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Abstract: The application of intelligent equipment and technologies such as robots and unmanned
vehicles is an important part of the construction of intelligent mines, and has become China’s national
coal energy development strategy and the consensus of the coal industry. Environment perception
and instant positioning is one of the key technologies destined to realize unmanned and autonomous
navigation in underground coal mines, and simultaneous location and mapping (SLAM) is an
effective method of deploying this key technology. The underground space of a coal mine is long and
narrow, the environment is complex and changeable, the structure is complex and irregular, and the
lighting is poor. This is a typical unstructured environment, which poses a great challenge to SLAM.
This paper summarizes the current research status of underground coal mine map construction based
on visual SLAM and Lidar SLAM, and analyzes the defects of the LeGO-LOAM algorithm, such
as loopback detection errors or omissions. We use SegMatch to improve the loopback detection
module of LeGO-LOAM, use the iterative closest point (ICP) algorithm to optimize the global map,
then propose an improved SLAM algorithm, namely LeGO-LOAM-SM, and describe its principle
and implementation. The performance of the LeGO-LOAM-SM was also tested using the KITTI
dataset 00 sequence and SLAM experimental data collected in two coal mine underground simulation
scenarios, and the performance indexes such as the map construction effect, trajectory overlap and
length deviation, absolute trajectory error (ATE), and relative pose error (RPE) were analyzed. The
results show that the map constructed by LeGO-LOAM-SM is clearer, has a better loopback effect,
the estimated trajectory is smoother and more accurate, and the translation and rotation accuracy is
improved by approximately 5%. This can construct more accurate point cloud map and low drift
position estimation, which verifies the effectiveness and accuracy of the improved algorithm. Finally,
to satisfy the navigation requirements, the construction method of a two-dimensional occupancy grid
map was studied, and the underground coal mine simulation environment test was carried out. The
results show that the constructed raster map can effectively filter out outlier noise such as dynamic
obstacles, has a mapping accuracy of 0.01 m, and the required storage space compared with the point
cloud map is reduced by three orders of magnitude. The research results enrich the SLAM algorithm
and implementation in unstructured environments such as underground coal mines, and help to
solve the problems of environment perception, real-time positioning, and the navigation of coal mine
robots and unmanned vehicles.

Keywords: underground coal mine; SLAM; LeGO-LOAM; SegMatch; loopback detection; unstructured
environment; robot; unmanned vehicle

1. Introduction

At present and for a long period of time in the future, the status of coal as the main
energy in China will not change, and it is still the most important energy resource [1].
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Approximately 90% of China’s coal resources are mined by underground mining, and more
than 40% of the mines have a mining depth of more than 500 m. Vigorously promoting
the application of intelligent equipment such as robots and unmanned vehicles technology
in coal mines is an important part of the construction of intelligent coal mines, which has
become the national energy development strategy and industry consensus. Simultaneous
location and mapping (SLAM) one way of build a map of the complex underground coal
mine environment and its own intelligent positioning, and is also a key technology for
realizing the unmanned and mobile robots’ autonomous navigation and operation in un-
derground coal mines [2]. It has also become a research hotspot for many scholars at home
and abroad in recent years. The space of a coal mine underground parking lot is narrow
and long, the environment is complex and changeable, the surrounding rock structure is
complex and irregular, and the lighting conditions are poor. These characteristics are those
of a typical semi-structured or unstructured environment, and the vehicle scheduling is
complex, which puts forward higher requirements and challenges to SLAM.

