this paper. 

The main contributions of this paper are summarized as follows: 
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1. A data structure suitable for building energy consumption prediction is proposed. 
Sliding windows consist of temporally discontinuous data. The sliding window con-
sists of building data for the past 24 h, 24 h in the previous week, and 24 h in the 
previous year. 

2. It is demonstrated through Fourier transformation that there are daily, weekly, and 
annual periods in building energy consumption. The CNN convolution kernel size is 
set by the period of the energy consumption data. 

3. The time-discontinuous sliding window drastically reduces the model training time 
and energy consumption prediction error. The particular sliding window structure 
allows a sample to contain more information through a specific sliding window 
structure. 

4. When the distribution of building energy consumption in a month is closer to the 
distribution of building energy consumption in the whole year, that month’s energy 
consumption prediction error is lower. 
The structure of this paper is as follows. Section 2 describes the data sources and 

discusses the period of energy consumption data through Fourier transformation. The 
traditional sliding window and time-discontinuous sliding window are elaborated. Sec-
tion 3 reports on the baseline model, LSTM, PBNN, and TSW-PBNN. Section 4 compares 
the prediction performance of LSTM, TSW-PBNN, and PBNN for building energy con-
sumption. The conclusion is presented in Section 5. 

2. Materials and Methods 
2.1. Data Sources 

The data for this paper come from the Great Energy Predictor III (GEPIII) machine 
learning competition [35]. Over 20 million training data points from 2380 energy meters 
were collected for 1448 buildings from 16 sources [36]. The data include three years of 
hourly time series data for each meter and weather information. There are leaked data in 
the competition [37], including hourly measurement data from 1 January 2016 to 31 De-
cember 2018. This competition aimed to find the best model for predicting the energy con-
sumption of all buildings. The main models used in the competition were Light Gradient 
Boosting Machine (LightGBM), CatBoost, XGBoost, and Multi-Layer Perceptron (MLP). 

We focus on the single energy meter prediction problem in this work. The impact of 
the time series on the forecast results is fully considered. By reorganizing the competition 
data, the features and targets are shown in Table 1. 

Table 1. Data description in GEPIII. 

Property Name Implication 
time timestamp When the measurement was taken 

feature air temperature Degrees Celsius 
feature cloud coverage Portion of the sky covered in clouds, in oktas 
feature dew temperature Degrees Celsius 
feature precip depth 1 h Precipitation in millimeters over 1 h 
feature sea level pressure Millibar/hectopascals 
feature wind direction Compass direction (0–360) 
feature wind speed Meters per second 
feature hour The hour (0–23) corresponding to the timestamp 
feature weekday The weekday (0–6) corresponding to the timestamp 

feature week of year 
The week of year (1–53) corresponding to the 

timestamp 
feature year 2016, 2017, or 2018 

target meter reading Energy consumption in kWh (or equivalent); real data 
with measurement errors 
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The sample data are combined, as shown in Figure 2. T1, the timestamp, is a time 
index, and this parameter is not directly used in the prediction model. Feature X consists 
of weather data, date–time data, and historical sensor data. Weather data consist of air 
temperature, cloud coverage, dew temperature, precipitation depth at 1 h, sea level pres-
sure, wind direction, and wind speed. Date–time consists of the hour, weekday, week of 
the year, and year. Historical sensor data are the energy meter readings. Feature X con-
tains the above data for multiple past moments simultaneously. The model-predicted 
value Y is the T1-predicted target value, which refers to the energy meter measurement in 
the next 1 h, 12 h, and 24 h. The energy prediction model in this paper is a multi-objective 
prediction problem. 

 
Figure 2. Detailed construction of a single sample. 

There are two main approaches to long-term prediction for time series problems 
[38,39]. One of them is to use the rolling prediction method, which assumes that the min-
imum granularity of time is hours. According to the historical data at time t, the model is 
trained to predict the building energy consumption at time (t + 1) (with hour as the unit). 
Once the building energy consumption at time (t + 1) is obtained, it is used as input data 
to predict the building energy consumption at time (t + 2). By analogy, the energy con-
sumption of the building at the subsequent time is obtained. Such iterations will continue 
until the time (t + 24). The building energy consumption at times (t + 1), (t + 12), and (t + 
24) is selected from the calculation results, which is the model prediction result. Another 
method is the non-rolling prediction method, which fixes the time interval between the 
prediction target and the input. The input is historical data at time t, and the output is a 
vector of building energy consumption at times (t + 1), (t + 12), and (t + 24). The model is 
directly trained end-to-end. The advantage of the rolling forecast method is that the model 
is simple, and it is convenient to predict the building energy consumption after any full 
hour. Its disadvantage is that the prediction error generally increases over time. The non-
rolling forecast method minimizes the weaknesses of the rolling prediction method. We 
applied the non-rolling forecast method to predict the energy consumption of buildings. 

