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Abstract: In underground mining, new workings (tunnels) are constructed by blasting or mechanical
excavation. The blasting technique used in underground mines is supported by economic aspects,
especially for deposits characterized by hard rocks. Unfortunately, the quality of the result may be
different than expected in terms of the general geometry of work or the roughness of excavation
surfaces. The blasting technique is also a source of vibrations that may affect other existing structures,
affecting their stability. Therefore, it is of great importance to monitor both the quality of the new
tunnels and changes in existing tunnels that may cause rockfall from the sidewalls and ceilings of
both new and existing tunnels. The length of mining tunnels and support structures in underground
mines is massive. Even if one would like to limit monitoring of tunnel geometry to those used every
day for major technological processes such as transport, it is a vast amount of work. What is more,
any stationary monitoring system is hard to utilize both due to everyday blasting procedures and
mobile machine operation. The method proposed here is based on quick LiDAR/Terrestrial Laser
Scanner measurements to obtain a cloud of points, which allows generating the spatial model of a
mine’s geometry. Data processing procedures are proposed to extract several parameters describing
the geometry of the tunnels. Firstly, the model is re-sampled to obtain its uniform structure. Next, a
segmentation technique is applied to separate the cross sections with a specific resolution. Statistical
parameters are selected to describe each cross section for final 1D feature analysis along the tunnel
length. Such a set of parameters may serve as a basis for blasting evaluation, as well as long-term
deformation monitoring. The methodology was tested and validated for the data obtained in a former
gold and arsenic mine Zloty Stok, Poland.

Keywords: underground mining; mining excavations; tunneling; LiDAR; terrestrial laser scanning;
point cloud; 3D model; statistical features; geometry measurement and analysis; dimensionality
reduction; principal component analysis

1. Introduction

In many underground mines worldwide, especially those operating in hard rocks,
the drilling and blasting technique is the most commonly used method to excavate valuable
material [1]. This technique is relatively cheap and provides high flexibility of operations.
Although drilling and blasting technology has been strongly optimized over the years [2],
there are still some major issues to overcome. One of them is the appropriate design of this
process to prevent over- and underbreaks [3] together with the prediction of high risk of
potential over- and under-excavated zones [4]. From the geometry point of view, it is not
so easy to control and maintain the actual shape of the tunnel cross section defined in the
blast plan in the presence of hard geological conditions, manifested in the inhomogeneity
of the rock mass.
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Geological and mining conditions are the main determinants of the design of the
excavations [5]. The over- and underbreaks that occur after the drilling and blasting
procedure are a serious problem, as they are not in line with the defined parameters
selected under these conditions. The deviations from the assumed cross section in the
form of underbreaks make the excavations insufficient for the proper operation of mining
machines and devices required for the materials extraction processes. Moreover, limited
dimensions of mine tunnels endanger the underground crew, determined by the permissible
concentration of oxygen and harmful gases in the mine air, its temperature, and the intensity
of its flow [6]. Underbreaks resulting from inaccurate drilling and blasting need to be
removed by additional drilling and blasting, increasing excavation maintenance costs. On
the other hand, overbreaks also contribute to increasing operating costs. As the part of the
rock mass not intended for excavation, overbreak material is often non-usable and when
blasted, degrades the ore, generating additional costs at the processing level. Enlarged
dimensions of the excavations may also lead to issues with stability [7]. For these reasons,
there is a strong need for sufficient control and prevention of over- and underbreaks.

Although there have been numerous approaches tested and validated that help avoid
over- and underbreaks, there are still some hard to control factors, e.g., the complexity of
the rock mass or human factors that result in an increase or decrease in the size of tunnels
compared to the design. In some cases, the already adopted drill-and-blast technique may
not be the most efficient, especially in rapidly changing geological and mining conditions.
There is a strong need not only for over- and underbreak prevention but also for a quick
and reliable method to measure and assess the quality of underground excavations for
further decision making.

Moreover, since drilling and blasting is often outsourced, there is a need to develop
a method for quick evaluation of mining tunnel geometry, in other words, work quality
assessment. This is a particularly important matter when additional expenditures must be
incurred for extra drilling and blasting due to underbreaks, as well as concreting or other
techniques to overcome overbreaks. Furthermore, each sequence of blasting may negatively
influence the stability of the tunnel directly or induce seismic shocks. Especially in deep
mines, it is clear that there is additionally a convergence of mine tunnels that should be
monitored on a regular basis.

As shown above, measurements of geometry are an important topic in underground
mining. Shapes of tunnels, pillars, and excavations change over time, influencing the
stress distribution in a rock mass [8]. This leads to the deformation of the tunnels. They
must be monitored to ensure the acceptable speed of deformation development, thereby
enabling safe and continuous operation of the mine. Another issue requiring geometric
measurements is the excavation process. Metric methods of tracking the mining progress
allow us to not only estimate the volume of extracted material [9] but also to check the
actual excavation geometry compliance with the overall plan. This is especially important
in the case of employing mining techniques such as drilling and blasting, which often cause
unpredicted changes of the blasting site geometry and put additional stress on the rock
mass. An ideal solution for those problems is frequent monitoring with modern methods
for a 3D metric reconstruction of the underground sites, such as photogrammetry or laser
scanning [10–12]. However, since the quality of the former is vastly influenced by the
lighting conditions, the latter method is usually the preferred one in harsh deep mining
environments. Laser scanning produces data in the form of an unstructured point cloud:
an abundant set of points with coordinates in 3D space, usually characterized by additional
variables, such as the intensity of the laser beam reflection. The problem of analyzing such
data is often the enormous size of the point cloud and the lack of topological information
of spatial relationships between points [13,14]. To get from the raw measurement data to a
tunnel convergence estimation or a blasting quality assessment accessible for interested
parties such as the geomechanical engineers or stakeholders, an automated and scalable
procedure is needed. Such a procedure should allow approximation of the structure from
a point cloud, analyzing its irregularities and deviations from the plan or prediction, and
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presenting them in an action-enabling way, conceivably with a model characterized by
easily understandable parameterized metrics.

In this paper, we propose a methodology for geometry analysis based on a 3D scanning
procedure and spatial data processing. In general, the idea of 3D scanning is well known in
tunneling, but the key issue is related to 3D data modeling and analysis with the focus on
features extraction, their analysis, and interpretation. It makes the mining workings case
different from a tunnel inspection case.

The paper is organized as follows: firstly, the most important approaches used in
tunnel inspection are recalled. Secondly, mining workings being analyzed and experimental
works performed (scanning devices, procedure, and experiment) are described. The novelty
of the paper is related to the methodology developed for 3D data analysis. Thus, the results
of 3D data analysis are presented for experiments performed in the underground mine in
the final part of this article.