SLAM was proposed by Peter Cheeseman [3] and Durrant-Whyte [4] in 1986 and
is a popular research topic in mobile robotics [5,6]. According to the different sensors
used, SLAM algorithms can be divided into two types: vision-based [7–9] and LiDAR-
based [10–12]. A lot of work has been carried out on the development of SLAM technology
for the underground coal mine environment. Chen Y. et al. [13] used airborne LiDAR
SLAM technology to construct a map of the coal mine tunnel environment, using laser scan
matching and an improved probabilistic incentive maximum likelihood estimation algo-
rithm to generate a 3D tunnel model, which improved the accuracy of the map construction
but suffered from higher costs and less information. M. Li et al. [14] proposed a real-time
3D SLAM based on normal distribution transform (NDT) and further improved the consis-
tency of map building through bitmap optimization and closed-loop detection. Yang Lin
et al. [15] studied a SLAM method for coal mine inspection robots, combining the adaptive
Monte Carlo localization algorithm and optimized fast SLAM algorithm to improve the
adaptivity of robot localization and the accuracy of map construction. Based on the study
of the HectorSLAM algorithm, J. Yang et al. [16] proposed a method for modeling the mine
roadway environment and locating the underground roadheader based on self-coupling
and HectorSLAM. The adaptability of the HectorSLAM algorithm to the roadway environ-
ment was further improved. The accuracy of the algorithm in the roadway environment
was improved. A. Cowley et al. [17] proposed an UPSLAM for maps based on panoramic
depth images using LiDAR data and IMU data to build coal mine underground maps.
For the navigation algorithm of a coal mine patrol UAV, combined with the complex coal
mine environment, PMC-SLAM [18] designs a probabilistic membrane system model and
membrane algorithm by analyzing mathematical models based on LiDAR, IMU and depth
camera sensor as well. Zhuli Ren et al. [19,20] studied a lightweight loopback detection and
SLAM optimization algorithm based on rules and generalized iterative nearest point (GICP)
based on the characteristics of the roadway, using the roadway plane as a node constraint;
the distance weight map was proposed for the first time and applied to underground coal
mine localization. Since LiDAR does not depend on external lighting conditions or the
radiation of the target itself, the LiDAR-based SLAM algorithm is more suitable for the
underground coal mine environment. The map construction in an underground coal mine
environment needs to balance real-time effectiveness and accuracy, and there are still many
problems to be solved, and loopback detection is one of them.

Lidar odometry and mapping (LOAM) [21,22] is the most representative real-time
3D laser SLAM algorithm based on feature matching at present. It has a small amount of
calculation and motion compensation, but there is no loopback detection, such as more drift
error in large-scale testing. For loopback detection, local descriptors such as SHOT [23],
ISHOT [24] and FPFH [25], whose re-identification usually requires keypoint extraction and
large-scale local geometry computation, have low detection efficiency; global descriptors,
such as GLAROT-3D [26], Scan Context [27], and LiDAR Iris [28], are better at detecting
keypoints with high repeatability. In 2017, R. Dubé et al. [29] proposed the SegMatch
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algorithm for the segmentation matching and position recognition of 3D point clouds based
on the work of Douillard and Nieto et al. [30,31]. SegMatch does not rely on the assumption
of “perfect segmentation” or on the presence of “objects” in the environment, and can
operate reliably in large-scale unstructured environments, allowing for efficient and robust
loopback detection. Deep learning-based loopback detection methods, such as the current
algorithm [32–34], still lack engineering utility when applied to autonomous underground
coal mine navigation due to high arithmetic power requirements as well as the need for
large amounts of training data, which are heavily dependent on the performance of the
sample set.

In view of the shortcomings of the LOAM algorithm, Shan T et al. [35] added a loop
detection method that combines ICP and European distance to find loop points, carried out
lightweight and ground optimization processing on feature extraction, and proposed the
LeGO-LOAM algorithm. It achieves similar or better accuracy with reduced computational
resources. However, sometimes loop detection may have errors or identification omissions.
In 2019, Ji x et al. [36] integrated the radar odometry of LOAM with the point cloud
matching of SegMatch, and proposed the LiDAR SLAM algorithm of LLOAM with the
loopback test function, which reduced the drift error and improved the mapping accuracy.
In 2020, Shihan Ouyang [37] used a SegMatch class algorithm, which subscribes to and
is called the low-drift, real-time coordinate transformation relationship published by the
laser build node of the LOAM class algorithm, effectively improving the relative positional
estimation accuracy of the SegMatch class algorithm in large-scale outdoor scenes. The
previous work of our team [38] proposed an improved LeGO-LOAM algorithm based on
scan context for real-time positioning and mapping in coal mines.

