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Abstract: Forecasting has extreme importance in industry due to the numerous competitive advan-
tages that it provides, allowing to foresee what might happen and adjust management decisions
accordingly. Industries increasingly use sensors, which allow for large-scale data collection. Big
datasets enable training, testing and application of complex predictive algorithms based on machine
learning models. The present paper focuses on predicting values from sensors installed on a pulp pa-
per press, using data collected over three years. The variables analyzed are electric current, pressure,
temperature, torque, oil level and velocity. The results of XGBoost and artificial neural networks,
with different feature vectors, are compared. They show that it is possible to predict sensor data in
the long term and thus predict the asset’s behaviour several days in advance.

Keywords: maintenance; neural networks; XGBoost; forecast; sensor prediction

1. Introduction

Advanced sensing technology, combined with high performance computing, help
industries run with increasing reliability and competitiveness.

Industries are striving to constantly improve industrial processes and equipment.
Maintenance plays a fundamental role in this field, being very important to prevent disrup-
tions in production chains.

1.1. The Importance of Maintenance

Maintenance is a combination of technical and administrative activities required to
maintain equipment, facilities, and other physical assets. The goal is to maintain those
assets in the desired operational condition, or restore them so that they can fulfil their
function with quality [1–3]. The main objectives of a good maintenance policy are: safety,
quality, cost reduction, and availability [4]. The optimization of those four objectives at the
same time is challenging, since they often conflict with each other. In those cases, it is the
maintenance management’s responsibility to find the best compromise solution based on
the company’s strategic objectives.

Predictive maintenance is one of the fastest growing types of maintenance in the
industry nowadays [5]. It aims to predict the occurrence of failures before they happen,
using data from sensors and state-of-the-art augmented intelligence algorithms. The
algorithms are trained based on historical data, the operating condition of the assets is
monitored, and the trends are predicted in near real time.
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Industrial systems currently use tens, hundreds, or thousands of sensors to collect
data to be used primarily to monitor processes and equipment condition [6,7].

Due to developments in data processing, along with storage algorithms and hardware,
it is currently possible to store and process large quantities of data to predict the future
behaviour of equipment, thus making it possible to forecast failures in advance [8].

The asset’s behaviour, after being observed and analyzed, can be predicted with state-
of-the-art algorithms. Such techniques have a positive impact on production reliability,
security, availability and quality [9]. It should also be noted that predictive maintenance
promotes environmental sustainability, as it contributes to reduce industrial downtimes,
unnecessary maintenance interventions, production surpluses, and non-conforming prod-
ucts [10].

1.2. Industry 4.0 in Maintenance

Industry 4.0 is a consequence of scientific and technological advances, including
predictive maintenance.

The amount of data extracted from industrial processes has exponentially increased
due to the rise of non-invasive sensing technologies and decreasing hardware costs. How-
ever, it is essential to calibrate the sensors correctly, so that the acquired data are reli-
able [7,11]. Poor or incorrect data do not add value and can lead to prediction errors [12,13].

Analysis of reliable data with predictive computational techniques can avoid unnec-
essary equipment changes, save costs and improve safety, availability, and efficiency of
processes [14].

1.3. Predictive Maintenance from an Economic Point of View

Maintenance was often seen as a source of unnecessary cost by industry, so it was
often overlooked by companies. Nowadays, the role of maintenance is better understood. It
is considered a key factor for the success of companies, helping them to reduce production
costs and, consequently, increase profits [15].

Although applying predictive maintenance policies may involve significant costs,
those costs are often less than the benefits generated from a well-planned system [16].

Most devices involve an expensive hardware network, formed by many sensors for
data collection and storage. In addition to hardware, predictive maintenance requires
additional costs for training staff, as well as analysing data and developing and training
prediction and classification methods.

By enabling more efficient, sustainable, and higher quality production, the application
of predictive maintenance also affects the company’s image in the market and contributes
to increase its value.

Predictive maintenance can be applied to almost all industrial equipment. However,
due to its high implementation costs, technical and economic analyses must be performed
before proceeding to modelling and deployment, namely determining the criticality of the
equipment in case of failure or anomaly, and the potential economic losses for the company.

According to François Monchy, the more expensive the unavailability of an equipment,
the more important its maintenance [17]. In other words, direct and indirect costs of
equipment unavailability along with the value generated by the equipment are the most
important factors to consider when choosing a maintenance policy.