2.2. Periodicity of Energy Consumption Data 
Time series data of building energy consumption are often periodic, which is an im-

portant feature that distinguishes them from general time-series data. The building oper-
ation law is affected by both social processes and the Earth’s natural cycle. The periodicity 
of energy consumption in each building may not be the same. For example, a college 
building has a cycle of semesters and vacations. However, general buildings usually have 
the following three periodicities: daily persistence, weekly persistence, and weekly one-
year-ago persistence. For example, 2 July 2018 is the Monday of the 27th week of 2018. 
According to the previous three periodicities, 10:00 on 2 July 2018 corresponds to 10:00 on 
1 July 2018, 10:00 on 25 June 2018, and 10:00 on 3 July 2017. The latter date, 3 July 2017, is 
the Monday of the 27th week of 2017. There is a close relationship between the building 
energy consumption at 10:00 on 2 July 2018 and the building energy consumption on the 
corresponding date, which is shown in Figure 3. 

Next, we verify the above conclusions with GEPIII data. The building with ID185 in 
the GEPIII competition dataset is selected as the research object. The primary use of the 
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building is education. The building area is 84,300 square feet. Three-year energy consump-
tion data of Building 185 were leaked, so the complete hourly energy consumption data, 
from 1 January 2016 to 31 December 2018, can be found on the Internet [37]. Figure 4 is a 
graph of the time–energy consumption data for Building 185. The daily energy consump-
tion is replaced by the energy consumption at 0 o’clock. The abscissa is directly repre-
sented by the time series, where 0 means 1 January 2016 and 1 means 2 January 2016. The 
ordinate is the building energy consumption. The three-year hourly data of Building 185 
contain a total of 26,294 samples. 

 

Figure 3. Periodicity of energy consumption data. 

The periodicity of building energy consumption is not readily available, as shown in 
Figure 4. For this purpose, a Fourier transformation was performed on 26,294 points of 
hourly energy consumption data [40]. A frequency–amplitude diagram was obtained, as 
shown in Figure 5. The unit of frequency is 1/hour (h−1). The frequencies corresponding to 
the seven largest amplitude peaks are 0.0001141 h−1, 0.0357 h−1, 0.00594 h−1, 0.0416 h−1, 
0.0119 h−1, 0.00598 h−1, and 0.0427 h−1. They are converted into periods of 8764 h, 28 h, 168 
h, 24 h, 84 h, 167 h, and 23 h. These seven periods can be divided into four groups, namely, 
[23 h, 24 h, 28 h], [84 h], [167 h, 168 h], and [8764 h]. The first group corresponds to the 
daily period. The second group corresponds to the half-week (3.5 days) period. The third 
group corresponds to the weekly period. Moreover, the fourth group corresponds to the 
annual period. The year 2016 consisted of 366 days, so 8764 h is slightly more than 8760 h 
(365 days). The analysis results of Building 185 support the conclusion that there are sev-
eral periodicities in building energy consumption. The analysis results suggest 12-hour 
periodicity in building energy consumption. 

 
Figure 4. Energy consumption of Building 185 from 2016 to 2018. 
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Figure 5. Frequency and amplitude of energy consumption data. 

2.3. Traditional Sliding Window and Time-Discontinuous Sliding Window 
The theoretical calculation of the heating system is often carried out based on the 

ideal working conditions in a steady state. Actual operating conditions must be analyzed 
using dynamic methods. Because the energy consumption of buildings is affected by fac-
tors such as thermal inertia, outdoor temperature, and solar radiation, there are significant 
errors in the energy consumption prediction based on a data sample from a single mo-
ment. 

A sliding window containing data samples of a specific time range could better de-
scribe the building energy consumption problem. By introducing the sliding window, the 
noise of the original data can be reduced, and the prediction results will be more stable. 
At the same time, this can reduce the impact of outliers and error values on the prediction 
model [41]. 

The sliding window includes the sample itself and the specified number of samples 
preceding it, which increases the prediction accuracy of the energy consumption model. 
The sliding window can be defined as Xj 

i , as shown in Equation (1). 

( )1, , ,j
i i j i ix x x− −=X    (1)

where j is the window size and i is the timestamp of the model prediction. xi is a data 
sample at one moment. 

The model’s predicted value is Y3 
i , as shown in Equation (2). 

( )3
1 12 24, ,i i i ix x x+ + +=Y  (2)

To be precise, the energy meter measurements in xi + 1, xi + 12, and xi + 24 are the model’s 
predicted values. The sliding window is shown in Figure 6, referred to as a traditional 
sliding window (TSW) because the data samples within the sliding window are continu-
ous in time. When the sliding window keeps sliding forward, the energy consumption 
prediction model constantly makes predictions. 
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Figure 6. The structure of a traditional sliding window. 

Since building energy consumption has periodicities of days, weeks, and years, we 
fill the sliding window with the data of the corresponding date. The time-discontinuous 
sliding window is shown in Figure 7. The sliding window size is still 72 h. The sliding 
window consists of the related data of the past 24 h, 24 h of the past week, and 24 h of the 
previous year (considering the weekly characteristics). Time is no longer continuous 
within the sliding window. From the perspective of energy consumption prediction, the 
sliding window composed in this way contains more information. Compared with the 
building data of the past 72 h, the sliding window shown in Figure 7 reduces the energy 
consumption prediction error. The following calculation results prove the above conclu-
sion. The main innovation of this paper is the introduction of time-discontinuous sliding 
windows into neural network algorithms. 

