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Abstract: Deterioration trend prediction of hydropower units helps to detect abnormal conditions of
hydropower units and can prevent early failures. The reliability and accuracy of the prediction results
are crucial to ensure the safe operation of the units and promote the stable operation of the power
system. In this paper, the long short-term neural network (LSTM) is introduced, a comprehensive
deterioration index (CDI) trend prediction model based on the time–frequency domain is proposed,
and the prediction accuracy of the situation trend of hydropower units is improved. Firstly, the
time–domain health model (THM) is constructed with back-propagation neural network (BPNN)
and condition parameters of active power, guide vane opening and blade opening and the time–
domain indicators. Subsequently, a frequency-domain health model (FHM) is established based
on ensemble empirical mode decomposition (EEMD), approximate entropy (ApEn), and k-means
clustering algorithm. Later, the time–domain degradation index (TDI) is developed according to
THM, the frequency-domain degradation index (FDI) is constructed according to FHM, and the CDI
is calculated as a weighted sum by TDI and FDI. Finally, the prediction model of LSTM is proposed
based on the CDI to achieve degradation trend prediction. In order to validate the effectiveness of the
CDI and the accuracy of the prediction model, the vibration waveform dataset of a hydropower plant
in China is taken as a case study and compared with four different prediction models. The results
demonstrate that the proposed model outperforms other comparison models in terms of predicting
accuracy and stability.

Keywords: hydropower units; degradation trend prediction; comprehensive deterioration index;
long and short-term neural network; ensemble empirical mode decomposition; approximate entropy

1. Introduction

Hydropower units, as the critical equipment for hydropower energy conversion, have
always been a focus of attention in the power industry for their safety and stability [1–7].
Along with the continuous development of the unit to the large scale as well as the complex,
the degree of integration is getting higher and higher, and the structure is also becoming
more and more sophisticated [6]. With the increase in accumulated operation time, hy-
dropower units are prone to abnormal vibration, equipment exhaustion, unit deterioration,
and other occurrences [5]. As the deterioration degree increases, the equipment perfor-
mance of the unit will decline gradually until equipment breakdown happens [7]. Not
only will the safe and stable operation of hydropower units and power stations be affected,
but this will also bring about economic losses such as the additional cost of maintenance.
Consequently, in considering the safety and stability of the hydropower unit and the power
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system, it is helpful to accurately predict the operating status trend of the hydropower unit
to prevent early failure by detecting abnormal conditions of the hydropower unit. In this
way, scientific and reliable maintenance plans and measures can be planned to optimize
the comprehensive benefits of power plant operation. It is, therefore, of major significance
to conduct research related to the condition trend prediction of hydropower units [1–7].

At this time, the research on health performance trend prediction of hydropower units
is still at the initial stage, and the research experience of rotating machinery is summarized
that the equipment quality degradation trend prediction is classified into three steps: (a) es-
tablishing a health state model; (b) constructing deterioration index (DI); and (c) achieving
the trend prediction of the hydropower unit degradation [1]. The construction of a sensible
equipment health state model, the proposal of DI that actually describe the operating state
of the unit, and the adoption of an accurate predictive trend prediction model are the
essential elements to realize the trend prediction of hydropower unit deterioration. In the
existing domestic and international studies, the health model (HM) is constructed by ana-
lyzing the correlation between the stability parameters reflecting the operating condition
of the unit and the working condition parameters. As abnormal vibration is one of the
main causes of unit performance deterioration, the stabilization-related signals such as
vibration and oscillation of the unit’s shaft system can well describe the operating condition
of the unit. Examples of stability parameters used to construct the HM in the current
study are the original monitoring data, such as the original measured point values of frame
vibration and shaft oscillation, sometimes domain indicator values, such as peak-to-peak
and standard deviation (SD), and related working condition parameters, such as working
head, active power, and guide vane opening, etc., which can be one-dimensional or multidi-
mensional [1–16]. Shan et al. [1] used back-propagation (BPNN) in their study to establish
a health state model with working condition parameters and horizontal vibration values of
the Y-direction of the lower bracket. The relative error between the vibration health value
and the measured vibration value was used as the DI. And the multi-objective particle
swarm algorithm was used to optimize the parameters of the kernel extreme learning ma-
chine, and the optimized kernel extreme learning machine model was used to construct the
prediction model. Fu et al. [2] applied modal decomposition to the turbine guide Y-direction
oscillation monitoring data, aggregated and reconstructed the obtained modal components,
and calculated the phase space matrix of each reconstructed modal component, as well as
used support vector machines to predict each phase space matrix and summed the pre-
dicted values of each component to obtain the final predicted value of the oscillation degree
and to achieve the deterioration prediction of the unit operating condition assessment.
An et al. [7] developed an HM based on the radial basis function neural network (RBF)
for the vibration peaks in the horizontal direction of the upper bracket of the unit and the
working condition parameters and calculated the ratio of the health value to the measured
value to obtain the unit degradation degree. This time series of the unit degradation degree
is decomposed into several intrinsic mode functions (IMFs), and the complexity of the
modal components is determined by calculating the approximate entropy (ApEn) of each
modal component. When the ApEn is high, the RBF neural network is selected to predict
the series. When the ApEn is small, a gray-system model is selected to predict the sequence,
and the predictions of the decomposed components are summed to obtain the prediction
results of the initial time series. In a similar way, An et al. [8] constructed an HM based on
the horizontal vibration of the upper support and the water head and active power. The
ratio of the true value to the healthy value under the current working condition parameters
was used to evaluate the degree of unit deterioration for the current working condition. A
gray-system model and RBF were used to construct the prediction model. Related research
work [15,16] similarly developed HMs containing working head and active power for the
prediction of the degradation trend of hydropower units.