2. State of the Art

Blasting is commonly used to mine hard rocks. This is a critical process from several
perspectives. It is obvious that one should mention safety issues, financial aspects, quality
of rock fragmentation, tunnel geometry that results from blasting, etc. In this paper, we
focus on “quality of blasting” related to the planned mapping of the geometry of the
tunnel into the real shape of the tunnel after blasting. Appropriate geometry of the tunnel
is important for many other processes (tunnel maintenance, ventilation, transport, etc.).
As the usual underground mine includes several hundred kilometers of tunnels, there is a
need to provide a procedure to monitor mining workings in a long-term sense as well as to
assess the compatibility of planned and received geometry just after blasting.

The over- and underbreaks can be brought about by two main reasons: by the drill-
and-blast design and execution and by the geomechanical features of the rock mass [15].
Thus, many scientists in their research have raised the problem of drilling and blasting
parameter selection to ensure the predefined shape of excavation [16–18].

The second main cause of over- and underbreaks together with the drill-and-blast
factors have been studied more carefully. The role of geological discontinuities in causing
blasting over- and underbreaks of the minor (<3 m) and major (>3 m) scale has been
evaluated by [19] through joint analysis. In [20], multiple regression analysis, both linear
and non-linear (LMRA and NMRA), and artificial neural network (ANN) were applied to
forecast overbreaks and assess the influence of geological parameters based on 49 sets of
overbreak and rock mass rating (RMR) data. In [21], the authors used data from 18 blasting
experiments conducted on-site during construction of a highway tunnel in China as a feed
for machine learning. To map the dependencies between the geological conditions, control
indices, and the outputs of the smooth blasting parameters, the improved support vector
regression (ISVR) model was implemented. In addition, an ISVR algorithm was supported
by a genetic algorithm (GA) to automate the choice of optimal parameters of the ISVR
model. Similarly, linear multiple regression analysis was performed in [22] to predict the
overbreaks induced by blasting. Controllable, non-controllable (geological conditions),
and semi-controllable blast factors were studied. Operative methodology to differentiate
drill-and-blast-related overbreaks from geological ones, together with its volume estimation
procedure, was presented in [23].

To estimate the size of under- and overbreaks, an appropriate measurement method
that provides data high quality and easy collection is required. Maerz et al. [24] divided
the excavation profile’s measurement techniques into surveying ones (manual or laser)
and photographic light sectioning methods. Simply stated, manual methods consist of
determining the distance between the certain central point to the tunnel boundaries at fixed
angular intervals. Utilized in the past, manual methods are time-consuming and strongly
inefficient when the high accuracy of measurements is needed on long tunnels.

A promising method has been proposed in [25]. Cross-section measurements through
a light sectioning method are performed by outlining it with a plane of light from a conical
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mirror. Although the procedure is much faster than the manual ones, there is still a need
to manually process the photographs and estimate the size of over- and underbreaks.
Nowadays, laser techniques are being exploited, ensuring high accuracy and enabling
automatic post-processing.

LiDAR, defined as Laser Induced Detection and Ranging or Light Detection and Ranging,
is a laser-based device allowing users to measure the distance between the sensor and
other objects [26]. It is obtained thanks to its active sensor high frequency spins emitting a
laser beam, which is reflected from the object and received back, allowing precise deter-
mination of the position of the object in relation to the sensor. LiDAR can operate in two
different modes: sending short pulses or continuous signals. Based on this, the distance is
obtained through Time-of-Flight (ToF) of the laser beam or phase-shift estimation of the
electromagnetic wave that returns to the sensor relative to the output electromagnetic wave.
Generally, the better sensing range is exhibited by ToF Terrestrial Laser Scanners, while
phase-based devices give higher accuracy. As a result of laser scanner measurements, a
precise and dense point cloud is obtained, which is the set of coordinates of points in a
three-dimensional coordinate system. Numerous reflections of the same, scattered beam of
different strength may be detected by the LiDAR and used for sophisticated data analysis,
together with other features provided, e.g., intensity or reflectance of the beam [27].

Laser scanning is used in the urban tunnel’s geometry reconstruction in the form of
a 3D point cloud. Deformation estimation based on terrestrial laser scanning as a part
of tunnel structural monitoring is presented in [28]. The 3D laser scanning for structural
inspection of the tunnels performed under an autonomous UGV mission for concrete
lining tunnel inspection is shown in [29]. Amedjoe and Agyeman [30] presented a mine
excavations stability problems management approach based on cavity monitoring system
data captured in the AngloGold Ashanti–Obuasi Mine. In order to reduce the number of
accidents related to rock falls, Warneke et al. [31] applied 3D laser scanning technology to
assess tunnels’ geometry drifts and overbreaks in Stillwater Mine, Montana. Zou et al. [32]
presented a smooth blasting evaluation method thanks to a mobile app utilizing geometry-
related data captured by a laser profilometer.

Moreover, in recent years, 3D laser scanning techniques have been applied widely
in other tunneling and mining applications [33,34]. As convergence monitoring is a well-
known tunneling problem [35–40], the authors in [40] proved that data provided by a
mobile LiDAR system can be used as an input for the method that automatically detects
road tunnel luminaries.

The scanning technology is also very useful for specific mining applications. For exam-
ple, Vanneschi et al. [41] successfully applied 3D scanning data for rock pillar degradation
monitoring, while Xu et al. [42] proposed to use terrestrial laser scanning for water leakage.
In [43], it is advised to use laser scanning technology on incident investigations in the
mining industry. The authors in [44] considered the usage of scanning for drill and blast
excavation forecasting. A review of commercial mobile mapping and surveying solutions
suitable for GNSS-denied environments, such as underground mines, has been provided
in [45].

Carrying out the LiDAR field measurements does not yet result in an easy to interpret
model, as the data should be preprocessed using automated procedures to avoid mundane
manual model preparation. The appropriate method for subsequent data analysis is also
very important. In [46], the authors proposed a method for continuous extraction of subway
tunnel cross sections based on terrestrial point clouds. In [47], the authors developed an
automated and efficient method for extraction of tunnel cross sections using terrestrial laser
scanned data. Raw 3D data from scanning are not suitable for tunnel condition evaluation,
thus in [48] a procedure for feature extraction of a concrete tunnel liner from 3D laser
scanning data has been proposed.

The next step is to provide a data-driven decision support system. The major issues
in designing such a system, also applicable in this study, are the identification or creation
of a crucial variable for decision making and providing thresholds or more sophisticated
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methods to interpret its values. Often, machine learning techniques are used for those pur-
poses. A Back Propagation Neural Network (BPNN) and Multivariate Adaptive Regression
Splin (MARS) machine learning algorithm has been proposed in [49,50]. It was already
mentioned above that multiple regression analysis and artificial neural network (ANN)
were applied to forecast the overbreaks in [20]. In [33], a state-of-the-art review focusing
on segmentation and classification of mobile laser scanning point clouds is presented. For
more details, one may refer to review papers by Grilli [51] or Remondino et al. [52,53].