 
Figure 7. The structure of a time-discontinuous sliding window. 

3. Modeling and Methodology 
This section introduces data preprocessing, hyperparameter optimization, evalua-

tion criteria, and the four models used to predict building energy consumption. 

3.1. Data Preprocessing 
Data preprocessing is critical for neural network model training. The neural network 

algorithm is an end-to-end algorithm, and the intermediate process does not need to be 
manually designed. However, if the unprocessed data are directly entered into the neural 
network model, this can cause problems such as long model training time and significant 
error in the model prediction results. In severe cases, it may even cause model training 
failure. In this paper, the data are mainly preprocessed by outlier removal, missing value 
filling, the periodic processing of some features, and min–max normalization. Outlier re-
moval is primarily used to detect datasets and remove unreasonable energy consumption 
data and weather parameters. Due to occasional instrument failures, data are missing for 
some moments in the dataset. Missing data values are filled with the average data value 
for that day. 

The characteristics of wind direction, hour, weekday, and week of the year are peri-
odic and discrete. In the general literature, one-hot encoding is performed for such fea-
tures. However, if these features are one-hot encoded in this paper, there will be too many 
features, and other features’ information will be masked. Here, trigonometric functions 
are introduced to deal with such features, and the calculation formula is as follows: 

2sin 1 2newx x
T
π  = +    

  (3)
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where xnew is the feature obtained after triangular transformation, x is the original feature, 
and T is the period of the feature. Through Equation (3), the converted features can better 
reflect the periodicity and take values between [0, 1]. 

Finally, min–max normalization is introduced to convert the scale of all variables to 
the range of 0–1. This data normalization technique consists of performing a linear trans-
formation on the original data. Each initial value is replaced according to the following 
formula. 

min

max min

X XX
X X

−′ =
−

  (4)

where X is the value of the original feature. Xmin and Xmax are the minimum and maximum 
values, respectively, and X ′  is the value transformed by min–max normalization. 

3.2. Baseline Model 
A simple common sense-based approach is attempted before solving the energy con-

sumption prediction problem with a neural network model. This acts as a sanity check 
and establishes a baseline. More advanced neural network models need to beat this base-
line model. When faced with a new problem, this common sense-based baseline approach 
is the first step. Baseline methods based on human common sense sometimes outperform 
sophisticated machine learning predictions. Therefore, surpassing the baseline method is 
not an easy task. Our previous work indicates that building energy consumption has a 24 
h periodicity. Thus, a common sense approach always predicts that the building’s energy 
consumption in the next 24 h will equal the building’s present energy consumption. 

24i iy y+ =   (5)

where yi is the current building energy consumption, and yi + 24 is the energy consumption 
of the building in the next 24 h. 

3.3. LSTM Neural Network 
The LSTM model is the most popular in the time series domain. It was introduced by 

Hochreiter and Schmidhuber (1997), and was refined and popularized in subsequent 
work [42]. LSTM is a special kind of recurrent neural network capable of learning long-
term dependencies in data. The recurring module of LSTM has a combination of four gates 
interacting with each other, as shown in Figure 8. A simple LSTM cell consists of four 
parts: forget gate, input gate, hidden cell state, and output gate. 

 
Figure 8. LSTM cell visual representation. 

LSTM adds a dropout layer to improve the generalization ability of the algorithm. 
We set dropout and recurrent dropout to 0.2 and 0.5, respectively. In the LSTM calculation 
process, the time in the sliding window is set to the past 72 consecutive hours. The sliding 
window corresponding to LSTM is shown in Figure 6. 
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In LSTM, the building energy consumption data from 2016 and 2017 are the training 
dataset, and the building energy consumption data in 2018 are the test data. There are 
17,451 training samples and 8760 testing samples in LSTM. 

3.4. Period-Based Neural Network 
LSTM is a general algorithm for solving time series problems, with the advantages 

of a wide application range and accurate calculation results. It is demonstrated in Section 
2 that building energy consumption is periodic. When solving the energy consumption 
prediction problem, LSTM does not take full advantage of the inherent characteristics of 
such problems. This leads to too many model parameters, long calculation time, and easy 
overfitting when solving the energy consumption prediction problem based on LSTM. 

We propose a period-based neural network algorithm to solve the problem of build-
ing energy consumption prediction. PBNN mainly improves the accuracy of building en-
ergy consumption prediction from the data structure perspective. We propose a novel 
sliding window structure, as shown in Figure 7, which takes advantage of the periodicity 
of building energy consumption. New computational methods reduce the model training 
and application time. 

The entire framework of the PBNN is shown in Figure 9. Two main modules, CNN 
and LSTM, are cascaded together in this system. The CNN layer is an in-depth feature 
extractor that integrates periodic information on building energy consumption with lower 
dimensionality than the original tensor. LSTM layers extract and learn temporal features 
of multivariate energy consumption time series. The three-dimensional (3D) tensor is in-
put into the PBNN model. The three dimensions of the tensor are features (12 inputs in 
the figure), sliding window size (72 layers in the figure), and time span (time series in the 
figure). 