After analysis of the above studies, it can be seen that: (1) The form of constructing the
health status model of hydropower units in the existing studies is relatively easy, and most
of the stability parameters for constructing the HM only consider the detection value of the
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original single measurement point or a single time-domain index value, and such stability
parameters cannot objectively reflect the operating status of the units comprehensively;
(2) The form of constructing the DI is also relatively simple, which cannot authentically
characterize the state change trend of hydropower units, and the large-scale historical data
generated by the condition monitoring system is not effectively applied, and the reliability
of its prediction results needs to be advanced [6]. Therefore, to address the shortcomings of
constructing unit HM and DI in the current hydropower deterioration trend prediction, it is
suggested that a comprehensive deterioration index (CDI) of hydropower units should be
constructed with both the time-domain health model (THM) and frequency-domain health
model (FHM), so as to comprehensively consider the change characteristics and trends
of the operating state of hydropower units in the time-frequency domain to achieve the
real-time prediction of hydropower unit deterioration degree. The research objective is to
predict the deterioration level of hydropower units in real time.

State trend measurement is a time series prediction problem where the historical
state index values are used to predict the future state index values for the purpose of
predicting the future operating state of the unit. Whether a time series can predict future
data based on historical data is dependent on the correlation between its future and
historical data [17]. The time series reflecting the deterioration trend of the hydropower
unit is between the unpredictable white noise time series and the fully predictable periodic
signal time series, and therefore, it can be considered to be predictable to a reasonable
degree. Due to the strong volatility and nonlinearity of the vibration signal, the calculated
deterioration indicator series is strongly non-smooth and contains some noisiness, so it is a
challenging topic to achieve an accurate prediction of the indicator series [5]. Experts and
scholars have conducted relevant studies and proposed some prediction methods [1–19].
Qin et al. [17] established a long short-term memory neural network (LSTM) prediction
model for wind speed prediction on the original wind speed series. Wang et al. [18]
proposed a short-term wind speed prediction method based on ensemble empirical mode
decomposition (EEMD) and an optimized BPNN. Lu et al. [3] proposed a state trend
prediction model for hydropower units based on EEMD and genetic algorithm parameter
seeking BPNN. Fu et al. [2] established a state trend prediction model for hydropower
units based on aggregated EEMD and SVM theory, which can effectively predict the unit
state. Yang et al. [19] proposed a prediction model combining wavelet transform and SVM
to achieve short-term prediction of vibration signals. Due to the existence of background
noise and electromagnetic interference, the state signals of hydropower units are often
non-smooth, which can significantly affect the prediction results. Therefore, the signal
needs to be pre-processed before building the prediction model [2]. Through the above
literature analysis, the complexity and non-stationarity of the hydropower unit vibration
signal lead to the inaccuracy of prediction, and the prediction accuracy of the deterioration
trend of hydropower units needs to be enhanced further. LSTM has a unique memory and
forgetting pattern, which can effectively deal with the long-term dependence of time series
and effectively use the historical input information of time series to achieve an accurate
prediction of the deterioration trend of hydropower units [17].

Through the above analysis, a trend prediction model for hydropower units based
on CDI and LSTM is proposed in this paper. Firstly, a THM based on BPNN is con-
structed, and the Sparrow Search Algorithm (SSA) is used to optimize the parameters of
BPNN; meanwhile, an FHM based on EEMD combined with approximate entropy and
K-mean clustering is constructed; secondly, the time-domain deterioration index (TDI)
and frequency-domain deterioration index (FDI) are calculated separately, in particular,
the TDI is the variation of the real-time value relative to the health value, and the FDI is
the Euclidean distance between the real-time feature vector and the health center vector.
After a while, the CDI is obtained through weighted calculation, which can comprehen-
sively and objectively reflect the operating trend and deterioration degree of the unit; a
series of smooth modal components are obtained by modal decomposition of the CDI, and
the LSTM-based prediction model is constructed for each modal component to make a
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prediction, and the prediction results of each component are summed to obtain the final
prediction result, which reflects the future operating status of the hydropower unit. In
this paper, the validity of the CDI to characterize the operating status of hydropower units
and the validity of the prediction model to reflect the deterioration trend of the units are
examined by the actual operation cases of a hydropower plant in China.

2. Theoretical Background
2.1. SSA Algorithm and BPNN

An artificial neural network is a mathematical model established by simulating the
structure of the human brain. BPNN is a feed-forward neural network with the forward
transmission of signal and reverse transmission of error. Although it is widely used, there
are disadvantages, such as the tendency to fall into local minima and slow convergence
speed [20–23]. The setting of initial weights and thresholds of BPNN has a strong influence
on the training effect of the network. In this paper, the initial values of BPNN weights and
thresholds are optimized using the SSA, and the neural network is trained twice to achieve
the global optimum.

Sparrow Search Algorithm (SSA) is a swarm intelligence algorithm proposed in
2020 based on the optimization of social features of a population. The algorithm simulates
sparrow foraging and anti-predation behaviors, distinguishes individuals into finders,
followers, and vigilantes, and accomplishes the acquisition of resources by continuously
updating individual positions, each of which corresponds to a solution, thus obtaining
the mathematically optimal solution. Compared with traditional algorithms, the spar-
row search algorithm has a simpler structure, is easy to achieve, and has fewer control
parameters and better local search capability [24]. If the number of individuals in the
population is n, then the population consisting of all individuals can be expressed as shown
in Equation (1).

X = [X1, X2, · · ·Xn]
T (1)

where Xi represents an individual in the set i = 1, 2, · · · , n.
The respective corresponding fitness function for each individual is shown in Equation (2).

F = [ f (X1), f (X2), · · · f (Xn)]
T (2)

where f (Xi) represents the fitness of each individual in the set i = 1, 2, · · · , n.
Where the discoverer location is updated in the following way, as shown in Equation (3).

xt+1
i,j =

{
xt

i,j· exp
(

−i
α×itermax

)
, R2 < ST

xt
i,j + Q·L, R2 ≥ ST

(3)

where t represents the number of current iterations, xt
i,j represents the position of the ith

individual in the tth generation in the jth dimension, α is a random number, α ∈ (0, 1),
itermax is the maximum number of iterations, R2 represents the warning value, R2 ∈ [0, 1],
ST represents the safety threshold, ST ∈ [0.5, 1], Q is a random number obeying normal
distribution, L is the all-1 matrix of 1× dim, and the dim represents the dimensionality.