Although there have been studies on the fusion of LOAM-like algorithms and SegMatch-
like algorithms to improve the accuracy of the algorithms accordingly, the related studies
still have shortcomings. The literature [36] used SegMatch to achieve the loopback detec-
tion of LOAM, and the literature [37] only used the odometer information of LOAM-like
algorithms when performing SLAM map building. For the coal mine underground vehicle
yard environment, this paper optimizes the loopback detection module of LeGO-LOAM
using the SegMatch algorithm, and performs global graph optimization using the ICP
algorithm to propose a SLAM algorithm that fuses SegMatch and LeGO-LOAM, namely
LeGO-LOAM-SM, and tests the performance of the improved algorithm through a public
dataset, simulating a closed and narrow space The environment experimentally validates
the algorithm’s localization and map building effects, and outputs a 3D octree occupancy
grid map (octo-map) [39] and 2D occupancy grid map according to the navigation require-
ments in order to explore better SLAM algorithms to provide technical support for map
building and unmanned driving in underground coal mine environments.

2. Algorithm Principle

The loopback detection function in the LeGO-LOAM algorithm is achieved by an ICP
loopback detection algorithm based on Euclidean distance, which sometimes results in
errors or recognition omissions. For this reason, this paper incorporates SegMatch loopback
detection with high detection accuracy to improve the loopback detection of the traditional
LeGO-LOAM algorithm, and proposes the LeGO-LOAM-SM algorithm for optimized
global pose estimation. The block diagram of the improved algorithm is shown in Figure 1.

The point cloud segmentation, feature extraction and LiDAR odometry modules of the
LeGO-LOAM-SM algorithm are partially identical to those of the LeGO-LOAM algorithm,
details of which can be found in the literature [35], and here the focus is on the principles
of the LiDAR map building module.
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Figure 1. Block diagram of the LeGO-LOAM-SM algorithm.

The LiDAR map building module first matches the extracted features with the local
point cloud map and progressively refines the pose transformation, uses L-M optimization
to obtain the final transformed poses and adds spatial constraints between the new nodes
and historical ones in the point cloud map, before performing Euclidean distance-based
loopback detection at a lower frequency, and finally uses ICP to match the point cloud of
the current frame and the loopback frame and adds the new constraints. The pose image
is then sent to GTSAM to optimize the map and update the pose estimation. Therein,
the low-frequency loopback detection is based on the Euclidean distance. The KD Tree
model is used to search the historical or similar poses of the current pose and several
nearby point clouds to find several poses in the area with the current pose of the robot
as the origin and the radius of 7 m, and determine whether the loop is satisfied by using
the constraint that the time difference between the historical pose and the current pose is
greater than 30 s. Due to the large amount of calculation and consideration of real-time and
accuracy, a lower frequency is adopted. While SegMatch can performs loopback detection
at a higher frequency.

(1) Segmentation

SegMatch receives the 3D point cloud from the LiDAR and segments the point cloud
into differentiated elements for matching. The ground plane is removed and the adjacent
voxels are clustered using the vertical variance and the mean value. The remaining area is
segmented into segments using Euclidean clustering, and noise that has no contributions
for mapping is removed so as not to affect the mapping accuracy. The input point cloud is
gridded, and the filtered point cloud is divided into multiple groups using the “Cluster-
All Method”.

(2) Feature extraction

After the point cloud is segmented, features are extracted from each segment to obtain
a point cloud descriptor, and a classifier is used to determine whether two segments can
be described as the same object or part of the same object. The point cloud, i.e., the source
cloud, and the point cloud, i.e., the target cloud, scanned by the experimental platform at a
certain moment, are segmented to extract the descriptor features, as shown in Figure 2, and
different colors indicate the labels constructed for classification and identification during
feature extraction after point cloud segmentation to facilitate subsequent feature matching.
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(3) Segment match

The descriptor feature is used to identify the matching relationship between the source
point cloud and the target one. When multiple feature types are involved, it is usually
difficult to select an appropriate distance metric and threshold using traditional methods,
so the learning-based method is introduced. First, the candidate matching is retrieved by
KD tree search, and then it is sent to the random forest classifier to determine whether the
matching point cloud of the two parts represents the same object or a part of the object.