 
Figure 9. The framework of PBNN. 

CNN consists of one-dimensional (1D) convolutional layers, ReLU layers, and 1D 
pooling layers. Each convolutional neuron only processes the energy consumption data 
of the receptive field. CNN has two significant features: local perception and parameter 
sharing. Time series data with periodicity satisfy the above characteristics. Therefore, the 
CNN introduced in the model improves the accuracy of building energy consumption 
prediction. The kernel size of the CNN is determined by the period of the data. 
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The pooling layer adopts the max-pooling method, and reduces the capacity of the 
model in order to reduce the number of parameters and the computational cost of the 
network while reducing overfitting. 

LSTM is the lower layer of the PBNN, which further extracts building energy con-
sumption information extracted by the CNN. The LSTM algorithm was introduced in 
more detail in the previous section. 

Adam is the optimizer for this model. The loss function is the mean squared error 
(MSE) of the predicted and actual energy consumption. 

In PBNN, the data span a period of over a year in the sliding window. The building 
energy consumption data from 2016 and 2017 are training datasets, and the building en-
ergy consumption data from 2017 and 2018 are test data. While the data from 2017 and 
2018 are test data, only the 2018 building energy consumption is forecast. There are 8761 
training samples and 8737 testing samples in PBNN. 

In the 1D CNN module, the kernel size is set to 12 based on hyperparameter grid 
search. The choice of hyperparameters is presented in Section 3.7. The activation function 
is ReLU, and the padding method is set to causal. The pool size of Layer MaxPool1D is 2. 

The LSTM module’s dropout and recurrent dropout are 0.2 and 0.5, respectively. The 
activation function is ReLU. 

The batch size of the model is set to 32, and the number of training epochs is 50. An 
early stopping technique is introduced to reduce overfitting. The patience of early stop-
ping is set to 4. The LSTM’s monitor is a validation loss. 

In this paper, there are four main methods to address the overfitting problem: 
1. Sliding windows are introduced into energy consumption prediction to better obtain 

the information in the time-series data. In particular, the improved sliding window 
in discontinuous time can further alleviate the problem of overfitting. 

2. Periodic features are preprocessed by trigonometric and linear transformations. Af-
ter preprocessing, the need for data volume is reduced in the energy consumption 
prediction problem. 

3. Better model hyperparameters are chosen according to the periodicity of building 
energy consumption. The CNN-LSTM model has fewer parameters than the LSTM 
model, which controls the model’s capacity. 

4. Some conventional anti-overfitting methods are introduced into training, such as 
adding multiple dropouts, weight sharing in CNN, and early stopping. 

3.5. Traditional Sliding Window PBNN 
To better verify the effect of the sliding window proposed in this paper, the tradi-

tional sliding window PBNN is also constructed. The model structures of TSW-PBNN and 
PBNN are the same. The main difference between them is that the two sliding windows 
are different. The sliding window for the TSW-PBNN is shown in Figure 6. Furthermore, 
the time in the sliding window is continuous. 

3.6. Evaluation Criteria 
To evaluate the energy prediction errors of the baseline model, LSTM, TSW-PBNN 

and PBNN, mean absolute error (MAE), root mean square error (RMSE), and coefficient 
of determination (R2) are introduced in this paper [43]. MAE focuses on the relative error, 
and RMSE focuses on the error. R2 measures the strength of the relationship between the 
model and the dependent variable on a convenient 0–100% scale. The three evaluation 
criteria evaluate the effect of building energy consumption prediction from three different 
perspectives. 


1

1MAE
N

ii
i
X X

N =

= −   (6)
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N =

= −   (7)
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iii

n
iii

X X
R

X X
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−
= −

−




  (8)

where Xi is a vector representing N actual values,  iX  is a vector representing N predic-
tion values, iX  represents the mean of the true values, and n is the number of 
timestamps in the test series. 

3.7. Hyperparameter Optimization 
Hyperparameter optimization can avoid both the overfitting and underfitting of the 

model. Moreover, hyperparameter optimization helps deep learning models to generalize 
well. Generalization refers to the ability of a model to perform well on both training data 
and new data. Since the model’s performance varies with the hyperparameters, it is es-
sential to set them appropriately. 

Grid search determines a set of values for each hyperparameter, runs the model with 
each possible combination of these values, and selects the values that produce the best 
results. Grid search involves guesswork since the values to be tried are set manually by 
the algorithm designer [44]. 

We performed a grid search on hyperparameters in LSTM and PBNN. The search 
range of LSTM model hyperparameters is shown in Table 2. The search objective is to 
minimize the average building energy consumption MAE in the next 1 h, 12 h, and 24 h. 
The calculation results show that the energy consumption prediction MAE of the LSTM 
model is the smallest when LSTMLayers is 2, LSTMUnits is 300, and the average MAE is 
14.04%. 

Table 2. Hyperparameter grid search for LSTMs. 