The greatest advantage of predictive maintenance is that it can assess the current
condition of any machine and predict when it needs maintenance before a fault happens.
With a properly implemented and updated maintenance policy, it is possible to schedule
equipment maintenance for times that will have the least impact in production schedule
and deadlines, minimizing disruptions in production lines and improving the quality of
the items produced by the factory, contributing to the profitability and sustainability of any
company’s business.
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1.4. Artificial Neural Networks

Artificial neural networks are machine learning models with interconnected nodes
distributed over several layers. The networks can be trained to recognize hidden patterns,
to classify input samples into a few classes and to perform predictions. This type of model
was inspired by the human brain [18,19].

The neuron is the atomic unit of a neural network. When an input vector is given,
the neuron provides an output which is a function of the weighted average of the input
vector’s coordinates. The neurons’ outputs can then be fed as inputs to other neurons in
the subsequent layers.

Optimization of neural networks is a challenging problem, and it has been the topic of
many works [20,21].

Feed-forward (FF) neural networks are a type of neural network in which the data
flow in a single direction, from input to output, without any feedback. On the contrary,
outputs in recurrent neural networks (RNN) can be fed back into the network, allowing the
network to remember past events and operate in non-episodic environments.

Multi-layer perceptron (MLP) is a type of FF neural network. It comprises three
types of layers: one input layer, several hidden layers, and one output layer. The main
applications of MLP networks are pattern classification, recognition, and prediction [22].

As the computing power and big data increase, deep learning models are becoming
more popular in several fields of science. Deep models are characterized by containing
several layers, while shallow models rarely have more than three layers. For instance,
deep networks are the preferred architecture in object detection or classification problems.
Shallow neural networks are more adequate for prediction problems. Despite many clear
distinctions between deep and shallow neural networks, some techniques developed for
deep learning can help improving shallow models, and vice versa [23].

The importance of the present work is reinforced by several authors that have em-
phasized the necessity to change the focus from short-term (15 days) maintenance policies
to long-term ones (90 days). The importance of these contributions corresponds to the
increase of equipment’s availability, which permits increased productivity and, at last, the
success of the company [24–26].

1.5. XGboost and Random Forest

XGBoost is a scalable and highly accurate implementation of gradient boosting that
pushes the limits of computing power for boosted tree algorithms, being built largely for
energizing machine learning model performance and computational speed [27].

Random forest is also a popular and effective ensemble machine learning algorithm.
It is widely used for classification and regression predictive modeling problems [28].

1.6. Objectives

The present research aims to propose a model to forecast sensor values of an industrial
pulp paper press for 15 days, 30 days, and 90 days.

The goal was to compare the performance of multiple prediction models, includ-
ing neural networks and other machine learning methods, optimizing different features
and architectures.

The team defined that forecasts of most variables must have MAPE errors of less
than 10%.

1.7. Contributions

Predicting in advance the values of the sensors allows us to anticipate the future state
of the monitored equipment and to predict its expected operating conditions. The main
contributions are:

• The approach proposed for the predictions in the present research compares and
determines the best features, time windows and architectures for feed-forward shallow
networks and XGBoost.
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• Results are compared to LSTM and GRU.

To the best of the authors’ knowledge, these are novel contributions for the area of
equipment maintenance, allowing us to maximize the useful life of equipment while still
minimizing risk of failure.

Similar works on industrial sensor prediction use other machine learning models, in-
cluding deep networks, which require larger computational networks, which demonstrates
the contribution of this study using shallow networks.

1.8. Paper Structure

The structure of the paper is as follows. Section 2 addresses the work related to this
field of research. Section 3 presents the data and explains how they were treated and
filtered. Section 4 shows the architecture of the underlying neural network. Section 5
presents the metrics for evaluating the neural model. Section 6 displays the tests and results
of this study. Sections 7 and 8 present time series for overlapping and non-overlapping
sliding windows, respectively. Section 9 shows a comparison of different feature vectors
and forecast models. Finally, Section 10 presents the conclusions.

2. Related Work
2.1. Neural Networks for Prediction and Classification

This section reviews relevant works using neural networks for prediction and classifi-
cation, namely in the field of predictive maintenance.

Rodrigues et al. used a neural network to predict and classify the degradation state of
diesel engine oils from laboratory analysis data on 21 oil parameters, achieving an accuracy
over 90% [29].