3. Experiments and Data Description
3.1. Złoty Stok Gold Mine

Złoty Stok is a town located in Lower Silesia Province, southwestern Poland, in the
Eastern Sudetes. The city owes its name to the former gold exploitation from the 13th
century. At a later stage of the mine’s operation, arsenic ore was mined there until 1961.

The geological structure of the rock mass in which the tunnels are located is quite
complex. The presence of the Złoty Stok—Skrzynka tectonic zone, which is a part o fthe
Ladek—Śnieżnik metamorphic structure, is the reason for phenomena of cataclasis and
mylonitization of varying intensity in the Złoty Stok area. Metamorphic rocks are repre-
sented by schists (mica, mica–quartz, and quartzite schists), but also gneisses, leptynites,
amphibolites, as well as serpentinites and crystalline limestones gneisses are common.
Rocks in the Złoty Stok-Skrzynka tectonic zone and Kłodzko–Złoty Stok Massif borders are
contact-altered and cut by faults and dislocation zones [54].

From a huge complex of excavations (see Figure 1) consisting of over 300 km of
underground corridors, located on 21 levels, only 2 adits are accessible since in 1996 an
underground tourist route named “Kopalnia Złota” (Gold Mine) was opened. The first one,
Gertruda adit, is two kilometers long, but only initial 500 m can be seen. The remaining
part of this slant is deprived of lighting and flooded with water, and merely a small part can
be visited with boats. The second one, Czaran adit, is also partially opened. One of its side
corridors (approx. 200 m long) leads to a 25 m shaft from the 17th century, giving access to
a huge chamber in which a unique, 8-meter long underground waterfall can be seen.

Figure 1. Złoty Stok post mining area [55]. Legend: 1—mining area; 2—limestones; 3—ore nests;
4—mining waste heaps; 5—slants, galleries, and adits; 6—shafts.

The deep and extensive mine excavations in the Złoty Stok Mine were made entirely
by hand, then by blasting in very hard, though fractured massif of metamorphic rocks.
Thus, this mine has been selected for testing purposes, firstly, because it is an old mine
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in which the problem with corridor geometry (roughness/unevenness of surface) is very
clearly visible. Secondly, because it is more available than deep underground mines in
operation. The unique characteristic of the workings is the reason for some other interesting
papers related to experimental works in this mine [56,57].

3.2. Data Collection

For the purpose of testing the methodology developed in this study, data from the
work concerning the accuracy evaluation of a LiDAR SLAM solution, namely High-Density
LiDAR SLAM (HDL-SLAM [58]) have been used [59]. The procedures and details of the 3D
point cloud acquisition and coregistration are included in the referenced paper. However,
in our study only the part of the final point cloud acquired with the mobile LiDAR is
analyzed using the proposed corridor geometry evaluation procedure.

The mobile LiDAR mounted on the UGV platform during the measurements was a
Velodyne VLP-16 (‘Puck’) LiDAR sensor (Figure 2). It is a small and compact LiDAR that is
performance and power optimized for use across a variety of applications ranging from
automotive, mapping, robotics, security, and smart cities, i.e., for lower speed autonomous
vehicle (AV) applications. The Puck enables real-time, surround view, 3D distance, and
calibrated reflectivity measurements. The main features cover a range of 100 m, up to
600,000 points/second generation, a 360° horizontal field of view and a 30° vertical field of
view, and class 1 eye-safe 905 nm technology with autonomous fleet validation [60]. The
distance measurement accuracy for a single point is 3 cm (1σ).

Figure 2. Velodyne VLP-16 LiDAR sensor and UGV platform.

Moreover, the scanning has also been performed with the utilization of a higher
accuracy device, namely Riegl VZ-400i Terrestrial Laser Scanner (TLS) Figure 3. This
survey-grade device is characterized by a 3D point position determination accuracy of
5 mm (1σ at 100 m), acquisition of up to 500,000 points/second, range from 0.5 m to 800 m,
and scanning resolution of up to 0.0007◦ (vertical) and 0.0015◦ (horizontal) [61]. The scanner
has a built-in Inertial Measurement Unit (IMU) used for motion estimation during changing
scan positions and can be integrated with a GNSS receiver or a digital camera. Although
costly and requiring the operator to carry it, the Riegl TLS can quickly obtain very dense
and accurate point cloud data of a vast area.

In this paper, 3D data of the Gertruda slant (Figure 4) geometry has been processed.
Renderings of the point clouds acquired with laser scanning of the Gertruda adit with
the RIEGL VZ-400i TLS and a Velodyne Puck and HDL-SLAM are presented in Figure 5.
Moreover, from the whole 3D point cloud representing slant geometry, an approximately
24 m long segment has been chosen (Figure 6) for analysis. Large variability of the cross
sections in this part of the slant create a good test field for evaluation of the proposed
diagnostic procedure. Only the point cloud acquired with SLAM has been processed
using the proposed corridor geometry quality evaluation procedure to demonstrate its
capabilities on a dataset obtained with an accessible, lower cost data acquisition solution.
Nonetheless, a further possibility and advantages of employing it for processing highly
accurate data from a survey-grade instrument are discussed in Section 6.
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Figure 3. RIEGL VZ-400i Terrestrial Laser Scanner in the adit.

Figure 4. Wheeled robot during its low-speed passage through Gertruda slant.

Figure 5. Renderings of a point cloud obtained with a RIEGL VZ-400i TLS (left) and a Velodyne Puck
and HDL-SLAM (right). Point coloring by the Z coordinate.
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Figure 6. Top view of a 3D point cloud orthographic projection of the Gertruda slant with analyzed
region marked in red.

4. Methodology

From measurement, trial one receives a spatial dataset with a massive volume of
points and a specific format. As previously mentioned, raw 3D data is difficult to use for
any reasoning or decision making; therefore, a method for processing is needed, which
is not an easy task. If geometry evaluation is to be used in everyday practice, a simple
1D parameter is required for monitoring, but also for modeling and predicting changes
in geometry.

Thus, the proposed general approach is to build a reliable 3D model from measure-
ments, divide it into collections of cross sections, describe the 2D shape of cross sections (still
multiple points) by some statistically explained features, and then again use statistical or
machine learning techniques to find outliers, classes, or general patterns in tunnel geometry.

In this section, the key elements of the methodology are described. The general flow
of the procedure is presented in Figure 7.

Figure 7. Flowchart of the procedure.