The position of the follower is updated as shown in Equation (4).

xt+1
i,j =


Q· exp

(
xt

worst−xt
i,j

i2

)
, i > n

2

xt+1
P +

∣∣∣xt
i,j − xt+1

P

∣∣∣·A+·L, i ≤ n
2

(4)

where xt
worst denotes the position of the worst adapted individual in the tth generation, and

xt+1
P denotes the position of the best adapted individual in the t+1th generation. A denotes

the matrix of 1× dim, and each element is randomly preset to −1 or 1, A+ = AT(AAT)
−1.



Energies 2022, 15, 6273 5 of 26

The vigilantes’ positions are updated, as shown in Equation (5).

xt+1
i,j =


xt

best + β·
∣∣∣xt

i,j − xt
best

∣∣∣, fi 6= fg

xt
best + k·

( ∣∣∣xt
i,j−xt

best

∣∣∣
| fi− fw |+ε

)
, fi = fg

(5)

where xt
best indicates the global optimal position in the tth generation, β is the control step,

following a normal distribution with a mean 0 and variance 1, k ∈ [−1, 1], k is a random
number, and ε is set as a constant to avoid the denominator being 0. fi denotes the fitness
value of the current individual; fg and fw denote the fitness values of the current global
optimal and worst individuals, respectively.

2.2. Empirical Modal Decomposition and Approximate Entropy
2.2.1. Ensemble Empirical Mode Decomposition

Empirical mode decomposition (EMD), proposed by Huang et al. [25], is an effective
method for adaptive analysis of nonlinear and non-smooth signals. The basic idea of EMD
is to perform adaptive smoothing on the original signal and obtain a series of IMFs by
decomposing it step by step. Ensemble empirical mode decomposition (EEMD) improves
on the traditional EMD decomposition by adding Gaussian white noise to the original data
several times to compose a new signal, and the uniform frequency distribution of Gaussian
white noise effectively avoids the modal aliasing phenomenon that exists when using EMD
for signal decomposition [26]. The EEMD decomposition steps are as Equations (6)–(8).

(1) Add the white noise ni(t) with a set noise level to the original signal xi(t) to form
the new signal:

xi(t) = x(t) + ni(t) (6)

where ni(t) denotes the ith additive white noise sequence, xi(t) denotes the additional
noise signal of the ith trial, i = 1, 2, · · · , M, M is the overall average number of times, which
is the number of times white noise is added, and its value ranges from 100 to 300.

(2) To decompose the synthesized new signal by EMD, a series of IMFs components
cij(t), and a residual term rij(t) are obtained:

xi(t) =
J

∑
j=1

cij(t) + rij(t) (7)

The number of IMF components is m, which cij(t) is the jth component of the decom-
position after adding white noise for the ith time, J is the number of IMFs.

(3) Repeat steps (1) and (2) M times, and average the overall results, and the result is
the IMF component of the original signal x(t) obtained by EEMD decomposition:

cj(t) =
1
M

M

∑
i=1

cij(t) (8)

where cj(t) is the jth IMF of the EEMD decomposition, i = 1, 2, · · · , M, j = 1, 2, · · · , J.
Through the EEMD algorithm, the signal is decomposed into a series of IMF components at
different time scales, and the fluctuations of each IMF component are smoother compared
to the original signal. The advantage of smoothly processing the nonlinear nonstationary
indicator series by using EEMD decomposition to avoid the errors due to direct prediction
could, in theoretical terms, lead to more accurate prediction results [27].

2.2.2. Approximate Entropy

ApEn characterizes the complexity of a sequence, and the higher the complexity of the
sequence, the higher the approximate entropy value [28]. Approximate entropy is widely
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used in biomedical signal detection [29] and mechanical equipment fault diagnosis [30],
and it has corresponding applications in the field of financial system complexity measure-
ment [31]. Approximate entropy is resistant to strong external interference, does not require
a long data length, and can be applied to deterministic signals or noisy signals.

For the data sequence {x1, x2, · · · , xN}, its ApEn is calculated as follows [28].
(1) Form a set of m− dimensional vectors of {xi} in a continuous order:

X(i) = [x(i), x(i + 1), · · · x(i + m− 1)] (9)

where Xi represents an individual in the set, i = 1, 2, · · · , N −m + 1, N is the number of
time series data points and m is the length of the window.

(2) Define the distance d[X(i), X(j)] between X(i) and X(j) to be the one with the
largest value of the difference between the two corresponding elements, as follows:

d[X(i), X(j)] = max|x(i + k)− x(j + k)|, k ∈ (1, m− 1) (10)

where for each value of i, calculate the distance d[X(i), X(j)] between X(i) and the remain-
ing corresponding elements of X(j) (j = 1, 2, · · · , N −m + 1, j 6= i).

(3) Iterate through each value, count the number of d[X(i), X(j)] < r (r is the similarity
tolerance, which is a pre-determined threshold, r > 0), and compare the value with the
total number of vectors N −m + 1, which denote as Cm

i (r).

Cm
i (r) =

1
N −m + 1

num{d[X(i), X(j)] < r} (11)

where i = 1, 2, · · · , N −m + 1, j = 1, 2, · · · , N −m + 1, j 6= i.
(4) Firstly, perform the logarithmic operation on Cm

i (r), and then find its average value
for all i, denoted as Φm(r), as follows:

Φm(r) =
1

N −m + 1

N−m+1

∑
i=1

ln Cm
i (r) (12)

(5) Increase the number of dimensions to m + 1 and repeat steps (1) to (4) to obtain
Cm+1

i (r) and Φm+1(r), as follows:

Cm+1
i (r) =

1
N −m

num{d[X(i), X(j)] < r} (13)

Φm+1(r) =
1

N −m

N−m

∑
i=1

ln Cm+1
i (r) (14)

(6) The ApEn of the sequence is calculated by the following equation:

ApEn(m, r) = lim
N→∞

[Φm(r)−Φm+1(r)] (15)

In practical engineering applications, N is a finite value, at this time, the ApEn of the
sequence can be calculated by the following equation:

ApEn(m, r, N) = Φm(r)−Φm+1(r) (16)

where m is the pattern dimension, given before calculating the approximate entropy; r is
the similarity tolerance.