Hyperparameter Implication Range 
LSTMLayers LSTM layer repetitions [1, 2, 3, 4] 
LSTMUnits LSTM capacity [5, 10, 100, 300] 

PBNN is more complex than LSTM. Therefore, it contains more hyperparameters. 
The search range of hyperparameters of the PBNN model is shown in Table 3. The calcu-
lation results show that the energy consumption prediction MAE of the PBNN is the 
smallest when [ConvLayers, kernelSize, filters, LSTMLayers, LSTMUnits] is [2, 12, 5, 1, 
100], and the average MAE is 10.31%. The optimal scale of the convolution kernel is 12, 
which implies that the building energy consumption data have a periodicity of 12 h. This 
result verifies the previous conclusions obtained by the Fourier transform. The hyperpa-
rameters of TSW-PBNN are the same as those of PBNN. 

Table 3. Hyperparameter grid search for PBNNs. 

Hyperparameter Implication Range 
ConvLayers Convolutional layer repetitions [1, 2, 3, 4] 
kernelSize Convolution size [2, 12, 24] 

filters The number of different convolution kernels [5, 10, 50, 100] 
LSTMLayers LSTM layer repetitions [1, 2, 3, 4] 
LSTMUnits LSTM capacity [5, 10, 100, 300] 

4. Results and Discussion 
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This section compares the performance of LSTM, TSW-PBNN, and PBNN sequen-
tially from the perspectives of model prediction error, model computation time, stability, 
robustness, and feature processing. Finally, two new buildings are selected to demon-
strate the PBNN prediction performance under different scenarios. 

4.1. Model Prediction Errors 
The prediction results of the baseline model, LSTM, TSW-PBNN, and PBNN are 

shown in Table 4. In MAE, RMSE, and R2, the prediction results of LSTM, TSW-PBNN, 
and PBNN are significantly better than those of the baseline model. This shows that com-
plex neural network algorithms can improve the energy consumption prediction results. 
When predicting the building energy consumption for the next 1 h, the PBNN prediction 
error is 9.6%, which is 4.18% smaller than the LSTM prediction error. In the calculation 
results of RMSE, the energy consumption prediction bias of PBNN is 2.93 kWh lower than 
that of LSTM. The MAE of PBNN is 2.30%, 3.47%, and 3.66% lower than that of TSW-
PBNN when predicting energy consumption for 1 h, 12 h, and 24 h in the future, respec-
tively. By comparing the prediction results of TSW-PBNN and PBNN, the sliding window 
proposed in this paper is found to be superior to the traditional continuous-time sliding 
window. After adopting the PBNN model, the independent variable explained 84% of the 
dependent variable, which was 10% higher than the corresponding value in LSTM. For 
predicting building energy consumption in the next 12 h and 24 h, the R2 of PBNN is 0.14 
and 0.09 greater than that of TSW-PBNN, respectively. PBNN outperforms LSTM and 
TSW-PBNN in all of the evaluation criteria of the prediction results. 

Table 4. Comparison of prediction errors of the baseline model, LSTM, TSW-PBNN, and PBNN. 

Time Horizon Model MAE(%) RMSE R2 
1 h Baseline 24.44 39.33 0.29 

 LSTM 13.78 19.17 0.74 
 TSW-PBNN 11.90 16.53 0.72 
 PBNN 9.60 16.24 0.84 

12 h Baseline 24.44 39.33 0.29 
 LSTM 14.64 20.91 0.68 
 TSW-PBNN 14.25 19.09 0.67 
 PBNN 10.78 17.58 0.81 

24 h Baseline 24.44 39.33 0.29 
 LSTM 13.69 19.99 0.72 
 TSW-PBNN 14.22 18.68 0.69 
 PBNN 10.56 18.08 0.78 

Since the baseline model is just a simple persistence model, it performs the same in 
predicting building energy consumption for the next 1 h, 12 h, and 24 h. Figure 10 shows 
the performance of LSTM, TSW-PBNN, and PBNN in predicting different moments in the 
future. In PBNN, the MAEs of energy consumption in the next 1 h, 12 h, and 24 h are 
9.60%, 10.78%, and 10.56%, respectively. The energy consumption prediction error for the 
next 1 h is the smallest. The energy consumption predictions for the next 12 and 24 h are 
relatively close. The calculation results of the other five groups are similar to the above 
conclusions. As the prediction time becomes longer, the prediction error tends to increase. 
However, this trend is not always the case. The inherent periodicity of energy consump-
tion data may make predictions more accurate at certain times. Under the same condi-
tions, the error of the PBNN prediction results is smaller than that of the LSTM and TSW-
PBNN prediction results. 
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Figure 10. Error comparison of LSTM, TSW-PBNN, and PBNN predictions at different times. 

Table 4 shows the errors of these models in the energy consumption prediction for the 
whole year of 2018. The prediction results for the entire year are decomposed by month in 
order to obtain the prediction results of energy consumption for each month. The monthly 
energy consumption prediction is compared with the ground truth of each month. Then, 
the prediction errors for each month are obtained. The predicted performances per month 
of the baseline model, LSTM, TSW-PBNN, and PBNN are shown in Figure 11. 

Figure 11. Error comparison of LSTM, TSW-PBNN, and PBNN predictions at different times. 