Effective maintenance is essential to keep assets at maximum availability and accident
free. For these reasons, Bukhsh et al. developed a model to predict the need for railway
maintenance [30].

Elhag and Wang presented an application of artificial neural networks to assess bridge
risk by computing their risk scores and categories [31].

Balluff and his team developed a model to predict wind speed and pressure through
recurrent neural networks [32].

Deepika and Prakash predicted the power consumption of a virtual machine with the
help of backwards predictive analytics using a multi-layer perceptron, achieving a 91%
accuracy [33].

Hongxiang et al. developed an algorithm using artificial neural networks (ANNs) to
analyze spectroscopy data from lubricant oils. Results proved that ANNs can be used to
classify distinct types of lubricants and to distinguish routine conditions of a diesel engine
from operating conditions [34].

An algorithm based on a multi-layer feed-forward neural network model was devel-
oped to control a steel pickling process in several simulation cases [35].

Okoh et al. presented an approach to determine when a system needs to undergo
maintenance, repair, and overhaul, before a failure occurs. One of the main innovations of
this project is that forecasts were made in the long-term [36].

One of the main challenges of maintenance is to increase the availability of equipment
and, hence, it is important to prognose failures before they happen. Makridis et al. pre-
sented a machine learning approach for detecting anomalies from data collected through
sensors installed on vessels, predicting the condition of specific parts of the vessels’ main
engine [37].

In 2021, Zhagparov et al. proposed a solution to automate the prediction of grain
yield based on machine learning using the XGBRegressor algorithm on the territory of the
Republic of Kazakhstan. Comparisons were made with linear regression and decision tree
regressor algorithms [38].
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Dong et al., in 2020, developed a prediction model based on the XGBoost algorithm
that considers all potential influential factors simultaneously; the objective of this model
was to predict the electrical resistivity based on an experimental database [27].

In summary, according to the authors referred, among others, neural networks have
high prediction accuracy and can improve support in decision making [39,40].

2.2. Condition Monitoring in Paper Press

Condition monitoring plays a central role in the maintenance of paper machines; the
main objective is to maximize the availability and reduce the costs of these manufacturing
units and to prevent unexpected damage or mechanical breakdowns.

The results of the tests by Suomela et al. in 2002 make it clear that thermal imaging
combined with adaptive drive has great potential for monitoring paper machine compo-
nents [41].

The work by Bissessur et al. features the ability to detect faults and provide early
warning of impending problems based on collected vibration data and pre-processing
spectra. These data processed by a neural network provide an instant decision about the
state of the felt that is monitored. This method can be extended to diagnose faults in a wide
range of mechanical and rotating equipment in industries [42].

Mateus et al. developed predictive models based on long-term deep memory neural
networks applied to a dataset of sensor readings. The results show that it is possible to
predict future behaviour up to a month in advance with reasonable confidence (errors
in general inferior to 10%) using long short-term memory and gated recurrent unit deep
neural networks [43,44].

3. Dataset and Pre-Processing

For the present analysis, a paper pulp company provided a three-year data set contain-
ing the time series of six variables: electric current (Sensor 1), oil level (Sensor 2), pressure
(Sensor 3), rotation velocity (Sensor 4), temperature (Sensor 5), and torque (Sensor 6). All
data were collected from sensors with a sampling frequency of one minute.

The dataset contains several repeated values as well as discrepant samples (outliers)
that may be due to reading errors or production line stops. Upper outliers might have
resulted from errors in sensor reading or recording, while lower outliers are most probably
a result of those causes along with programmed or non-programmed downtimes.

In a predictive algorithm, the quality of the underlying data is of extreme importance.
Poor quality data implies inaccurate results. For that reason, the dataset was previously
processed to increase confidence in the results and facilitate convergence during the learning
process.

The units of the several variables are as follows: electric current is measured in amperes (A);
oil level is measured in percent of full tank (%Tank); pressure is measured in pascals (Pa);
rotation velocity is measured in rotations per minute multiplied by 1000 (RPM × 1000);
temperature is measured in degrees Celsius (◦C); torque is measured in Newton-meter
(N ×m).

Figure 1 presents the time series collected by each sensor on the six variables.
Figure 1 shows that there are many outliers in the dataset (e.g., null, zeroes and

repeated values); repeated values arise by sensory errors or even at the time change. The
outliers are replaced by the average value of the variable in the sliding window before the
outlier. This method has been described in more detail by Mateus et al. [45].