It was shown that the value of ApEn(m, r, N) is related to the values of m, r, and
N [26]. When m = 2 and r = (0.1 ∼ 0 .25)σx (σx is the SD of the original data series {xi}),
ApEn(m, r, N) is almost independent of the data length N, as follows:

ApEn(m, r, N) ≈ ApEn(m, r) (17)
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Therefore, in practical calculations, the sequence length is generally between 100–5000,
the mode dimension m = 2, and the similarity tolerance r = (0.1 ∼ 0 .25)σx, which is
chosen in this paper as m = 2, r = 0.2σx, σx is the SD of original data.

2.3. Long Short-Term Memory Neural Network

LSTM is developed on the foundation of a recurrent neural network (RNN) [32], which
combines short-term memory and long-term memory through a special gate. The LSTM is
based on the recurrent neural network (RNN) [32], which combines short-term memory
and long-term memory with a special gate structure so that the network output has a
strong correlation with current and historical inputs, solving the issue that the traditional
recurrent neural network only has short-term memory, and can effectively use the time
series history information to deal with the long-term correlation of time series.

The basic structure of LSTM is divided into three layers: input layer, hidden layer,
and output layer. The hidden layer controls the information transmission by setting the
threshold unit (gate structure), which gives it a unique memory pattern, and the structure
of LSTM is shown in Figure 1.
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Figure 1. The structure of LSTM.

It can be seen that the LSTM hidden layer contains three main gate structures, namely:
forgetting gate, input gate, and output gate. Where the forgetting gate is used to filter
to retain the information of neuron ct−1 history state at moment t − 1, the input gate
determines the storage of new input information xt of neuron at moment t, and the output
gate is used to control the information delivery of the output value ht of the hidden layer.
According to Figure 1, the forward propagation algorithm of the LSTM can be derived as
shown in Equations (18)–(24).

ft = sig(W f ·[ht−1xt] + b f ) (18)

it = sig(Wi·[ht−1xt] + bi) (19)

c̃t = tanh(Wc·[ht−1xt] + bc) (20)

ct = ft·ct−1 + it·c̃t (21)

ot = sig(Wo·[ht−1xt] + bo) (22)

ht = ot·tanh(ct) (23)

yt = sig(Wy·ht + by) (24)
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where Equation (18) represents the forgetting gate, Equations (19) and (20) represent the
input gate, Equation (21) is the neuron state update expression, Equations (22) and (23) are
the output gates, and Equation (24) is the calculation output of the neuron at moment t.
xt is the network input information at moment t, ht−1 is the network hidden layer state
output value at moment t− 1, c̃t is the input gate candidate state value, ct−1 and ct is the
neuron state at different moments, sig is the sigmoid activation function, W f , Wi, Wc, Wo,
Wy are the corresponding weight matrix, b f , bi, bc, bo, by are the corresponding threshold
vectors, and yt is the network prediction output at moment t.

After completing the forward propagation of the LSTM, it then enters the back-
propagation process; that is, the LSTM is extended into a deep network in time order,
and the weights and thresholds are updated iteratively using the back-propagation through
time (BPTT) algorithm [33] and the chain rule until the optimal solution is obtained.

3. The Proposed Prediction Model Based on the CDI
3.1. Proposed Model

In this paper, in order to detect the failure signs of hydropower units in advance, realize
fault warning, provide sufficient time margin for on-site maintenance and repair work,
and thus improve the economic and social benefits of power stations, the EEMD-LSTM
prediction model based on the CDI (CDI-EEMD-LSTM) in the time-frequency domain
is proposed by making full use of the condition monitoring data of the industrialized
information platform of hydropower units. The specific flow of the prediction model is
shown in Figure 2, which includes four steps.

Step 1: The HMs of hydropower units are constructed, and this section is divided into
two steps. The flowchart of Step 1 is shown in Figure 2.

(1) Constructing a THM of the unit based on SSA-BPNN, with the input being the
operating parameters of the unit’s historical health state and the output being the time-
domain indicators of the unit’s historical health state.

(2) Constructing an FHM based on EEMD-APEN and K-mean clustering algorithm,
EEMD decomposition is performed on the vibration waveform numbers of the unit’s
historical health state to obtain the ApEn of each modal component, which constitutes a
high-dimensional frequency-domain feature vector, and the health center vector of the
hydropower unit is obtained by automatic clustering.

Step 2: The HMs and the health center vector are used to construct the CDI of the
hydropower unit, which is divided into three steps. The flowchart of Step 2 is shown in
Figure 3.

(1) Input the real-time operating parameters into the THM, obtain the health value
under the current operating parameters, and calculate the relative error between the health
value and the actual value as the TDI.

(2) Obtain the frequency-domain eigenvectors of the real-time waveform data of the
unit vibration based on EEMD-ApEn, and calculate the Euclidean distance between the
real-time frequency-domain eigenvectors and the health center vector as the FDI.

(3) Weight and sum the TDI and the FDI to construct the CDI in the time–frequency
domain for hydropower units.

Step 3: The CDI-EEMD-LSTM prediction model is constructed.
To further improve the accuracy of trend prediction, EEMD is combined with LSTM.

The EEMD of the CDI is performed first, the LSTM prediction model is constructed for
each modal component obtained, and the fixed-length data is used as the input of the
LSTM prediction model. With the superior accuracy of LSTM in time series prediction,
each modal component is predicted, and eventually, the future state trend of the unit health
index series is obtained by accumulation. The flowchart of Step 3 is shown in Figure 4.

Step 4: Evaluation and analysis of prediction results.
The prediction results of the CDI-EEMD-LSTM model were evaluated.
The process is shown in Figure 5.
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3.2. Evaluation Indicators

So as to evaluate the effectiveness of SSA-BPNN and CDI-EEMD-LSTM, this paper
evaluated the prediction results using mean absolute percentage error (MAPE), root Mean
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square error (RMSE), and correlation coefficient (CC). MAPE, RMSE, and CC are calculated
as shown in Equations (25)–(27), respectively. The lower the RMSE and MAPE, the higher
the accuracy of the model prediction. The CC is used to measure the strength of linear
correlation between two variables, and a higher value indicates a higher correlation between
the two, which also characterizes the more accurate prediction results.