1. Longitudinal sampling: In the first step, the grid is defined in the dimension of
tunnel length with a given resolution. Then, the original geometry produced by a
scanner is manually sampled longitudinally according to the grid. In practice, when
raw data are imported from the device to the computer, they are assembled from
multiple files to a single point cloud. From this point cloud, running the bounding box
filter of a given longitudinal interval (i.e., chosen cross-section separation), the slices
of a point cloud are extracted. Projecting them on a plane perpendicular to the tunnel
axis, the points establishing flat corridor cross sections (further called “profiles”) of the
entire geometry are generated. This way, it is possible to obtain a set of cross-sectional
profiles that can be further analyzed. When a set of such profiles is obtained, they are
cleaned by selecting only the edge points (see Section 4.1). This way, it is possible to
get rid of unnecessary points inside the corridor.
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2. Centering: In the next step, the profiles are centered so that their shapes can be
analyzed. It is a necessary preprocessing step to counteract any changes in the
directions of a path of a corridor. For example, if the corridor was excavated in a
perfectly straight line, centering would not be necessary because (at least in theory)
the center of each profile would lie in the same position on its plane. In the horizontal
direction, the median value (see Section 4.2) of each profile is subtracted (median of
horizontal coordinates of points).
In the vertical direction, profiles are first normalized to the average floor level (section
of a profile describing the floor is identified, and a mean value of the vertical coordi-
nates of this section is subtracted), and then the median value is subtracted from the
entire geometry in terms of vertical coordinates, so that the projection orthogonal to
the length of the corridor is centered around the origin of the coordinate system.

3. Circumferential resampling: Centered profiles are converted to polar coordinates.
This way, their shapes are “unfolded” so that the horizontal coordinate value of each
point represents the angle of a point with respect to the center of a corridor, and the
vertical coordinate value of each point represents the distance from the center of a
corridor (such as a unit circle converted to polar coordinates becomes a constant linear
function of value 1). For each profile Pi represented by a pair of vectors holding the
XY coordinates of individual points, the unfolded profile Ppi in a polar domain is
represented by a pair of vectors holding the RΘ coordinates calculated as:

Ppi =


Ri =

√
(X2 + Y2)

Θi = tan−1(Y/X)

f or i = 1 : N (1)

where N is the number of profiles, the coordinate Θ denotes the angle coordinate, and
the coordinate R denotes the radius coordinate (distance from the center).
Now the profile coordinates can be used as single-dimensional vectors Ri in the
domain Θ, and they can be reinterpolated in the angle domain to the resolution
that is common to all the profiles. First, a new domain vector Θr is defined with K
evenly spaced points in range (0, 2π). Then, all the vectors Ri are resampled so that
Ppi{Ri, Θi} allows to produce Ppri{Rri, Θr}, where it is important to notice that the
angle domain vector Θr is common for all Rri. The resampling itself is performed
using a Modified Akima cubic Hermite interpolation [62]. The interpolated values are
based on a piecewise function of polynomials. This way, the profiles are described by
the equal amount of points evenly spaced in the domain of the angle. At this poin,t
the evenly sampled geometry of the desired grid resolution is obtained.

4. Parameterization: In the beginning of parameterization, the median (see Section 4.2)
profile is calculated from the entire geometry which serves as a reference model. For
every profile (after circumferential resampling), their vectors Rri are arranged in a
matrix Rr, and its median is calculated along the dimension of corridor length, which
produces a new profile, also in the angle domain, such as:

Rrmodel = median(Rr) (2)

In practice, user can import additional geometry to serve as a reference model. Then,
several statistics are calculated for every profile, such as:

• Total, positive, and negative deviation from the reference profile shape (see
Section 4.3)—those features will be useful to describe the aspect of consistency of
the excavation. Testing shows that having those 3 features together works better
than using only 1 feature of total deviation, although in practice they carry the
same information.

• Roughness factor (see Section 4.4)—this feature allows the user to describe the
qualitative aspect of a profile in terms of how wasteful the excavation was at any
given point. It is not optimal if a shape of a single profile contains a lot of variety.
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• Width, height, and area of a given profile.

In total, it allows us to obtain 7 features describing the corridor along its length. Those
7 features are then used as a dataset of parameters that is used for further analysis.
Those statistics can be analyzed by themselves to evaluate the geometry and draw
conclusions; however, the authors propose the following method that fuses data from
the statistics.
The matrix containing the statistics (Table 1) is processed using a principal compo-
nent analysis (PCA) algorithm (see Section 4.5). The PCA method is known for its
ability to reduce dimensionality. In practice, it means that if it is able to produce one
feature that explains the vast majority of information coming from the 7-dimensional
dataset, it is very practical to analyze this singular feature instead of performing
7-dimensional analysis of the data. The first component forms a diagnostic feature
that describes the differences between the profiles and can be used as a working
statistic for segmentation.

5. Segmentation: The diagnostic feature is segmented based on value thresholds. To
obtain them, authors calculate a kernel density estimate of a diagnostic feature (see
Section 4.6) [63] and define the thresholds as the local minima between main modes.
It is performed by differential analyses of the estimated probability density function.
Local minima are located at places where the first derivative is equal to 0 and the
second derivative is positive. Then, profiles that belong to particular classes between
those thresholds are identified. In practice, Matlab provides a function called findpeaks
that performs this operation automatically.

Table 1. Statistics matrix.

Statistics

No. Positive
Deviation

Negative
Deviation

Total
Deviation Roughness Total

Height
Total

Width Area

1 13.172 12.881 26.053 11.239 2.454 2.949 6.102

2 4.250 6.120 10.370 8.160 2.382 2.831 5.913

3 2.984 12.852 15.835 7.871 2.289 2.878 5.562

... ... ... ... ... ... ... ...

90 4.016 14.168 18.184 11.125 2.384 2.902 5.570

91 9.192 25.012 34.204 10.122 2.312 2.926 5.405

92 1.304 13.055 14.359 8.896 2.336 2.855 5.469

4.1. Boundary Detection

The detection of boundary points of a flat point cloud is performed in two steps.
First, the non-convex alpha shape is generated from points, and then boundary facets
are determined.

The alpha shape of a set of points is a generalization of the convex hull and a subgraph
of the Delaunay triangulation [64,65]. Moreover, alpha shapes allow users to control the
level of detail. Varying the parameter value from 0 to infinity can produce a set of different
alpha shapes for that point set.

In the second step, boundary facets (in particular—boundary edges for 2-dimensional
geometries) are identified. First, edges of an alpha shape are counted individually for each
triangle. Then, edges counted only once are defined as boundary edges, which allows us to
define boundary points.
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4.2. Median Calculation

The median is defined as:

median(X) =


X(n+1)/2 for n%2 = 1,

X(n/2)+X(n/2)+1
2 for n%2 = 0,

(3)

where X is a vector of values, n is the number of samples, and % denotes the operation of
modulo division.