Therefore, the dataset was filtered using a Python algorithm developed by the authors
as follows:

• Repeated values as well as lower and upper discrepant values were removed and
replaced by the corresponding variable average value;

• Values beyond three standard deviations from the first and third quartiles on each
variable were also replaced by the mean value of the variable in question.
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Figure 2 shows the six time series of the variable values collected by the sensors after
being filtered by the previously described pre-processing method. As the chart shows,
there are no more sudden variations, probably representing outliers, which could impair
the machine learning process. Previous studies show that pre-processing discrepant data
improves the learning process [43].
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4. Artificial Neuronal Network

A sliding window encompasses a continuous subset of a time series dataset, which
slides over the latter with a certain step. The window size determines the number of data
point samples from the whole dataset to be included in this subset.

The window started with the first w data points (samples) of the time series and slid
to the end of the series, in steps of one for an overlapping window, or steps of w samples
for a non-overlapping window.

For n variables (n = 6 in this case), data from each variable i in each sliding window
with size w were grouped into 15 equal-width bins j and the corresponding absolute
frequency values (vector Si,j), along with the respective average (Ai), median (Mi), standard
deviation (SDi),variance (Vi) statistics and, finally, 30 ratios (Ri1,i2), between each pair of
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variables I, where i1 6= i2 make up the input vector I that feeds the neural network, as
represented in Equation (1).

I = (S1,1, S1,2, . . . , Sn,15, A1, . . . , An, SD1, . . . , SDn, M1, . . . , Mn, V1, . . . , Vn, R1,2, . . . , Rn,n−1) (1)

For each window w: Si,j represents the value of variable i in bin j; Ai is the average
value of variable i; Mi is the median value of variable i; Vi is its variance; and, finally, Ri1,i2
represents the ratios between the variables collected by the sensors.

Data inputs were further standardized using the Standard Scaler library from Sklearn
before being fed into the ANN model. Standardization is a technique applied in the
preparation of data, with the objective of placing them in a range of common values.

Note that each variable i was predicted not only from its respective past data but also
from the other five variables.

Time series data were separated into two groups: the first 80% from 1 January 2018
to 27 May 2020 were used for training the model; and the remaining 20% for carrying out
the tests.

Tests were carried out with the application of various sizes w of sliding windows.
Time windows w of 12, 24, 48, and 72 h were tested (720, 1440, 2880, and 4320 data point
samples, respectively).

Neural Network Architecture

The architecture type chosen for the neural network is the multi-layer perceptron,
one of the most popular feed-forward architectures, implemented using the Python Sklearn
library named MLPRegressor.

The MLPRegressor uses multiple hyper parameters to optimize the generalization of
the network model for prediction. Several architecture combinations were tested to find
the best possible network configuration.

Adam solver was chosen as the algorithm for optimizing ANN weights, since it is
a graph-based optimization algorithm recommended for large datasets, using a logistic
sigmoid as the activation function, as represented in Equation (2), for x being the indepen-
dent variable.

f (x) =
1

(1 + exp(−x))
(2)

Creation vector and tests to find the best value for each alternative ANN configuration
took about two days to perform, due to the complexity and size of the dataset, in a shared
GPU server AMD EPYC 7552, with 16 Core + Nvidia Tesla T4/V100S.

The authors tested alternative networks with one, two, three, and four hidden layers.
Using one layer only yielded quite bad results, while using four layers was quite time
consuming. Results from using two and three layers were quite similar, so the authors
chose two layers only as the training time was faster without loss of accuracy. Alternative
ANN configurations further varied the number of neurons in each layer.

Hence, a network with two hidden layers (150 and 75 neurons, respectively) was
chosen, as it showed results very similar to the three hidden layers’ architecture but was
much faster. Figure 3 depicts the chosen ANN architecture.
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5. Model Evaluation

To assess the accuracy of the forecast model developed, three popular metrics were
used: mean squared error (MSE) presented in Equation (3), and the mean absolute percent
error (MAPE) presented in Equation (4) [46].

MSE =
1
n

n

∑
t=1

(
Yt − Ŷt

)2 (3)

MAPE =
1
n

n

∑
t=1

∣∣Yt − Ŷt
∣∣

|Yt|
(4)

where Yt represents the actual value, Ŷt the predicted value, t is discrete instant time that
varies between 1 and n, and n is the total number of data point samples.