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − y′i
y′i

∣∣∣∣× 100% (25)

RMSE =

√
1
n

n

∑
i=1

(yi − y′i)
2 (26)

Rxy =
∑N

i=1 (xi − x)(yi − y)√
∑N

i=1(xi − x)2
√

∑N
i=1(yi − y)2

(27)

4. Experiment Results and Analysis

Vibration signals contain abundant state characteristics, so they can be employed in
engineering applications to assess the health status of equipment [34–36]. The condition
information of hydropower units is also embedded in the vibration signals, and the actual
conditions of unit operation can be obtained by analysis of the vibration signals of hy-
dropower units [37]. In order to validate its effectiveness and engineering application value,
this paper uses actual measurement data of hydropower units for experimental analysis.

A hydroelectric power station unit No. 3 is used as the research object, which is a
vertical shaft semi-parachute type. The water turbine type frame is ZZA315-LJ-800, the
rated speed is 107.1 r/min, the rated power is 200 MW, the rated head is 47 m, and the
generator model is SF200-56/11950. On 28 August 2015, during the start up of Unit No. 3,
there were obvious abnormal noises in the upper frame, waterwheel chamber, worm shell
and tail pipe, etc. The noise of each department was more intense when the unit was loaded
with 200 MW, and there were also obvious vibration and abnormal noises in the cement
foundation along the −X direction in the inlet hole of the tail pipe of the hydraulic turbine.
On 30 August, it was found that the steel plate of the middle ring of the runner chamber of
the No. 3 unit was dislodged, the middle ring and the lower ring had serious cracks, and
the blade skirt was seriously damaged.

Through retrospective analysis, the technicians deduced that the lining of the runner
chamber fell off between 28 August 2015 at 14:17:03 and 28 August 2015 at 14:37:12. It is
caused by the defects in the construction of the runner room, coupled with poor operating
conditions, resulting in the fatigue damage of the runner room, the emergence of cracks, and
the increase in vibration of the steel structure parts of the runner room, which eventually
leads to the combination bolt loosening and shearing, and the rotor blade rubs against the
cracked steel plate in the middle ring of the rotor chamber causing the steel plate to be torn
and fall off.

A total of 507 sets of data, including point value data and waveform data, were
obtained from the power station condition monitoring system before and after the failure
of unit No. 3, with a sampling interval of about 20 min. Each set of data contains X and
Y pendulum waveforms of the upper guide bearing, X and Y pendulum waveforms of
the thrust bearing, X and Y pendulum waveforms of the water guide bearing, and axial
vibration A, B, and C waveforms. Each waveform contains 16 key phases, with a total
of 4096 points, and the sampling frequency is 458 Hz. Before the failure, unit No. 3 was
operating at 63% of guide vane opening, 20% of blade opening, and working head of 50 to
55 m, and the vibration waveform data of axial A direction at the working point near this
condition was selected for prediction analysis and verification of unit deterioration trend.
All numerical simulation experiments are completed in MATLAB 9.2.
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4.1. Constructing the CDI in the Time-Frequency Domain for Hydropower Units
4.1.1. Constructing a Time-Frequency Domain Health Model

Step 1: Constructing a THM for the unit.
The sample data (active power, guide vane opening and blade opening) of the health

condition of a hydropower plant hydropower unit No. 3 are used as input, and the SD
of the unit’s axial A-directional vibration waveform is used as output. Compared with
other time-domain indicators, the waveform SD can objectively reflect the operating status
of hydropower units, and can identify unit health or fault conditions or even multiple
fault categories [38]. The mapping relationship between waveform SD Y(t) and operating
parameters X(t) is constructed as Equation (28):

Y(t) = fSSA−BP[Xt1(t), Xt2(t), Xt3(t)] (28)

where [Xt1(t), Xt2(t), Xt3(t)] ∈ X(t).
The SD of the axial A-directional vibration waveform Y(t) and the corresponding

operating conditions (active power Xt1(t), guide vane opening Xt2(t) and blade opening
Xt3(t)), of 170 sets were selected when the unit was in the initial healthy state in the
middle and early August. Moreover, 110 groups were randomly selected as the training
set, 30 groups as the validation set, and 30 groups as the test set for the THM. The original
values of the SD of the waveform of the axial A-direction vibration of the unit are shown in
Figure 6, where the timepoint is the sample points in chronological order.
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When using SSA for the initial weights and initial thresholds of BPNN for the opti-
mization search, to avoid over-learning and under-learning, both the initial weights a and
thresholds b are set to [−30, 30], and MAPE is selected as the fitness function of SSA. The
settings and modeling results of BPNN are shown in Table 1 and Figure 7.

Table 1. The parameters of BPNN.

Epochs Training Function Goal Learning Rate

5000 traingda 1e−7 0.1

From Table 1 and Figure 7, it is observed a good fit between the fitting output calculated
by the THM and the real SD. The RMSE of the THM is 0.1806 and MAPE is 30.23%, which
shows that the error values are low and the model is fitted with high precision. It can
accurately reflect the relationship between the operating parameters and the time-domain
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characteristics under the unit’s health condition and provides a basis for constructing a TDI
sequence for the unit.
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Step 2: Construct the FHM and a frequency-domain health center feature vector.
While time-domain features can characterize the unit deterioration condition to a

certain degree, in practice, the frequency-domain features of the vibration signal can reflect
more information about the unit status, and the nonlinearity and non-stability of the unit
deterioration trend will also be reflected by the signal frequency-domain features. Therefore,
it is necessary to consider the frequency-domain characteristics of the unit to construct
the CDI.

In this paper, to construct an FHI based on EEMD decomposition with ApEn and
K-mean clustering, the unit frequency-domain feature vectors are extracted based on
EEMD-ApEn, and the central feature vector in the health state is obtained using K-mean
clustering. The specific steps implemented in this paper are shown below.

(1) 170 sets of axial A-directional vibration waveform data corresponding to the THM
are selected, and EEMD is performed for each set of waveform data with noise level
k = 0.2, overall mean M = 100, and the number of decompositions is 6. The eigenmodal
components IMF1 ∼ IMF6 are obtained after decomposition.

(2) Calculate the ApEn of each modal component separately to obtain the frequency-
domain feature vector L in the health state.