In most cases, the MAE of PBNN is the smallest, followed by TSW-PBNN and LSTM. 
The MAE of the baseline model is the largest. There are the following error trends in the 
prediction results of LSTM, TSW-PBNN, and PBNN. The MAE in January, February, and 
March is the average MAE for the whole year. MAE decreases in April, and increases 
slightly in May and June. MAEs in July, August, and September are significantly higher 
than the average MAE. The MAE in October hits rock bottom before increasing again in 
November and December. 

To explain the above trends, we made a box plot of energy consumption for each 
month and the entire year in 2018, as shown in Figure 12. The bottom 25%, the median, 
and the top 25% of the annual energy consumption ground truth, excluding outliers, are 
57.11 kWh, 81.47 kWh, and 121.50 kWh, respectively. The same April energy consumption 
ground truths are 56.16 kWh, 73.55 kWh, and 108.05 kWh. The same October energy con-
sumption ground truths are 56.73 kWh, 79.76 kWh, and 114.20 kWh. The bottom 25%, the 
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median, and the top 25% of the August energy consumption ground truth are 56.73 kWh, 
79.76 kWh, and 114.20 kWh, respectively. 

The distribution of energy consumption data in April and October is the closest to 
the distribution of energy consumption data for the whole year. The energy consumption 
in August is significantly higher than the average energy consumption for the entire year. 
At the same time, April and October have the most petite MAEs, whereas the MAE is the 
largest in August. Comparing Figures 11 and 12, the more similar the distribution of en-
ergy consumption data in a month and the distribution of energy consumption data in the 
entire year are, the smaller the MAE of that month is. By separately training a small neural 
network model on the energy consumption data of the third quarter (Q3), we can reduce 
the overfitting of the neural network. The model prediction error can be significantly re-
duced by introducing two PBNNs (one PBNN for Q3 and one PBNN at other times). From 
Figure 12, the minimum energy consumption in July is 0 kWh. By detecting the energy 
consumption data, the energy meter reading at 2018/7/14 6:00:00 is 0. The data before and 
after this time are standard. Therefore, the energy meter reading at this moment is wrong. 
We do not pursue the minimum prediction error, so the reading of the energy meter at 
this moment is not modified. 

 
Figure 12. Box plot of energy consumption distribution in 12 months and the whole year. 

4.2. Model Computation Time 
The experimental computing platform in the paper is an Intel® Core™ i9-10850K CPU 

@3.60 GHz CPU, RAM 64 GB, Windows 10 64 bit, NVIDIA GeForce RTX 3090, Python 3.8, 
and TensorFlow 2.3. 

In addition to model prediction accuracy, model computation time is another dimen-
sion of evaluating models. In neural network applications, model computing time is di-
vided into training and inference time. Training time is generally several hours or even 
days, and requires powerful GPUs, which increases training costs and power consump-
tion. This will also indirectly limit the extent of hyperparameter tuning and model train-
ing. Inference time is crucial in determining whether the model can be run online. PBNN 
has a more complex structure and more hyperparameters than LSTM. However, this does 
not mean PBNN takes a long time to train and test, as shown in Table 5. Since there is a 
max-pooling layer in the CNN layer, the data are compressed when they pass through the 
CNN and enter the LSTM. This results in a practically smaller capacity of the PBNN 
model, thereby reducing the training time. Due to the different sliding window structures, 
the training samples of LSTM or TSW-PBNN are almost twice those of PBNN. The train-
ing time of PBNN is approximately half that of TSW-PBNN. 
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PBNN has fewer parameters, which can reduce inference time. However, the sliding 
window of PBNN is more complicated and requires more computation time. The infer-
ence time of PBNN is longer than that of TSW-PBNN. Overall, the inference times of TSW-
PBNN and PBNN are not significantly different. The inference times of the three models 
are at the millisecond level, which can meet the requirements of online computing. 

Table 5. Computation time of LSTM, TSW-PBNN, and PBNN. 

Model Training Samples Training Time Inference Time 
LSTM 17,451 4528 s 1.19 ms 

TSW-PBNN 17,451 787 s 0.42 ms 
PBNN 8761 483 s 0.66 ms 

4.3. Stability of Model Prediction 
The calculation result of the neural network algorithm is random. The choice of da-

taset will also affect the accuracy of the neural network algorithm. Twelve-fold cross-val-
idation was performed on the entire dataset. The MAE distribution of energy consump-
tion prediction in the next 24 h is shown in Figure 13. Three-quarters of the MAEs trained 
by PBNN are less than 8%. Approximately one-quarter of the MAEs trained by LSTM are 
less than 8%. In most cases, the prediction error of PBNN will be minor. The standard 
deviations of LSTM, TSW-PBNN, and PBNN are 1.50, 1.65, and 1.36, respectively. PBNN 
calculation results are more stable. There are outliers in LSTM and TSW-PBNN, which can 
be recognized as failure cases. 

Training is often terminated early in these cases, after approximately ten training 
rounds. Due to insufficient training, the energy consumption prediction error of the 
trained model is abnormally large. The initialization parameters of the neural network are 
random, so each training is not the same. However, PBNN rarely has insufficient training 
rounds. PBNN is less affected by random initialization parameters. 