4.3. Deviation Calculation

One of the simplest statistics that can be calculated for the profiles is the deviation
from the model. In order to achieve that, unfolded profiles (see step 3 in Section 4) in the
angle domain are processed by subtracting from them the model profile, such as:

devi =

∣∣∣∣∣ K

∑
k=1

Rri − Rrmodel

∣∣∣∣∣ (4)

In other words, for each point on the profile (each ray from the center), the dis-
tance from the center is compared with the distance of the same point for the reference
profile. Now one can take the absolute value of the result to obtain the total deviation,
or just take the positive or the negative part to obtain positive (outwards) or negative
(inwards) deviation.

4.4. Roughness Factor

The idea of a roughness parameter is based on the assumption that the model profile
should be relatively smooth in shape and not very jagged. In order to estimate that, the
derivative of the shape of each profile is analyzed, such as:

RF(i) =
2π

∑
θ=0
|di f f (P(i))| (5)

where | · | stands for the absolute value, di f f () function denotes numerical derivative, and
P(i) is the ith profile in a sequence. Effectively, roughness value is a sum of amplitudes of
changes between consecutive points on the outline of a profile. In practice, this calculation
is performed on the unfolded form of a profile, so the value of points on the profile denotes
the distance from the center.

4.5. Principal Component Analysis

Principal Component Analysis is a very capable analytical tool [66]. It interprets a
dataset including N samples over K variables, as a point cloud in K-dimensional feature
space. The aim is to rotate and translate a local coordinate system so that the variance
is maximized over new dimensions, such that the first dimension displays the greatest
variance, the second dimension—second greatest variance, etc.

Such a transformed system contains new values of data, which are original data but
defined over a new set of dimensions (new coordinate system). Vectors representing data
over the new coordinate system are known as principal components. The new feature space
describes the original dataset with the most information content located within several
first principal components that carry the most information. In many cases, the information
contained in several first components is sufficient due to their high information content, so
PCA is regarded to be a dimensionality reduction method.
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Given n observations of m-dimensional data stacked into a matrix X ∈ Rn×m, the
principal components can be calculated using Singular Value Decomposition (SVD):

1√
n− 1

X = UΣVT , (6)

where U ∈ Rn×n and V ∈ Rm×m are unitary matrices, and Σ ∈ Rn×m contains the
nonnegative real singular values of non-increasing magnitude (σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0).
Principal components are the orthonormal column vectors of the matrix V, and the variance
of the i-th component is equal to σ2

i .

4.6. Kernel Density Estimation

The distribution density is obtained using the kernel density estimator, which is the
estimated empirical probability density function of a random variable [67,68]. For real
values of the data x, the estimated distribution is given by:

f̂h(x) =
1

nh

n

∑
i=1

K
(

x− xi
h

)
, (7)

where x1, x2, . . . , xn are samples of unknown data, K(·) is the kernel smoothing function, n
is the sample size, and h is the bandwidth. For this example, a Gaussian kernel is used.

The value of the bandwidth is obtained using the so-called Silverman’s rule of thumb [68].
For the Gaussian kernel and the assumption of a Gaussian mixture, the optimal choice for
h (that is, the bandwidth that minimizes the mean integrated squared error) is

h =

(
4σ̂5

3n

) 1
5

≈ 1.06σ̂n−1/5, (8)

where σ̂ is the estimator of a standard deviation of the samples, and n is the number
of samples.

5. Results

In this section, the authors present the geometry evaluation approach on the example
of a corridor section from a historical mine in Poland, shown in Figure 8. In the first place,
the point cloud is segmented into slices of the same depth to acquire regular profiles. In
this example, the profiles are sampled with the resolution of 25 cm; however, any different
value can be chosen by the user. An example slice is shown in Figure 9a. Individual points
segmented in slices are then projected onto a plane. Subsequently, Figure 9b presents an
example of how those points are preprocessed in a Matlab environment. Red points are
detected as boundary points, and they represent the raw form of the outlines of profiles.

Figure 8. Point cloud of the analyzed corridor segment colored by elevation.
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(a) (b)
Figure 9. Identification of boundary points for further processing: (a) isometric view of an example
of a point cloud slice used to generate profile; (b) preprocessing of the slices imported from the
raw geometry.

In the next step, the outline is converted to polar coordinates and resampled (see
Figure 10). Figure 11 presents the shapes of outlines pulled from the original point cloud
provided by the 3D scan.

Figure 10. Example of angular resampling. Original boundary points from Figure 9b (red points) and
evenly resampled data (black crosses). In this example, the amount of resampled points has been set
to lower value for better visibility.

Figure 11. Overview of shapes of outlines. Dimension units are expressed in meters.

Afterwards, the profiles are centered (Figure 12) and resampled in the domain of angle
(Figure 13). This way, every profile has the same amount of samples at the same angles, so
they can be compared.
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(a) (b)
Figure 12. Comparison of profiles between and after centering: (a) orthogonal projection of profiles
before centering; (b) orthogonal projection of profiles after centering.

(a) (b)
Figure 13. Comparison of point distribution of profiles before and after resampling: (a) overview
of raw shapes of centered outlines before angular resampling; (b) centered outlines after angular
resampling (blue) and their median (red).

When profiles are resampled, they can be parameterized with seven statistics described
in Section 4 (see Figure 14).

(a) (b)
Figure 14. Statistics calculated for the resampled profiles: (a) positive deviation, negative deviation,
total deviation, roughness index; (b) cross-section height, cross-section width, cross-section area.

Statistics are then passed to the PCA, and seven principal components are calculated,
while the first of them is regarded as a feature useful for further segmentation based on
relative variance, which for this first component was equal to 79%.
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In order to achieve that, the feature is divided into segments based on its values. First,
the kernel density estimate of the feature is calculated with an automatically obtained
bandwidth parameter equal to 0.12 (see Section 4.6) and the normalization mode set to
PDF—probability density function. It means that the integral of a function is equal to one
(see Figure 15). Then, local minima of the feature are identified. Those minima define
the thresholds for feature values (see Figure 16). Then, the thresholds define regimes in
the domain of corridor length (see Figure 17). Median profiles of each class and original
total median profile comparison toegether with profiles selected based on the results of
segmentation has ben presented in Figure 18.

Figure 15. Kernel density estimate of feature values. Red circles indicate localized thresholds.

Figure 16. Obtained thresholds at values −0.13 and 0.81 for qualitative segmentation.