(4) Geometric verification

The matching candidates are fed into the geometric verification model by using the
random sampling consistency algorithm. The rotation matrix between two point clouds
is estimated by splitting the centroid of the point cloud; the matching degree is checked
according to the geometric consistency of the corresponding relationship. The consistent
geometric information in the delineated point cloud cluster can be regarded as the same
object. Figure 3 is a visual effect of geometric verification of extracted descriptors using
SegMatch, and colors indicate different point cloud segmentation. It can be seen from the
figure that object C and object D in the target cloud correspond to object A and object B in
the source cloud and can be regarded as the same object.
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(5) Loopback detection

The target point cloud is established in real time for loopback detection, and the local
point cloud is extracted in the neighborhood of the cylinder, the segmentation and feature
extraction are performed once, and the generated source segmented point cloud is used
for matching and building the target map. When the source segmentation point cloud is
added to the target map, incomplete segmentation point clouds are removed and duplicate
segmentation point clouds are deleted. When a loopback is detected, the robot’s trajectory
is re-estimated and the position of the target point cloud is updated.

After the SegMatch step of aligning the segmentation point clouds and filtering out
duplicate segments, the ICP is used to match the point clouds of the current frame and
the loopback frame to add new constraints, send the pose map to GTSAM for bitmap
optimization, and update the pose estimate. The transformation module corrects the LiDAR
odometry module’s pose estimation with the pose estimation from the LiDAR mapping
module, and the feature matching of the point cloud is used to derive the transformation
matrix for the attitude update, resulting in the final pose estimation.



Energies 2022, 15, 6256 6 of 17

3. The KITTI Dataset Test

In order to verify the mapping effect of the LeGO-LOAM-SM algorithm, the KITTI
dataset 00 sequence [40] is used to test the improved algorithm, and to compare and analyze
the mapping effect, mapping trajectory, absolute trajectory error, relative pose error, and
others. The test software environment is Ubuntu 18.04, ROS melodic, PCL 1.10, GTSAM
4.0.3, Python 2.7.17, and the hardware configuration is 8 GB RAM, Intel Core i3-4100M and
NVIDIA GeForce 940M.

3.1. Comparison of Mapping Results

Figure 4 shows a point cloud map of the KITTI dataset 00 sequence constructed by the
LeGO-LOAM and LeGO-LOAM-SM, with the red boxes showing the locations of the start
and end points of the scan, and color represents elevation. Figure 5 is a partial enlarged
view of the red box portion of Figure 4. It can be seen from Figure 5 that the phenomenon
of point cloud map drift occurs in LeGO-LOAM, and the loopback effect is poor, while
that the initial construction of LeGO-LOAM-SM and the loopback construction basically
overlap, which makes up for the phenomenon of point cloud map drift.
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3.2. Trajectory Comparison

The motion trajectories of the two algorithms were extracted by the evo tool, as shown
in Figure 6, and the ground-truth trajectory is also given for the convenience of contrast. It
can be seen from Figure 6 that the motion trajectory generated by LeGO-LOAM-SM has
a higher degree of coincidence with the ground-truth trajectory, especially at large angle
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turns (the part circled in red in Figure 6), and that LeGO-LOAM fails to loopback smoothly,
while the LeGO-LOAM-SM algorithm has a smoother loopback and better effect.
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3.3. Estimated Trajectory Length Deviation

The KITTI dataset 00 sequence trajectory length and its deviation were estimated by
LeGO-LOAM and LeGO-LOAM-SM, as shown in Table 1. It can be seen from Table 1
that the estimated trajectory length of LeGO-LOAM-SM is closer to the ground-truth track
length than LeGO-LOAM, with a deviation reduced by 51.4%, indicating that the improved
algorithm has higher accuracy in mapping.

Table 1. The estimated length and its deviation of the KITTI dataset 00 sequence trajectory by
LeGO-LOAM and LeGO-LOAM-SM.

Evaluation Indicators LeGO-LOAM LeGO-LOAM-SM Improvement (%)

Trajectory length/m 3733.44 3719.69 /
Deviation 1/m 9.25 4.50 51.4%

1 The ground-truth trajectory length is 3724.19 m. The deviation value is the absolute value of the difference
between the estimated value and the ground-truth value.