6. Tests and Results for Overlapping Sliding Windows

The developed algorithm was tested for forecasts of 15, 30, and 90 days in advance.
The training took up to 1000 learning epochs in each of the tests, with overlapping sliding
window sizes w of 720, 1440, 2880, and 4320 samples.

Best results were achieved for windows sizes with either 12 or 24 h (720 or 1440 samples).
Hence, detailed results will be presented only for these two window sizes.

Tables 1–3 show the results achieved for the six variables (sensors) in terms of MAPE,
MSE, and number of iterations (ITER), which the training requires to be completed.

Evaluation results show that it is possible to predict variable (sensor) values with
3 months, 1 month, and 15 days in advance with a reasonable degree of accuracy. Most
variables show MAPE errors below 10%.

In general, a window size of 720 samples (12 h) over 1440 samples (24 h), not only
has a shorter learning time, but it also yields better accuracy results in terms of MAPE and
MSE. Hence, a window size of 720 samples was selected as a good sampling size.
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Table 1. Comparative MAPE (%) results.

72
0

Sa
m

pl
es Current Oil Level Pressure Temperature Torque Velocity

90 Days 3.441 6.231 16.286 4.977 2.696 4.053
30 Days 2.295 4.642 14.643 4.006 2.332 4.112
15 Days 2.205 4.306 12.453 3.717 1.734 3.678

14
40

Sa
m

pl
es Current Oil Level Pressure Temperature Torque Velocity

90 Days 3.623 6.696 21.426 4.878 2.612 4. 451
30 Days 2.310 5.124 14.034 4.686 2.049 4.234
15 Days 2.541 4.319 13.633 4.363 1.864 3.896

Table 2. Comparative MSE results.

72
0

Sa
m

pl
es Current Oil Level Pressure Temperature Torque Velocity

90 Days 1.374 5.804 3.954 2.336 0.638 1.485
30 Days 1.094 5. 358 4.153 2.201 0.735 1.379
15 Days 1.080 5.013 4.056 2.060 0.670 1.454

14
40

Sa
m

pl
es Current Oil Level Pressure Temperature Torque Velocity

90 Days 1.413 6.476 4.518 2.271 0.621 1.584
30 Days 1.010 5.385 4.123 2.336 0.632 1.668
15 Days 1.173 4.739 3.808 2.374 0.643 1.517

Table 3. Comparative number of iterations.

72
0

Sa
m

pl
es Current Oil Level Pressure Temperature Torque Velocity

90 Days 122 161 363 201 58 164
30 Days 120 173 353 230 56 159
15 Days 104 132 425 188 63 190

14
40

Sa
m

pl
es Current Oil Level Pressure Temperature Torque Velocity

90 Days 136 164 415 217 64 179
30 Days 126 144 435 249 64 213
15 Days 105 115 432 208 71 168

7. Results with Overlapping Sliding Windows

Almost all variables show large fluctuations, including striking peaks (see Figures 1 and 2).
Hence, to stabilize the output and to visualize better actual and predicted time series values
on each variable, they were smoothed using a rolling average filter of 1 day.

Figures 4 and 5 present two examples of actual time series in blue and 90-day forecasts
in orange, after smoothing has been applied. Pressure is the most difficult variable and
torque is the easiest variable to predict, as shown in Table 1, so they were chosen as
examples. According to Table 1, pressure was the variable that had the highest MAPE error
and torque was the one that overall had the lowest MAPE error.
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8. Results with Non-Overlapping Sliding Windows

Using overlapping windows showed good prediction accuracies for all variables.
However, their training times are quite large, taking on average more than two days
for each variable (using a Cirrus workstation). Hence, non-overlapping windows were
assessed to reduce learning time.

Using non-overlapping windows, the input vector in the neural network contains
fewer data points, thus making its processing much faster. On average, this method
allowed us to reduce the learning time to only seven minutes (using a MacBook Pro M1
from 2020 with 8 GB of RAM with MacOS Monterey).

Using non-overlapping windows yields worse long-term (90 days) forecasts than the
previous overlapping window method. However, the short-term (15 days) results are good
(see Figure 6). It should be noted though that the neural network is the same, regardless of
whether it is for short/medium or long-term predictions. It is only the data included in the
input vector that change.
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9. Discussion
9.1. Comparation with TEPEN Vector

The present research corresponds to an optimization of the features of the neural
network vector already developed by the authors. The new vector contains new ratios
among variables [47]. This is the difference between the two vectors, as is presented in
Table 4. This comparison is made for 90-day forecast results.