Figure 17. Segmented geometry. Colors denote assignment of individual profiles to classes. In this
example, the blue class denotes the most “consistent and desirable” character of shape; green is the
moderate one and red—the most irregular.
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Figure 18. (Panels a–c): profiles selected based on the results of segmentation (blue points), median
profile of each class (red points), and original total median profile (black points); (panel d): comparison
of class medians (color-coded) with total median (black).

6. Discussion

In our study, the proposed methodology has been tested on the testbed of a closed
mine corridor characterized by varied geometry due to the basic techniques employed in its
creation. Such a case study could simulate a real scenario of evaluating the tunnel geometry
in terms of compliance with the mining plan. In this instance, significant deviations from
the plan would be in the order of tens of centimeters. As such, a point cloud obtained
with a cheap SLAM solution could be used as a source of input data, despite its accuracy
in the range of single centimeters. However, in cases where the desired precision of
identifying deviations of the corridor geometry would be lower, e.g., during convergence
monitoring, another input point cloud source of correspondingly higher measurement
accuracy and resolution will be chosen. Example techniques include terrestrial laser
scanning, photogrammetry (in mines with low pollution and well-lit corridors), and mobile
laser scanning (for tunnels accessible by a car equipped with an MLS system).

For the proposed methodology, employing instruments of higher accuracy and reso-
lution for measurements assures a more accurate representation of the corridor geometry
mostly in the direction perpendicular to its axis. The longitudinal resolution is, however,
limited by one of the initial steps of the proposed methodology—extracting slices of selected
depth from the input point cloud for cross-section generation. The value of cross-section
depth should be chosen individually for each use case scenario, depending on the expected
or desired to be detected corridor geometry deviations regarding their dimension along the
corridor. The selection of too wide cross sections may result in not detecting significant
geometry disturbances or their overestimation. On the other hand, choosing too narrow
point cloud slices might result in a low number of points establishing the profiles, making
them an unsatisfactory representation of the real corridor geometry.

As mentioned above, geometry analysis of large underground structures consisting
of dozens of kilometers of mining excavations may be of particular interest of mine main-
tenance services, especially geomechanical engineers or ventilation crews. The proposed
methodology for spatial data utilization, combined with an appropriate statistics selection,
may serve as a tool for mine ventilation optimization. As the geometry of the airways is
strongly related to airflow behavior, obtained results may be strongly informative in terms
of ventilation performance and indicate potential actions needed to improve the current
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state. On the other hand, the results may potentially contribute to reducing the aerological
hazards. Moreover, a 3D point cloud from geometry measurements adequately processed
with respect to spatial mesh of underground structure development may also provide a
basis for CFD methods analysis. The insights presented will constitute future work by the
authors in subsequent articles based on the methodology defined in this work.

Results acquired with the introduced method at the testbed in the closed mine in Złoty
Stok prove the suitability of this solution for automatic evaluation of the corridor’s geometry.
Moreover, it was demonstrated that for similar use cases, a point cloud obtained with SLAM
manifests sufficient accuracy for subsequent processing. This shows possibilities for further
automation of the proposed method utilizing an autonomous mobile robotic system. Other
important directions of research include automatization of inspection of more complex
scenes, (e.g., a grid of underground corridors) and testing various measurement techniques
for obtaining the point cloud for different use case scenarios.

7. Conclusions

In this paper, the authors have attempted to solve the problem of geometry assessment
of large underground structures. As shown in the state of the art provided, this subject is
a particular matter in the field of underground mining, but also tunneling. To meet the
specific requirements defined by the complex nature of this problem, several issues needed
to be considered during the solution development. It covers primarily a quick and reliable
measurement method allowing geometry-related spatial data acquisition with relatively
low effort and capital outlay. Secondly, processing obtained data should create a field for
deviation detection and variation tracking and analysis employing informative features.
Such an approach in the final stage would lead to a classification of certain tunnel segments,
which in terms of geometry demands taking actions aimed at maintaining mine operation
according to defined specifications.

The authors proposed a simple yet effective method of assessing the quality of exca-
vated corridors. Input data constitute the point cloud measured by a LiDAR-based scanning
system. This kind of data source is not very expensive and thus may be easily accessible.
During the experiment conducted by the authors, the LiDAR sensor was attached to a
mobile platform. Although this solution may be beneficial from different perspectives, the
process of collecting data with such a device itself can also be carried out manually. The
input data type does not influence the data processing methodology. However, depending
on the desired purpose, it may result in different accuracy. In practice, a digital model of
underground structures may be constructed based on data captured utilizing any method,
such as TLS implementation or photogrammetry.

The initial part of the proposed methodology is related to 3D data preprocessing,
which is required to apply statistical parameterization and analysis. The core of the method
is based on creating a multivariate parameterization of a corridor section concerning its
length. The calculation of selected statistics allowed the determination of more general
features. Segmentation and classification of the created segments based on those features is
performed concerning the quality defined by them. The set of cross sections arranged in
groups provides a global and quantitative measure of the quality of tunnel geometry.

The overriding goal for the authors of this paper was to use simple statistics to
determine some informative features. Obtaining information from them particularly was
not of interest; however, even by themselves, they may be useful for some specific use
cases. In terms of qualitative evaluation, one could go a step further and correlate the
segmentation results with one of the statistics, i.e., deviation from the reference model,
or a roughness coefficient. Based on this, one could conclude that one of the classes
corresponds to a better quality of excavation, while the other class to a worse one. However,
this consideration is dependent on the particular use case and is not of interest within
this paper.

In the long-term perspective, the progressing excavation in a given location will pro-
duce new sections of a corridor that can be assessed as a continuation of a previously
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parameterized dataset. Such an approach can allow for quasi-real-time evaluation of an ex-
cavated corridor, paying attention to any deviations and eventually making corrections and
maybe even adjustments to the excavation practices. Paying attention to the optimization
of corridor geometry can have significant importance for the efficiency of key technological
processes undertaken in underground mines.

The key advantage of the proposed approach is the ability to massively reduce the
data volume at several levels of abstraction. Longitudinal and circumferential resampling
allows us not only to standardize the operational structure for 3D data (which makes the
analysis relatively easy and comfortable), but also to adjust the resolution to the needs of
the particular case and inference, which allows making the dataset significantly smaller and
the analysis significantly faster. Moreover, the parameterization step allows us to further
reduce the operational dataset to only several variables in the longitudinal domain. It also
makes the post-processing step (as the segmentation proposed in this paper) very efficient.
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27. Trybała, P.; Blachowski, J.; Błażej, R.; Zimroz, R. Damage Detection Based on 3D Point Cloud Data Processing from Laser Scanning

of Conveyor Belt Surface. Remote Sens. 2021, 13, 55. [CrossRef]
28. Lindenbergh, R.; Uchanski, L.; Bucksch, A.; Van Gosliga, R. Structural monitoring of tunnels using terrestrial laser scanning. Rep.