3.4. Absolute Trajectory Error and Relative Pose Error

The absolute trajectory error (ATE) and relative pose error (RPE) of the KITTI dataset
00 sequence estimated by LeGO-LOAM-SM and LeGO-LOAM are given in Table 2.
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Table 2. ATE and RPE of KITTI dataset 00 sequence estimated by LeGO-LOAM-SM and
LeGO-LOAM.

LeGO-LOAM LeGO-LOAM-SM

ATE/m RPE ATE/m RPE

Maximum error 11.11 6.174 5.67 2.312
Minimum error 1.16 0.005 0.20 0.005
Average error 5.37 0.061 2.04 0.060

Standard deviation 2.74 0.146 1.04 0.055
Mean square error 6.03 0.159 2.21 0.084

As can be seen from Table 2, compared with LeGO-LOAM, the maximum error,
minimum error, mean error, standard deviation, and mean square error of the ATE of
LeGO-LOAM-SM were significantly improved by 49.0%, 82.8%, 62.0%, 62.0%, and 63.3%,
respectively. The maximum error, mean error, standard deviation and mean square error of
RPE improved by 62.6%, 1.6%, 62.3%, and 47.2%, respectively, indicating that the improved
algorithm has high positioning accuracy and high stability.

4. Experimental Verification of Practical Scenarios

Two scenarios of an underground parking lot and building corridor were selected for
experimental validation. The environment is shown in Figure 7. The main structures of
the parking lot are columns, beams, cars, etc. The site is relatively empty, and there are
bumpy roads such as speed bumps and sewers so as to test the accuracy and robustness
of the positioning and mapping algorithm; the building corridor is long and narrow, and
there is a looped structure, which is similar to the coal mine underground scene with a
single structure and a few geometric features. The experimental platform is a crawler
robot equipped with a 16-line laser radar. The 16-line LiDAR has a measurement range
of 150 m, an accuracy of ±2 cm, a vertical view angle of 30◦, a horizontal view angle of
360◦, a vertical angle resolution of 2◦, a horizontal angle resolution of 0.2◦, and a rotation
rate of 10 Hz. The chassis size of the crawler robot is 1185 × 765 × 395 mm, rated power
1000 W × 2, the maximum barrier crossing 150 mm, maximum span ≥ 300 mm, the chassis
height 200 mm, the bandwidth 150 mm, the maximum climbing ≥ 30◦, and maximum load
of 100 kg.
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Figure 7. Experimental scene and experimental platform: (a) Scene 1: the underground parking lot;
and (b) Scene 2: the building corridor with looped structure.

4.1. Comparison of Build Results

Figures 8 and 9 show the maps of the underground parking lot and the looped corridor
scenes constructed by the two algorithms LeGO-LOAM and LeGO-LOAM-SM, respectively.
For comparison purposes, the red boxed parts of the maps are partially enlarged, as shown
in Figures 10 and 11, respectively.
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It can be seen from Figures 8 and 9 that, in the two scenarios, the map constructed by
the improved algorithm is clearer and the effect is better. The point cloud map of scene
1 constructed by LeGO-LOAM (Figure 10) has a drift phenomenon, and the loopback
effect is poor. However, the map constructed by the improved algorithm has a good
coincidence at the starting point and the ending point (loopback), which makes up for the
drift phenomenon of the point cloud map, and the loopback effect is better. In the point
cloud map of scenario 2 constructed by LeGO-LOAM (Figure 11), there are two overlapping
roads at the loopback position, and the ghost phenomenon occurs at the road edge, which
indicates that the algorithm fails to detect the loopback well at the indicated road section,
and the loopback detection omission occurs. However, the trajectory and point cloud map
constructed by the improved algorithm LeGO-LOAM-SM at the same road section only
have a slight ghost at the edge of the final loop, but the effect is better than that of the
LeGO-LOAM.