Table 4. Comparative MSE results between old vector and new vector.

72
0

Sa
m

pl
es Current Oil Level Pressure Temperature Torque Velocity

Old vector 1.564 5.943 4.741 3.553 0.544 1.842

New vector 1.374 5.804 3.954 2.336 0.638 1.485

14
40

Sa
m

pl
es Current Oil Level Pressure Temperature Torque Velocity

Old vector 1.672 7.231 3.670 7.571 0.802 2.843

New vector 1.413 6.476 4.518 2.271 0.621 1.584

Analyzing Table 4, the prediction results of the new vector are generally much better
than the old vector, except for the torque parameter that maintains identical values.

9.2. Comparison between LSTM, GRU and Feed-Forward Network

Long short-term memory network is an advanced RNN, a sequential network, that
allows information to persist. It can handle the vanishing gradient problem faced by RNN.
Long short-term memory network (LSTM) extracts patterns from sequential data and stores
these patterns in internal state variables. Each cell can retain important information for
a longer period when it is used. Such information properties allow the LSTM to perform
well in predicting dynamic sequences [46–48].

The gated recurrent unit (GRU) was designed by Cho et al. [49]. The closed recurrent
unit is a special type of optimized recurrent neural network based on LSTM [50,51]. The
difference is that the GRU combines the input port and the forgetting port in the LSTM into
a single update port [52,53].

Table 5 shows a comparison of prediction models using LSTM, GRU [43,44]. A Short-
Term Electric Load Forecast Method Based on Improved Sequence-to-Sequence GRU with
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Adaptive Temporal Dependence. and the feed-forward model presented in this paper.
The comparison is made by analysing the MAPE errors of forecast 30 days in advance for
each variable. The 30-day forecast was selected because it was the time gap defined as the
objective for the project.

Table 5. Comparison of MAPE results of the prediction models using LSTM, GRU and the feed-
forward model presented in this paper.

Current Oil Level Pressure Temperature Torque Velocity

GRU-ReLU 2.52 2.94 9.91 2.84 3.03 15.05
GRU-Sigmoid 2.22 2.72 9.29 2.74 2.88 12.42
LSTM-ReLU 2.42 2.92 10.36 2.30 3.72 17.19

MLP (720 Samples) 2.30 4.64 14.64 4.01 2.33 4.11
MLP (1440 Samples) 2.54 4.32 13.63 4.36 1.86 3.90

The first row and second row of the column present the results of the GRU prediction
models using the ReLU and Sigmoid activation functions. The third row of the column
presents the results of a traditional LSTM model using the ReLU activation function. Finally,
the last two lines present the results of the MLP neural network developed, presented, and
explained in the previous chapters. Table 5 presents the MAPE results, which were used to
evaluate the performance of the algorithm.

Analyzing Table 5, it is concluded that the current parameter has very similar pre-
diction results in all models. The GRU and LSTM models have similar prediction results;
however, the GRU-SIGMOID has a slightly lower MAPE error. In the case of the pressure
parameter, the GRU models have the best prediction results, with the GRU-SIGMOID the
one that achieves the best results. In the temperature parameter, although the results do
not show a significant difference, it is the LSTM-ReLU model that presents the smallest
prediction error. Regarding torque, the MLP models present the best prediction results,
with the best model the MLP-1440 SAMPLES. The biggest difference in results occurs in
the velocity parameter, where the MLP models present much better prediction results than
the other models, obtaining much lower MAPE errors.

MLP networks are simpler than GRU models and, in turn, the GRU network is simpler
than LSTM. Observing the results, it is concluded that both prediction models can predict
the future values of an industrial paper press, 30 days in advance, with MAPE, in general
less than 10%. The difference in results in the velocity variable is noted, where only feed-
forward networks, despite their simplicity, achieved a MAPE error of less than 5%. In short,
there is no better overall model, because each variable has the forecast model that best
suits its data, as shown in Table 5. Therefore, for optimal prediction, it is important to plan
and optimize the machine learning models, with the best model that which achieves the
minimum difference for each variable.