Geod. 2009, 231–238. Available online: https://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-article-PWAB-0005
-0007/c/httpwww_rog_gik_pw_edu_plphocadownloadnr8727.pdf (accessed on 7 December 2021).

29. Loupos, K.; Doulamis, A.D.; Stentoumis, C.; Protopapadakis, E.; Makantasis, K.; Doulamis, N.D.; Amditis, A.; Chrobocinski, P.;
Victores, J.; Montero, R.; et al. Autonomous robotic system for tunnel structural inspection and assessment. Int. J. Intell. Robot.
Appl. 2018, 2, 43–66. [CrossRef]

30. Amedjoe, C.G.; Agyeman, J. Assessment of effective factors in performance of an open stope using cavity monitoring system
data: A case study. J. Geol. Min. Res. 2015, 7, 19–30.

31. Warneke, J.; Dwyer, J.; Orr, T. Use of a 3-D scanning laser to quantify drift geometry and overbreak due to blast damage in
underground manned entries. In Proceedings of the 1st Canada-US Rock Mechanics Symposium, Vancouver, BC, Canada,
27–31 May 2007.

32. Zou, B.; Luo, Z.; Wang, J.; Hu, L. Development and Application of an Intelligent Evaluation and Control Platform for Tunnel
Smooth Blasting. Geofluids 2021, 2021, 6669794. [CrossRef]

33. Che, E.; Jung, J.; Olsen, M. Object recognition, segmentation, and classification of mobile laser scanning point clouds: A state of
the art review. Sensors 2019, 19, 810. [CrossRef]

34. Gikas, V. Three-dimensional laser scanning for geometry documentation and construction management of highway tunnels
during excavation. Sensors 2012, 12, 11249–11270. [CrossRef]

35. Luo, Y.; Chen, J.; Xi, W.; Zhao, P.; Qiao, X.; Deng, X.; Liu, Q. Analysis of tunnel displacement accuracy with total station. Meas. J.
Int. Meas. Confed. 2016, 83, 29–37. [CrossRef]

36. Chang, X.; Wang, H.; Zhang, Y.; Wang, F.; Li, Z. Bayesian prediction of tunnel convergence combining empirical model and
relevance vector machine. Meas. J. Int. Meas. Confed. 2022, 188, 110621. [CrossRef]

37. Wang, D.; Luo, J.; Shen, K.; Gao, L.; Li, F.; Wang, L. Analysis of the causes of the collapse of a deep-buried large cross section of
loess tunnel and evaluation of treatment measures. Appl. Sci. 2022, 12, 161. [CrossRef]

38. Tan, Z.; Li, S.; Yang, Y.; Wang, J. Large deformation characteristics and controlling measures of steeply inclined and layered soft
rock of tunnels in plate suture zones. Eng. Fail. Anal. 2022, 131, 105831. [CrossRef]

39. Hou, G.Y.; Li, Z.X.; Hu, Z.Y.; Feng, D.X.; Zhou, H.; Cheng, C. Method for tunnel cross-section deformation monitoring based on
distributed fiber optic sensing and neural network. Opt. Fiber Technol. 2021, 67, 102704. [CrossRef]

http://dx.doi.org/10.1016/j.jsm.2015.08.005
http://dx.doi.org/10.1016/j.autcon.2016.02.009
http://dx.doi.org/10.5194/isprs-archives-XLII-4-W16-641-2019
http://dx.doi.org/10.1007/BF00421947
http://dx.doi.org/10.1007/s10706-021-01834-8
http://dx.doi.org/10.1016/j.tust.2004.05.004
http://dx.doi.org/10.1016/j.tust.2021.104017
http://dx.doi.org/10.1016/j.proche.2016.03.080
http://dx.doi.org/10.1016/j.tust.2013.06.003
http://dx.doi.org/10.1016/j.tust.2017.09.007
http://dx.doi.org/10.1007/s10706-017-0336-3
http://dx.doi.org/10.1016/j.tust.2020.103475
http://dx.doi.org/10.1007/BF00421946
http://dx.doi.org/10.1007/BF00896596
http://dx.doi.org/10.3390/rs13010055
https://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-article-PWAB-0005-0007/c/httpwww_rog_gik_pw_edu_plphocadownloadnr8727.pdf
https://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-article-PWAB-0005-0007/c/httpwww_rog_gik_pw_edu_plphocadownloadnr8727.pdf
http://dx.doi.org/10.1007/s41315-017-0031-9
http://dx.doi.org/10.1155/2021/6669794
http://dx.doi.org/10.3390/s19040810
http://dx.doi.org/10.3390/s120811249
http://dx.doi.org/10.1016/j.measurement.2016.01.025
http://dx.doi.org/10.1016/j.measurement.2021.110621
http://dx.doi.org/10.3390/app12010161
http://dx.doi.org/10.1016/j.engfailanal.2021.105831
http://dx.doi.org/10.1016/j.yofte.2021.102704


Energies 2022, 15, 6302 20 of 20

40. Puente, I.; González-Jorge, H.; Martínez-Sánchez, J.; Arias, P. Automatic detection of road tunnel luminaires using a mobile
LiDAR system. Meas. J. Int. Meas. Confed. 2014, 47, 569–575. [CrossRef]

41. Vanneschi, C.; Mastrorocco, G.; Salvini, R. Assessment of a rock pillar failure by using change detection analysis and FEM
modelling. ISPRS Int. J. Geo-Inf. 2021, 10, 774. [CrossRef]

42. Xu, T.; Xu, L.; Li, X.; Yao, J. Detection of Water Leakage in Underground Tunnels Using Corrected Intensity Data and 3D Point
Cloud of Terrestrial Laser Scanning. IEEE Access 2018, 6, 32471–32480. [CrossRef]

43. Webber-Youngman, R.; Grobler, H.; Gazi, T.; Stroh, F.; van der Vyver, A. The impact of forensic laser scanning technology on
incident investigations in the mining industry. J. South. Afr. Inst. Min. Metall. 2019, 119, 817–824. [CrossRef]

44. Voit, K.; Amvrazis, S.; Cordes, T.; Bergmeister, K. Drill and blast excavation forecasting using 3D laser scanning [Ausbruchprog-
nose beim Sprengvortrieb mittels 3D-Laser scanning]. Geomech. Tunnelbau 2017, 10, 298–316.