4.2. Trajectory Comparison

Figure 12 shows the motion estimation trajectories of LeGO-LOAM and LeGO-LOAM-
SM extracted by evo tool. It can be seen that the motion trajectory estimated by LeGO-
LOAM has a large drift at sharp angle turns (the part circled in red in the figure), while the
trajectory estimated by the improved algorithm is smoother, which proves that the overall
positioning effect is better.

To verify the global consistency of the point cloud map constructed by the improved
algorithm, the initial pose of the experimental platform was taken as the zero point, and
several pose estimation experiments were carried out in two scenarios. when the exper-
imental platform returns to the vicinity of the initial pose, the pose estimation data are
obtained by LeGO-LOAM and LeGO-LOAM-SM, and the average value of the pose data of
multiple experiments is taken as the final estimated pose. The results are shown in Table 3.
It can be seen from Table 3 that, in the case of only using 3D lidar information, the improved
algorithm LeGO-LOAM-SM achieves more accurate positioning and mapping effects, and
the translation and rotation accuracy of the constructed map is approximately 5% higher
than LeGO-LOAM.

Table 3. Relative pose estimation error of LeGO-LOAM and LeGO-LOAM-SM in the scenes of the
underground parking lot and the looped corridor.

Scene 1 Scene 2

LeGO-LOAM LeGO-LOAM-SM LeGO-LOAM LeGO-LOAM-SM

Panning X/m −0.75 0.15 0.76 0.47
Panning Y/m 0.15 0.06 0.20 −0.21
Panning Z/m 13.89 12.42 7.49 6.52

Total panning/m 13.91 12.42 7.53 6.54
Pitch angle/deg −2.35 0.92 10.28 9.92

Declination angle/deg 0.64 −6.25 8.03 7.68
Rolling angle/deg 6.31 −0.61 1.02 0.99
Total rotation/deg 6.76 6.35 13.08 12.58
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5. Construction of Occupancy Grid Map

To improve the positioning and mapping accuracy, the LeGO-LOAM-SM algorithm
does not eliminate ground points in the process of constructing the point cloud map.
The constructed 3D point cloud map has a large amount of information and is intuitive,
but contains more unnecessary details, occupies a large storage space, lacks the location
information of the scene, and has poor stability. The mobile robot or unmanned vehicle
cannot identify the feasible area and the infeasible area. It is difficult to use for subsequent
path planning and navigation. The raster method is a commonly used modeling method
for robot path planning. Therefore, it is necessary to convert the 3D point cloud map to the
3D octo-map or the 2D occupancy grid map after removing the ground points and filtering
through the ground plane fitting, so as to make up for the deficiency that the point cloud
map cannot meet the needs of autonomous navigation and obstacle avoidance.



Energies 2022, 15, 6256 12 of 17

5.1. Comparison of Build Results

The 3D octo-map can build a full 3D map of any environment without priori infor-
mation. It can update the map by fusing new map data or sensor data at any time, and
can flexibly expand the map range if need be, and occupies small storage space. In this
paper, a ground plane fitting-based method is adopted to eliminate ground points [41],
the threshold Thdist is experimentally set to 0.12 m, and the 3D octo-map is constructed
based on the octo-map framework fusion filtering method. Figure 13 shows the 3D octo-
map constructed on the basis of the 3D point cloud map of the scene of the underground
parking lot.
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Figure 13. The 3D octo-map: (a) the original map without SOR filter, with outliers due to noise or
dynamic interference shown in the black box; and (b) the map with SOR filter, as can be seen the
outliers in the black box, are almost completely filtered out.

The octo-map constructed by the robot during its movement will contain a large
number of outliers due to environmental noise and other dynamic objects, as shown in
the black box in Figure 13a. These outliers are not static obstacles, but noise and other
dynamic objects, which will affect subsequent path planning. Therefore, filters such as
Gaussian filters, radius filters and statistical outlier removal (SOR) are often used in the
construction of an octo-map to reduce the influence of noise and other dynamic objects in
the environment. SOR [42] mainly uses statistics to calculate the field of each point, and
filters out points beyond the set threshold according to the calculated results to remove
sparse outlier noise points. In this paper, the SOR filter is used to reduce the noise of
outliers in the constructed octo-map. Through the noise reduction effect test of the number
of adjacent points k and the coefficient ε1, the noise reduction effect is best when k = 15
and ε1 = 0.2. Figure 13b shows the 3D octo-map after SOR noise reduction, and almost all
outliers in the black box are filtered out.