L = [ApEn1, ApEn2, · · · , ApEn6] (29)

(3) The feature vectors of the unit health samples are automatically clustered using
the K-means method to obtain the cluster center Ω in the health condition, and the cluster
center Ω is the health center vector of the FHM. This health center vector value characterizes
the frequency-domain feature vector possessed by the unit during normal operation, so
it can be used as the health vector to evaluate the unit deterioration from the frequency-
domain perspective.

4.1.2. Constructing the Comprehensive Degradation Index

This section is divided into three steps.
Step 1: Obtain a sequence of TDI.
A sequence of TDI is constructed from the sample data of the unit in the process of

developing from the healthy state to the fault state. A number of 230 sets of working
parameters of the unit are selected in chronological order, and the working condition data
during the development of the unit fault are input into Equation (28) to obtain the health
value Y(t) under the current corresponding working condition, and the relative error
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between the actual value T(t) and the health value Y(t) is adopted as the TDI of the unit,
and the mathematical expression is Equation (30).

R1(t) =
Y(t)− T(t)

T(t)
× 100% (30)

where R1(t) is the sequence of vibration signal time-domain deterioration indicators as
shown in Figure 8, which represents the deviation degree and deviation direction of the
time-domain characteristics of the unit relative to the normal value in the physical sense.
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Figure 8. Unit time-domain degradation index sequence R1(t).

The actual values of SD of axial vibration waveforms are compared with the healthy
values, as shown in Figure 9. From Figure 9, it can be observed that the difference between
the actual value series and the healthy value series is not significant at the beginning
of operation, and the unit is well in health at this time. With an increasing operating
time of the unit, the gap between the actual value series and the healthy value series
gradually increases, the operating performance of the unit gradually deteriorates, and the
TDI deviates toward the trend of more than the healthy value and the deviation degree
increases sharply.
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As shown in Figures 5 and 6, the TDI series has a strong non-stationary nature
with fluctuating changes. The degree of deviation of the healthy value generally has
an increasing trend, indicating that the condition of the unit gradually deteriorates with
increasing operation time.

Step 2: Obtain a sequence of FDI.
The 230 sets of vibration waveform data corresponding to the CDI are selected, and

the frequency-domain features of the unit are extracted based on EEMD-ApEn to obtain
the frequency-domain feature vector collection L(t), and the Euclidean distance between
the L(t) and the health center vector Ω is calculated to obtain the sequence of FDI R2(t).
R2(t) is calculated as Equation (31). R2(t) =

‖L(t)−Ω‖
‖Ω‖ × 100%, R1(t) > 0

R2(t) = − ‖L(t)−Ω‖
‖Ω‖ × 100%, R1(t) < 0

(31)

where R2(t) is sequence of the FDI shown in Figure 10, which physically indicates the
deviation of the unit frequency-domain characteristics relative to the normal value, and
constant positive because of the Euclidean distance. L(t) is the approximate entropy
eigenvector of the actual measured vibration signal at time t. In order to ensure the
homogeneity between the frequency-domain and time-domain degradation directions to
avoid the phenomenon of mutual cancellation, R2(t) and R1(t) need to have the same sign,
which means the TDI and FDI deviate from the normal value at the moment of the same
time to maintain the same direction.
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Figure 10. The sequence of FDI R2(t).

As shown in Figure 10, the R2(t) series has a strong non-smoothness and fluctuates
with an overall increasing trend, which also indicates that the FDI can reflect the changing
characteristics of the unit state gradually deviating from the healthy state with increasing
operation time.

Step 3: Obtain the CDI in the time–frequency domain.
The TDI R1(t) and the FDI R2(t) are weighted and summed to obtain the time series

of CDI in the time–frequency domain of hydropower units, as shown in Equation (32).

R(t) = ω1·R1(t) + ω2·R2(t) (32)
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where ω1 and ω2 are the weighting coefficients. To enhance the sensitivity of the degrada-
tion index to the abnormal data, the weights are taken as shown in Equations (33) and (34).

ω1 =
|R2(t)|

|R1(t)|+ |R2(t)|
(33)

ω2 =
|R1(t)|

|R1(t)|+ |R2(t)|
(34)

As seen in Figure 11, the R(t) series indicates that the unit health deteriorates gradually
with increasing operating time.
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4.2. Prediction Model of Unit Deterioration Trend Based on CDI-EEMD-LSTM

Based on the unit CDI obtained in Section 4.1, combined with the signal processing
capability of EEMD and the time series prediction capability of LSTM, a forecasting in-
vestigation on the future trend of unit health status is carried out. To be consistent with
engineering practice, the first 3/4 of the series in chronological order is used as the training
set XTrain and the remaining part as the test set XPred. In the CDI-EEMD-LSTM, the CDI
sequence can be decomposed into different frequency modal components by EEMD, and
the fixed-length data in each modal component is used as the input of the LSTM, and the
powerful nonlinear fitting ability of the LSTM is used to make single-step prediction for
each modal component, and the prediction results of each modal component are accumu-
lated to finally output the single-step prediction results of the CDI sequence. RMSE, MAPE,
and similarity coefficient CC are employed as prediction effectiveness evaluation metrics,
which are calculated as shown in Equations (25)–(27). The division of the training set and
the prediction test set of the integrated degradation index is shown in Figure 12.

(1) Determining the input step length

The length of input data in LSTM affects the effect of prediction; too long input length
will lead to information redundancy and affect the efficiency of the prediction model;
too short will affect the accuracy of the prediction model. Firstly, the input length of the
CDI prediction model is calculated by computing the autocorrelation coefficient of the
index series. The autocorrelation of the CDI time series is shown in Figure 13, and the
autocorrelation coefficient of each index is still above the 95% confidence level when the
delay step is <10. In order to calculate the prediction effect of time series with different
input step lengths within delay Step 10, RMSE, MAPE, and similarity coefficient R were
used as evaluation indicators. The test was repeated 20 times, and the results are shown
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in Table 2. When the input length is 8, the RMSE and MAPE metrics of the prediction
results are the smallest, and the similarity coefficient CC is the largest, so the input length
of the model is determined to be 8 and the prediction step is 1, that is, LSTM is an 8-input,
1-output network.
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Table 2. Evaluation of prediction effects with different input lengths.