45. Otero, R.; Lagüela, S.; Garrido, I.; Arias, P. Mobile indoor mapping technologies: A review. Autom. Constr. 2020, 120, 103399.
[CrossRef]

46. Kang, Z.; Zhang, L.; Tuo, L.; Wang, B.; Chen, J. Continuous extraction of subway tunnel cross sections based on terrestrial point
clouds. Remote Sens. 2013, 6, 857–879. [CrossRef]

47. Han, S.; Cho, H.; Kim, S.; Jung, J.; Heo, J. Automated and efficient method for extraction of tunnel cross sections using terrestrial
laser scanned data. J. Comput. Civ. Eng. 2013, 27, 274–281. [CrossRef]

48. Yoon, J.S.; Sagong, M.; Lee, J.; Lee, K.s. Feature extraction of a concrete tunnel liner from 3D laser scanning data. NDT E Int. 2009,
42, 97–105. [CrossRef]

49. Adoko, A.C.; Jiao, Y.Y.; Wu, L.; Wang, H.; Wang, Z.H. Predicting tunnel convergence using Multivariate Adaptive Regression
Spline and Artificial Neural Network. Tunn. Undergr. Space Technol. 2013, 38, 368–376. [CrossRef]

50. Fei, J.; Wu, Z.; Sun, X.; Su, D.; Bao, X. Research on tunnel engineering monitoring technology based on BPNN neural network
and MARS machine learning regression algorithm. Neural Comput. Appl. 2021, 33, 239–255. [CrossRef]

51. Grilli, E.; Menna, F.; Remondino, F. A review of point clouds segmentation and classification algorithms. Int. Arch. Photogramm.
Remote Sens. Spat. Inf. Sci. 2017, 42, 339. [CrossRef]

52. Remondino, F.; El-Hakim, S.; Gruen, A.; Zhang, L. Turning images into 3-D models: Developments and performance analysis of
image matching for detailed surface reconstruction of heritage objects. IEEE Signal Process. Mag. 2008, 25, 55–64. [CrossRef]

53. Remondino, F.; Nocerino, E.; Toschi, I.; Menna, F. A critical review of automated photogrammetric processing of large datasets.
Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 591–599. [CrossRef]

54. Przylibski, T.A. Radon and its daughter products behaviour in the air of an underground tourist route in the former arsenic and
gold mine in Złoty Stok (Sudety Mountains, SW Poland). J. Environ. Radioact. 2001, 57, 87–103. [CrossRef]

55. Muszer, A. Gold at Złoty Stok–history, exploitation, characteristic and perspectives. Arch. Mineral. Monogr. 2011, 2, 45–62.
56. Szrek, J.; Zimroz, R.; Wodecki, J.; Michalak, A.; Góralczyk, M.; Worsa-Kozak, M. Application of the infrared thermography

and unmanned ground vehicle for rescue action support in underground mine—The amicos project. Remote Sens. 2021, 13, 69.
[CrossRef]

57. Zimroz, P.; Trybała, P.; Wróblewski, A.; Góralczyk, M.; Szrek, J.; Wójcik, A.; Zimroz, R. Application of UAV in search and rescue
actions in underground mine—A specific sound detection in noisy acoustic signal. Energies 2021, 14, 3725. [CrossRef]

58. Koide, K.; Miura, J.; Menegatti, E. A portable 3d lidar-based system for long-term and wide-area people behavior measurement.
IEEE Trans. Hum. Mach. Syst. 2018, 16, 1729881419841532.

59. Trybała, P. LiDAR-based Simultaneous Localization and Mapping in an underground mine in Złoty Stok, Poland. IOP Conf. Ser.
Earth Environ. Sci. 2021, 942, 012035. [CrossRef]

60. Velodyne Lidar Puck Data Sheet. Available online: https://velodynelidar.com/products/puck/#downloads (accessed on
7 December 2021).

61. Riegl VZ-400i Terrestrial Laser Scanner Data Sheet. Available online: http://www.riegl.com/uploads/tx_pxpriegldownloads/
RIEGL_VZ-400i_Datasheet_2020-10-06.pdf (accessed on 7 December 2021).

62. Akima, H. A new method of interpolation and smooth curve fitting based on local procedures. J. ACM 1970, 17, 589–602.
[CrossRef]

63. Silverman, B.W. Density Estimation for Statistics and Data Analysis; Routledge: London, UK, 2018.
64. De Loera, J.; Rambau, J.; Santos, F. Triangulations: Structures for Algorithms and Applications; Springer Science & Business Media:

Berlin, Germany, 2010; Volume 25.
65. Guibas, L.J.; Knuth, D.E.; Sharir, M. Randomized incremental construction of Delaunay and Voronoi diagrams. Algorithmica 1992,

7, 381–413. [CrossRef]
66. Moore, B. Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Trans. Autom.

Control 1981, 26, 17–32. [CrossRef]
67. Peter, D.H. Kernel estimation of a distribution function. Commun. Stat. Theory Methods 1985, 14, 605–620. [CrossRef]
68. Silverman, B.W. Density estimation for statistics and data analysis. In Monographs on Statistics and Applied Probability; CRC Press:

Boca Raton, FL, USA, 1986; Volume 26.

http://dx.doi.org/10.1016/j.measurement.2013.09.044
http://dx.doi.org/10.3390/ijgi10110774
http://dx.doi.org/10.1109/ACCESS.2018.2842797
http://dx.doi.org/10.17159/2411-9717233/2019
http://dx.doi.org/10.1016/j.autcon.2020.103399
http://dx.doi.org/10.3390/rs6010857
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000211
http://dx.doi.org/10.1016/j.ndteint.2008.10.001
http://dx.doi.org/10.1016/j.tust.2013.07.023
http://dx.doi.org/10.1007/s00521-020-04988-3
http://dx.doi.org/10.5194/isprs-archives-XLII-2-W3-339-2017
http://dx.doi.org/10.1109/MSP.2008.923093
http://dx.doi.org/10.5194/isprs-archives-XLII-2-W5-591-2017
http://dx.doi.org/10.1016/S0265-931X(01)00012-1
http://dx.doi.org/10.3390/rs13010069
http://dx.doi.org/10.3390/en14133725
http://dx.doi.org/10.1088/1755-1315/942/1/012035
https://velodynelidar.com/products/puck/#downloads
http://www.riegl.com/uploads/tx_pxpriegldownloads/RIEGL_VZ-400i_Datasheet_2020-10-06.pdf
http://www.riegl.com/uploads/tx_pxpriegldownloads/RIEGL_VZ-400i_Datasheet_2020-10-06.pdf
http://dx.doi.org/10.1145/321607.321609
http://dx.doi.org/10.1007/BF01758770
http://dx.doi.org/10.1109/TAC.1981.1102568
http://dx.doi.org/10.1080/03610928508828937

	Introduction
	State of the Art
	Experiments and Data Description
	Złoty Stok Gold Mine
	Data Collection

	Methodology
	Boundary Detection
	Median Calculation
	Deviation Calculation
	Roughness Factor
	Principal Component Analysis
	Kernel Density Estimation

	Results
	Discussion
	Conclusions
	References