 
Figure 13. MAE boxplot for LSTM, TSW-PBNN, and PBNN. 

4.4. The Robustness of LSTM, TSW-PBNN, and PBNN 
In engineering problems, the amount of training data needed to meet the require-

ments of neural network algorithms is often challenging. A more extensive training sam-
ple size means a higher cost. Sometimes, to reduce costs, it is acceptable to reduce the 
accuracy of the predictive model due to insufficient training samples. To study the robust-
ness of the model in terms of the amount of training data, we divided the training data 
into four groups, “I0” to “I3”. I0 contains four quarters’ data, and I3 only holds infor-
mation for the fourth quarter. Since the sliding window of PBNN requires the same period 
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as the previous year, the test data can only maintain the same period as the training data. 
The final test data for LSTM, TSW-PBNN, and PBNN are divided into the same four 
groups. The periods for the input data are shown in Table 6. 

Table 6. Composition of different training data. 

Input No. Training Data Length Period of Data 
I0 100% training dataset Q1, Q2, Q3, Q4 
I1 75% training dataset Q2, Q3, Q4 
I2 50% training dataset Q3, Q4 
I3 25% training dataset Q4 

Figure 14 shows the MAEs of the LSTM, TSW-PBNN, and PBNN under different 
input choices. Compared with I0, I1, and I3, the MAE gradually increases with the de-
crease in training data. In Figure 14c, the MAE of LSTM increases from 13.69% to 16.64% 
compared with I0 and I3. The MAE of PBNN increases from 10.56% to 12.47%. Energy 
consumption prediction errors do not increase significantly. 

Compared with I2 and I3, the training error is reduced when the amount of training 
data is reduced. The period for the test data for I2 is Q3 and Q4. The period for I3 is Q4. 
The calculation results imply that building energy consumption data in Q3 (correspond-
ing to July, August, and September) are difficult to predict. The energy prediction error 
metrics of LSTM, TSW-PBNN, and PBNN will decrease if Q3 data are discarded. How-
ever, the above strategy falls into the “survivor bias” trap. We need to collect more Q3 
building energy consumption data to make the model more robust. 
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Figure 14. Prediction error of LSTM, TSW-PBNN, and PBNN on different training data. 

4.5. Preprocessing of Periodic Features 
In Section 3.1, Equation (3) is used to perform trigonometric function preprocessing 

on periodic and discrete features. Here, the energy consumption models are trained sep-
arately based on the features preprocessed by the trigonometric function and the original 
features. The energy consumption prediction errors of these models after training are 
shown in Figure 15. The energy consumption prediction error of LSTM with triangulation 
preprocessing is, on average, 4.11% lower than that without triangulation preprocessing. 
The average energy consumption prediction error of PBNN can be reduced by 2.28% 
through trigonometric function preprocessing. The calculation conclusion of the TSW-
PBNN is similar to that of the PBNN. From the perspective of RMSE, trigonometric func-
tion preprocessing can reduce the energy consumption prediction errors of LSTM, TSW-
PBNN, and PBNN by 4.40 kWh, 3.66 kWh, and 5.33 kWh, respectively. As the prediction 
time horizon increases, the energy consumption prediction errors of the model trained on 
the original features increase rapidly. 

 



Energies 2022, 15, 6338 18 of 22 
 

 

 

Figure 15. Comparison of prediction errors after preprocessing with triangulation and without tri-
angulation. 

It is generally believed that a significant advantage of neural networks over shallow 
machine learning is that manual feature engineering is not needed. However, the predic-
tion accuracy can be significantly improved after feature engineering is adopted in pre-
dicting building energy consumption. This contradiction is mainly due to the number of 
training samples. In engineering, general computing tasks cannot provide sufficient and 
valid training data. In the case of limited data, feature engineering is necessary. Deep 
learning cannot wholly change the above facts. However, in the engineering field, deep 
learning can reduce the importance of feature engineering. At the same time, a more so-
phisticated network architecture design can reduce overfitting, the number of parameters, 
and the dependence on feature engineering. 

4.6. Model Performance under Different Scenarios 
We selected Building 164 and Building 230 from the GEPIII competition data for a 

comparative study of LSTM, TSW-PBNN, and PBNN. The basic information of Building 
164 and Building 230 is shown in Table 7. The primary use of Building 164 is as a ware-
house/storage. The energy consumption of the warehouse is relatively less disturbed by 
human work and rest. The primary use of Building 230 is education, as is the primary use 
of Building 185. The construction year for Building 230 is missing. All data in this subsec-
tion are available from the website [37]. 

Table 7. The basic information of Building 164 and Building 230. 