Input Length RMSE MAPE/% CC

2 0.0320 22.66 0.7563
4 0.0306 23.64 0.7404
6 0.0310 24.86 0.7360
8 0.0292 21.67 0.9030
10 0.0334 26.48 0.6754

(2) Signal decomposition

Firstly, a series of indicators h is decomposed by EEMD to obtain each modal com-
ponent, as shown in Figure 14. In terms of the number of sets and decomposition noise
intensity selection, with the increase of the number of sets, the effect of Gaussian white
noise added in the EEMD process on the decomposition effect gradually decreases and



Energies 2022, 15, 6273 20 of 26

stabilizes, and different studies have shown that the effect of noise intensity on the result
error is also relatively mild [39,40], so when using EEMD to process the time series of the
degradation index, the number of sets is set to 100, and the auxiliary noise intensity is 0.2.
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Figure 14. Modal components of the CDI.

(3) Analysis of prediction results

The prediction results of the proposed CDI-EEMD-LSTM are shown in Figure 15, and
the evaluation indexes are shown in Table 3. Based on the signal processing capability of
EEMD and the nonlinear fitting capability of LSTM, the prediction value of the model is
almost consistent with the trend of the real value and can well reflect the fluctuation of
the series R(t). The RMSE is 0.019, the MAPE is 15.1%, and the CC is 0.903, which can
accurately predict the changing trend of the unit health status.
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Table 3. Index of prediction evaluation of CDI-EEMD-LSTM prediction model.

Prediction Model MAPE/% RMSE CC

CDI-EEMD-LSTM 15.1 0.019 0.903
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Figure 16 shows the prediction results of LSTM for each modal component of the CDI,
and it can be seen that the prediction results of each component basically match the actual
values. Further analysis of the prediction errors of each component shows that the smoother
the modal component, the better the prediction outcome. Among the prediction results for
all six modal components, the IMF1 component has the maximum prediction error and is
the main source of deviation between the predicted and actual values of the index.

Energies 2022, 15, x FOR PEER REVIEW 23 of 28 
 

 

results for all six modal components, the IMF1 component has the maximum prediction 
error and is the main source of deviation between the predicted and actual values of the 
index. 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 16. Prediction results of each modal component of the CDI. (a) is the prediction result of 
IFM1; (b) is the prediction result of IFM2; (c) is the prediction result of IFM3; (d) is the prediction 
result of IFM4; (e) is the prediction result of IFM5; (f) is the prediction result of IFM6. 

4.3. Multi-Model Comparison Validation 
4.3.1. Comparison of Indexes 

The unit characteristics indexes can reflect the unit state changes, and it can be known 
from the literature [6] that the SD, peak-to-peak value, skewness, and kurtosis of the signal 
waveform increase constantly with time, reflecting the trend of unit deterioration in the 
same way as the CDI of the unit. The trends of the CDI proposed in this paper are con-
sistent with the trends of the DI proposed in the literature [6]. In order to measure the 
sensitivity of the CDI proposed in this paper to reflect the state change of the unit, the 
indicator gradient rate (IGR) of the indexes is applied. Calculate the IGR of each index, 

Figure 16. Prediction results of each modal component of the CDI. (a) is the prediction result of IFM1;
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IFM4; (e) is the prediction result of IFM5; (f) is the prediction result of IFM6.

4.3. Multi-Model Comparison Validation
4.3.1. Comparison of Indexes

The unit characteristics indexes can reflect the unit state changes, and it can be known
from the literature [6] that the SD, peak-to-peak value, skewness, and kurtosis of the signal
waveform increase constantly with time, reflecting the trend of unit deterioration in the
same way as the CDI of the unit. The trends of the CDI proposed in this paper are consistent
with the trends of the DI proposed in the literature [6]. In order to measure the sensitivity of
the CDI proposed in this paper to reflect the state change of the unit, the indicator gradient
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rate (IGR) of the indexes is applied. Calculate the IGR of each index, that is, the sharpness
of changes, to measure the sensitivity of the indexes to the change of unit status. The four
points of H, I, II, and III, where the change of indexes amplitude is obvious, are selected in
Figure 17, and the indexes are known to be healthy at the point of H. The change of the
indexes’ amplitude at the point I, II, and III relative to the amplitude of the indexes at the
point of H is calculated as the IGR of the indexes, separately. The calculation is shown in
the following Equations (35)–(37).

k1 =

∣∣∣∣ r(I)− r(H)

r(H)

∣∣∣∣ (35)

k2 =

∣∣∣∣ r(II)− r(H)

r(H)

∣∣∣∣ (36)

k3 =

∣∣∣∣ r(III)− r(H)

r(H)

∣∣∣∣ (37)

where r(I), r(II), and r(III) are the amplitudes of signal SD, kurtosis, skewness, and peak-
to-peak values at moments I, II, and III, respectively; k1, k2, and k3 are the IGR of signal SD,
kurtosis, skewness, and peak-to-peak values at moments I, II, and III.
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Figure 17. IGR of each index.

The IGR of each index is shown in Table 4 and Figure 17. In Table 4, where A, B, C, D,
and E respectively represent the indicators: SD, kurtosis, skewness, peak-to-peak, and CDI.
It can be seen that the IGR of the CDI is much better than the other indexes, which indicates
that the index is more sensitive to the changes in the unit’s operation status and can be
more representative of the deterioration process from normal to failure than the traditional
time and frequency-domain indexes.

Table 4. IGR of each indicator.