Energies 2022, 15, 6256 13 of 17

5.2. Two-Dimensional Occupancy Grid Map Construction

The corresponding 2D occupancy grid map is obtained by projecting the constructed
3D octo-map onto the 2D plane. Compared with the 2D occupancy grid map directly
constructed by 2D LiDAR, the constructed 2D occupancy grid map contains the required
three-dimensional obstacle information in 3D space instead of 2D obstacle information
in the plane where LiDAR is located, which has a better obstacle avoidance effect for
the mobile robot driving in the 3D space using the 2D occupancy grid map for path
planning and navigation. Figure 14 shows the constructed 2D occupancy grid map of the
underground parking lot scene.
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5.3. Simulation of Closed and Narrow Coal Mine Underground Environment Test

The corridor is used to simulate the closed and narrow roadway environment with
few geometric features in the coal mine, and labeled as scene 3. Obstacles and pedestrians
are set in the environment, as shown in Figure 15a, where static obstacles A, B, and C are
in red boxes and dynamic pedestrians D are in green boxes. The 3D point cloud data are
collected by the aforementioned experimental platform, as shown in Figure 15b. The point
cloud map of the test scene is constructed by the improved LeGO-LOAM-SM algorithm,
and then a 2D occupancy grid map is generated, as shown in Figure 16. As can be seen
from the figure, the occupancy grid map filters out the dynamic obstacles (pedestrians) in
the scene, while the static obstacles (A, B, and C in the figure) are retained. There are no
outliers in the white passable area, which provides an available map for path planning.
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form: (a) static obstacle and pedestrian; and (b) the whole scene and experiment platform.



Energies 2022, 15, 6256 14 of 17Energies 2022, 15, x FOR PEER REVIEW 14 of 17 
 

 

 
(a) 

 
(b) 

Figure 16. Constructed map of underground coal mine simulation scenario: (a) the point cloud map; 
and (b) 2D occupancy raster map. 

For the acquisition of the true values of the actual size and the obstacle size in the 
experimental scene, the UT393A laser rangefinder is used to measure the whole size of 
the scene and the obstacle sizes. Its ranging principle is based on the particle nature of 
light, and its measurement accuracy is better than 1.5 mm. This is suitable for evaluating 
the accuracy of the mapping due to the ±2 cm accuracy of the LiDAR in the experiment. 
The measurement results of the laser rangefinder and the corresponding values estimated 
by the constructed 2D occupancy grid map are listed in Table 4. It can be seen from Table 
4 that the 2D occupancy grid map constructed by the improved LeGO-LOAM-SM algo-
rithm have good accuracy with an error within 0.01 m, which meets the requirements of 
path planning. 

Table 5 summarizes the memory occupied by the constructed point cloud map, 3D 
octo-map, and 2D occupancy grid map constructed for the three scenes in the paper. 

Table 4. The measurement results of the laser rangefinder and the corresponding estimated values 
by the constructed 2D occupancy grid map. 

 
Measurement Size/m Estimated Size/m 

Length Width Length Width 
Simulation scenario 46.803 1.822 46.81 1.82 

Obstacle A 0.765 0.411 0.77 0.42 
Obstacle B 0.567 0.378 0.56 0.37 
Obstacle C 0.688 0.210 0.68 0.22 

Table 5. The memory occupied by the constructed point cloud map, 3D octo-map, and 2D occu-
pancy grid map constructed for the three scenes. 

 3D Point Cloud 
Map/Mb 

3D Octo-Map/Kb 2D Occupancy Grid 
Map/Kb 

Scene 1 24.3 62.3 16.3 
Scene 2 35.6 73.8 26.7 
Scene 3 17.8 54.5 13.4 

It can be seen from Table 5 that, compared with the point cloud map, the 3D octo-
map compresses the detailed information contained in the point cloud map, saves a large 
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and (b) 2D occupancy raster map.