Building Id Primary Use Square (Feet) Year Built Floor Count 

164 
Warehouse/stor-

age 12,908 1979 2 

230 Education 10,334 / 2 

The prediction errors of the baseline model, LSTM, TSW-PBNN, and PBNN for 
Buildings 164 and 230 are shown in Table 8 and Table 9, respectively. In Table 8, the base-
line model still performs the worst. However, it is not much worse than that predicted by 
the other models. The prediction results of TSW-PBNN and PBNN are close, and both are 
better than LSTM. When predicting the energy consumption in the next 24 h, the predic-
tion error of PBNN is smaller than that of TSW-PBNN. In this case, the traditional sliding 
window and the time-discontinuous sliding window behave similarly. This does not re-
flect the superiority of the time-discontinuous sliding window. The energy consumption 
of the warehouse is relatively stable, and its daily, weekly, and annual periodic character-
istics are not obvious. In this situation, the persistence model will perform relatively well. 
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In Table 9, PBNN shows a significantly superior performance. When predicting en-
ergy consumption in the next 24 h, the MAE of PBNN is 19.08%, 5.53%, and 2.69% lower 
than that of the baseline model, LSTM, and TSW-PBNN, respectively. The analysis results 
for Buildings 185 and 230 were similar. Buildings 185 and 230 serve the same primary use. 
Their periodic characteristics are relatively strong. In this scenario, the model based on 
the time-discontinuous sliding window makes better predictions. 

Table 8. Energy consumption prediction error of Building 164. 

Time Horizon Model MAE (%) RMSE R2 
1 h Baseline 22.85 15.14 0.51 

 LSTM 16.73 10.92 0.69 
 TSW-PBNN 14.99 9.25 0.77 
 PBNN 15.13 9.88 0.75 

12 h Baseline 22.85 15.14 0.51 
 LSTM 17.20 11.92 0.66 
 TSW-PBNN 15.87 10.37 0.72 
 PBNN 15.77 10.41 0.73 

24 h Baseline 22.85 15.14 0.51 
 LSTM 17.08 11.77 0.66 
 TSW-PBNN 15.34 9.93 0.76 
 PBNN 15.06 9.78 0.78 

Table 9. Energy consumption prediction error of Building 230. 

Time Horizon Model MAE (%) RMSE R2 
1 h Baseline 33.81 7.95 0.61 

 LSTM 19.21 5.02 0.77 
 TSW-PBNN 17.13 4.19 0.82 
 PBNN 14.44 3.57 0.87 

12 h Baseline 33.81 7.95 0.61 
 LSTM 20.32 5.13 0.75 
 TSW-PBNN 17.64 4.45 0.81 
 PBNN 14.90 3.88 0.84 

24 h Baseline 33.81 7.95 0.61 
 LSTM 20.26 5.17 0.74 
 TSW-PBNN 17.42 4.32 0.82 
 PBNN 14.73 3.81 0.85 

5. Conclusions 
Accurate building energy consumption prediction can provide the basis for DH reg-

ulation from the feedback mode to the feedforward mode. Feedforward regulation can 
improve the operating efficiency of the DH, thereby achieving energy savings and con-
sumption reduction. To better predict building energy consumption, we propose a PBNN 
model. PBNN exploits periodicity in three directions to improve energy consumption pre-
diction. PBNN reflects periodicity from three directions. According to the periodicity of 
energy consumption data, the sliding window consists of the past 24 h, 24 h in the past 
week, and 24 h in the past year. For periodic and discrete features such as wind direction 
and hour, these features are transformed by trigonometric functions. These features are 
then linearly transformed to finally obtain features in the [0,1] interval. The CNN layer is 
added before the data enter the LSTM layer. The convolution kernel scale of CNN is set 
to 12 according to the period of energy consumption data. 
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In this study, LSTM, TSW-PBNN, and PBNN are introduced to predict the building 
energy consumption. Important results are summarized as follows: 
1. According to the unique periodicity of energy consumption data, a sliding window 

integrating daily, weekly, and annual cycle information is proposed. The effective-
ness of this sliding window is demonstrated by comparing LSTM, TSW-PBNN, and 
PBNN. 

2. PBNN outperforms LSTM and TSW-PBNN on MAE, RMSE, and R2. The training 
time of PBNN is approximately one-tenth of that of LSTM or half that of TSW-PBNN. 
PBNN drastically reduces model computation time. 

3. When the energy consumption distribution of the month deviates from the energy 
consumption distribution of the whole year, the energy consumption prediction er-
ror of the month is large. The energy consumption in July, August, and September is 
significantly higher than the annual average energy consumption. These three 
months have the largest error in terms of energy consumption predictions. 

4. For buildings with significant periodic characteristics, PBNN has obvious ad-
vantages. PBNN performs well when the primary use of the building is education. 
The time-discontinuous sliding window does not help energy consumption predic-
tion when the primary use of the building is as a warehouse. 
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Abbreviations 
1D one-dimensional 
3D three-dimensional 
BPTT back-propagation through time 
CNN convolutional neural network 
DeST Designer’s Simulation Toolkit 
DH district heating 

GEPIII Great Energy Predictor III machine learning 
competition 

LightGBM Light Gradient Boosting Machine 
LSTM Long Short-Term Memory 
MAE mean absolute error 
MLP multi-layer perceptron 
MSE mean squared error 
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PBNN period-based neural network 
Q3 the third quarter 
RMSE root mean square error 
R2 coefficient of determination 
SVMs support vector machines 
TRNSYS Transient System Simulation Tool 
TSW traditional sliding window 
TSW-PBNN traditional sliding window PBNN 
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