IGR A B C D E

k1 0.022 0.095 0.317 0.055 0.700
k2 0.146 0.237 0.627 0.467 3.715
k3 0.134 0.063 0.219 0.104 4.463
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4.3.2. Comparison of Predicted Results

To further verify the advantages of the proposed model prediction model in predicting
the trend of failure sign indicators of hydropower units, four control groups were designed
to verify the accuracy of the prediction model, where the four control groups are EEMD-
GA-BP (the first control group), original sequence-LSTM (the second control group), EMD-
LSTM (the third control group), and EEMD-SVM (the fourth control group). The selection
of these models is based on the basic model and similar model to the proposed model, and
the first control group is proposed in the 42nd literature [41], and the fourth control group
is proposed in the second literature [2]. The proposed model is compared with four control
groups and the original sequence. In the control group experiments, the training set and
test set divisions and all parameters of the LSTM network are kept the same as those of the
experimental group, and in using EEMD-GA-BPNN for deterioration indicator prediction,
the BPNN structure is a three-layer structure of input layer-hidden layer-output layer,
and the initial weights of the neural network and the initial threshold value of the neural
network are optimized by genetic algorithm. The final prediction results obtained for each
comparison model and the experimental model after training are shown in Figure 18. The
evaluation indexes of the 5 prediction models are compared, as shown in Table 5.
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Figure 18. Comparison of prediction results of different prediction models.

Table 5. Evaluation indicators of prediction results of different forecasting models.

Predicted Models RMSE MAPE CC

EEMD-GA-BPNN 0.313 0.047 0.576
EEMD-SVM 0.232 0.191 0.831

Original Sequence-LSTM 0.285 0.037 0.621
EMD-LSTM 0.152 0.021 0.884

Proposed model 0.151 0.019 0.903

It can be visually seen from Figure 18 that among the several prediction models
compared, the constructed EEMD-LSTM model prediction results are more closely matched
to the actual change trend of the deterioration indicators. In contrast, when the LSTM is
used to predict the original indicator sequence directly, the non-smoothness of the sign
indicators during the normal-to-fault evolution leads to a serious deviation of the prediction
results from the actual changes of the indicators.

The prediction result of the EEMD-GA-BPNN model is similar to that of the EEMD-
SVM model, but the prediction result of the LSTMNN model is better than that of the
BPNN and SVM models. From Table 5, it is observed that EMD-LSTM and EEMD-LSTM
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outperformed EEMD-GA-BP and EEMD-SVM in all evaluation metrics. In the EEMD-
LSTM model compared with the EEMD-GA-BP model, the RMSE and MAPE decreased
by 0.162 and 0.028, respectively, and the CC improved by 0.327, while compared with the
EEMD-LSSVM model, the RMSE and MAPE decreased by 0.081 and 0.172, respectively,
and the CC improved by 0.072. The superiority of the LSTM model in nonlinear fitting is
demonstrated. It can be shown that the LSTM has an outstanding prediction effect and
higher accuracy for time-series indicators during the unit state fading process compared
with the traditional BPNN and SVM and has a great advantage in the self-learning of time
series. It can thus be shown that the LSTM is feasible for the prediction model of the time
series of deterioration indicators.

Meanwhile, according to each evaluation index in Table 5, it can be seen that EEMD-
LSTM compared with the original sequence-LSTM model, RMSE and MAPE decreased
by 0.134 and 0.018, respectively, and CC improved by 0.282, which greatly improved
the prediction accuracy. Compared with the EMD-LSTM model, RMSE and MAPE were
reduced by 0.001 and 0.002, respectively, and CC was improved by 0.019. It can be seen
that the EEMD-LSTM model has the best evaluation indicators and the highest prediction
accuracy. The EEMD-LSTM predicts the degraded indicators more effectively than the EMD-
LSTM, indicating the advantage of EEMD over EMD in signal smoothness decomposition,
which shows that decomposing the mutated signals into smoothed component signals and
reducing the non-smoothness and non-linearity of the indicator sequences can enhance the
accuracy of prediction.

In the case study of this paper, the default values given by the toolbox are used for
most of the parameters of the LSTM model, which may lead to a slight increase in the
evaluation metrics. Overall, the overall prediction performance of the proposed EEMD-
LSTM model is better than several of the remaining comparative models and can be used
to predict the deterioration trend of hydropower units.

5. Conclusions

In order to improve the measurement accuracy of non-stationary and non-linear state
trends of hydropower units, a trend prediction model (EEMD-LSTM) based on CDI is
proposed in this paper. A THM is established by considering the mapping relationship
between operating parameters such as active power, guide vane opening and blade open-
ing, and the time-domain indicators, and an FHM is constructed based on EEMD-ApEn
and the K-mean clustering algorithm. Based on the above health models, TDI and FDI
were constructed, respectively, and the CDI was formed by weighted fusion. The main
conclusions of this paper are as follows:

1. Autocorrelation analysis was performed on the deteriorated indicator series to obtain
the appropriate correlation length. Too long or too short correlation length of the
indicator series can cause excessive prediction errors. The analysis showed that the
prediction input step length of the deterioration indicator series could be 8 steps when
using historical data for prediction.

2. The EEMD-LSTM model compared with the EEMD-GA-BPNN model, RMSE and
MAPE decreased by 0.162 and 0.028, respectively, and CC enhanced by 0.327, while
compared with the EEMD-SVM model, RMSE and MAPE decreased by 0.081 and 0.172,
respectively, and CC enhanced by 0.072. It can be obtained that the LSTM is more
effective in predicting the time-series indicators in the asymptotic process, which is
outstanding relative to the traditional prediction model in terms of time series self-
learning. Thus, it can be shown that LSTM is feasible for predicting the deterioration
trend of hydropower units.

3. EEMD-LSTM compared with the original sequence-LSTM model, RMSE and MAPE
were reduced by 0.134 and 0.018, respectively, and CC was improved by 0.282, and
the prediction accuracy was greatly improved. Compared with the EMD-LSTM
model, RMSE and MAPE are reduced by 0.001 and 0.002, respectively, and CC is
improved by 0.019. The EEMD-LSTM model has the highest evaluation prediction
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accuracy. EEMD-LSTM outperforms EMD-LSTM in predicting degraded indicators,
which shows the advantage of EEMD over EMD in signal smoothness decomposition,
thus showing that decomposing mutated signals into smooth component signals and
reducing the non-smoothness and non-linearity of indicator sequences can enhance
the prediction accuracy.

In the case study of this paper, most of the parameters of the LSTM model use the
default values given by the toolbox, which may lead to a slight increase in the evaluation
metrics. Overall, the overall prediction performance of the proposed EEMD-LSTM model
is better than the remaining several comparative models and can be used to predict the
deterioration trend of hydropower units.
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