For the acquisition of the true values of the actual size and the obstacle size in the
experimental scene, the UT393A laser rangefinder is used to measure the whole size of the
scene and the obstacle sizes. Its ranging principle is based on the particle nature of light,
and its measurement accuracy is better than 1.5 mm. This is suitable for evaluating the
accuracy of the mapping due to the ±2 cm accuracy of the LiDAR in the experiment. The
measurement results of the laser rangefinder and the corresponding values estimated by
the constructed 2D occupancy grid map are listed in Table 4. It can be seen from Table 4 that
the 2D occupancy grid map constructed by the improved LeGO-LOAM-SM algorithm have
good accuracy with an error within 0.01 m, which meets the requirements of path planning.

Table 4. The measurement results of the laser rangefinder and the corresponding estimated values by
the constructed 2D occupancy grid map.

Measurement Size/m Estimated Size/m

Length Width Length Width

Simulation
scenario 46.803 1.822 46.81 1.82

Obstacle A 0.765 0.411 0.77 0.42
Obstacle B 0.567 0.378 0.56 0.37
Obstacle C 0.688 0.210 0.68 0.22

Table 5 summarizes the memory occupied by the constructed point cloud map, 3D
octo-map, and 2D occupancy grid map constructed for the three scenes in the paper.

Table 5. The memory occupied by the constructed point cloud map, 3D octo-map, and 2D occupancy
grid map constructed for the three scenes.

3D Point Cloud Map/Mb 3D Octo-Map/Kb 2D Occupancy Grid
Map/Kb

Scene 1 24.3 62.3 16.3
Scene 2 35.6 73.8 26.7
Scene 3 17.8 54.5 13.4
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It can be seen from Table 5 that, compared with the point cloud map, the 3D octo-map
compresses the detailed information contained in the point cloud map, saves a large amount
of storage space, and solves the problem that the point cloud map cannot provide the spatial
information of obstacles; the 2D occupancy grid map further reduces the occupied memory
space while retaining the obstacle information, reduces the robot’s hardware requirements,
improves the system’s real-time performance, and provides map support for the robot’s
path planning and autonomous navigation in the complex environment of coal mines.

6. Conclusions

(1) Aiming at the deficiency of LeGO-LOAM, a LeGO-LOAM-SM algorithm fuses
LeGO-LOAM and SegMatch is proposed. SegMatch algorithm is used to optimize the
loopback detection of LeGO-LOAM, and ICP algorithm is used to optimize the global
map. The test results of KITTI dataset and practical experiments show that the improved
algorithm has higher accuracy, better overall consistency and local accuracy, and higher
accuracy in long-distance large-scale scenes.

(2) The mapping and pose estimation performance of LeGO-LOAM and LeGO-LOAM-
SM algorithms are tested and compared with the Kitti dataset 00 sequence. The results
show that LeGO-LOAM-SM makes up for the drift phenomenon of long-distance point
cloud map construction compared with LeGO-LOAM, and the coincidence of motion
trajectory estimation and ground-truth trajectory is higher, the loopback is smoother, and
the estimated trajectory length is closer to the ground-truth trajectory length.

(3) To verify the feasibility of applying the LeGO-LOAM-SM algorithm to mobile
robots in coal mines, a crawler experimental platform equipped with LiDAR is used to
simulate the map construction experiments of mobile robots or vehicles in coal mines in
different simulated closed scenes. The results show that the improved algorithm can build
a clearer map than the LeGO-LOAM algorithm, with a better loopback effect, smoother esti-
mated trajectories, more accurate overall positioning, and a 5% improvement in translation
and rotation accuracy, which can achieve higher accuracy point cloud map construction
and pose estimation.

(4) To address the problem that the point cloud map contains a large amount of detail
information and lacks the location information of the scene, the dynamic noise reduction
method of the SOR filter to filter outliers and the construction method of the 2D and 3D
occupied grid map are studied, and the simulation environment test of the underground
coal mine is carried out. The results show that the constructed grid map can effectively
filter out dynamic obstacles, has a mapping accuracy of 0.01 m, and the required storage
space is smaller than the point cloud map by three orders of magnitude.
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