9.3. Comparison between XGBoost and Feed-Forward Network

In this section, we compare the ML feed-forward network with another alternative
model, namely XGBoost.

Random forest models have, for many problems, a low error. However, for the present
problem, they do not have the ability to follow the trend of the parameters to be predicted.
They were tested, but the results were not acceptable, and they are not included in Table 6.
The first row displays the results of the XGBoost forecast model.

The XGBoost model, in addition to having a very fast training, presents good results
in the prediction of electric current, pressure and temperature, with the only disadvantage
being the difficulty of identifying peaks of values. It is noted that only MLP models can
follow oil level parameter trends. Figure 7 shows an example of a prediction using XGBoost.
The XGBoost algorithm needs four minutes to create the vector and train the model. It
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should be noted that the input vector is with non-overlapping sliding windows and the
machine used is a MacBook Pro M1 of 2020 with 8GB of RAM with MacOS Monterey.

Table 6. Comparison between XGBoost and feed-forward network using MSE.

Current Oil Level Pressure Temperature Torque Velocity

XGBOOST 1.075 4.953 0.618 1.304 1.576 3.356
MLP (720 Samples) 1.374 5.804 3.954 2.336 0.638 1.485

MLP (1440 Samples) 1.413 6.476 4.518 2.271 0.621 1.584

Figure 7. Real and 30-day forecast values (after smoothing) for temperature using XGBoost.

9.4. Discussion

XGBoost is a scalable and highly accurate implementation of gradient boosting that
pushes the limits of computing power for boosted tree algorithms, being built largely for
energizing machine learning model performance and computational speed.

One of advantages is that the proposed method can perform short-, medium-, and
long-term prediction on other equipment, providing there are the necessary data and
processing power available. The features used and developed to feed the machine learning
models should be available in a wide range of industrial equipment. Nonetheless, for each
specific situation the data pre-processing or the neuronal network architecture may need to
be modified and there are no a priori guarantees of similar results.

This study is not intended to predict sensor failures. This study focuses on predicting
the future behaviour of the machine in the short, medium, and long term. Sensor failures
will be detected as a malfunction, which needs further analysis and diagnosis. That has
also been clarified in the paper.

The results of those predictions can then be processed, for instance, using a classifier
neural network, to classify the asset’s condition into one of the following states: failure,
alert, or good functioning.

10. Conclusions

Forecasting is very important to make better decisions in maintenance and other
areas. Predicting the probable future behaviour of an asset brings numerous benefits. For
instance, based on accurate predictions, and knowing the respective nominal operating
values recommended by the asset’s manufacturer, it is possible to identify anomalies in
advance for the equipment in the short, medium, and long term.

The proposed algorithm makes it possible to know the behaviour of a pulp paper press
in the long term, supported by the time series acquired from sensors installed on it. This way
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it is possible to optimize long-term programmed stops and to avoid production downtimes.
This prediction model will be enhanced by the addition of a classification network that will
classify the machine into one of three states: failure, alert, or good functioning.

This paper presents a valuable comparison between the input vector of the neural
network using overlapping and non-overlapping sliding windows, presenting the results
of the tests performed, with unequivocal conclusions about the advantages and limitations
of each technique used.

The number of data points present in the neural network input vector, as well as the
prediction gap, have a direct impact on the prediction accuracy. On the one hand, a larger
sliding window increases the prediction errors, but a smaller window has difficulty in
predicting peaks. On the other hand, the larger the prediction gap, the more difficult the
prediction becomes.

The results achieved for the short term, midterm and long term were comparable
to or better than the state of the art. Long-term forecasts using overlapping windows
showed very good accuracies, because the predictions of most parameters present MAPE
errors below 10%, that is the objective of the research presented in this paper, as shown
in Section 9.2. However, they take a large processing time. Short-term forecasts using
non-overlapping windows can significantly reduce this shortcoming.

The XGBoost Model presents fast and good results in the prediction of electric current,
pressure, and temperature. XGBoost had errors of MSE less than two.

Future work includes applying this method to other variables and comparing it against
alternative machine learning models for prediction. Additionally, other machine learning
methods, such as unsupervised clustering, will be studied to classify the future condition
state of the asset based on the forecasts resulting from the presented ANN.

The number of input features can also be optimized using techniques such as principal
component analysis (PCA), or probabilistic principal component analysis (PPCA). Other
approaches, namely hidden Markov models will also be explored.
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