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Abstract: Improving thermal efficiency and reducing carbon emissions are the permanent themes
for internal combustion (IC) engines. In the past decades, various advanced strategies have been
proposed to achieve higher efficiency and cleaner combustion with the increasingly stringent fuel
economy and emission regulations. This article reviews the recent progress in the improvement
of thermal efficiency of IC engines and provides a comprehensive summary of the latest research
on thermal efficiency from aspects of thermodynamic cycles, gas exchange systems, advanced
combustion strategies, and thermal and energy management. Meanwhile, the remaining challenges
in different modules are also discussed. It shows that with the development of advanced technologies,
it is highly positive to achieve 55% and even over 60% in effective thermal efficiency for IC engines.
However, different technologies such as hybrid thermal cycles, variable intake systems, extreme
condition combustion (manifesting low temperature, high pressure, and lean burning), and effective
thermal and energy management are suggested to be closely integrated into the whole powertrains
with highly developed electrification and intelligence.

Keywords: thermal efficiency; thermodynamic cycle; gas exchange; combustion technologies; thermal
and energy management

1. Introduction

Energy crisis and environmental pollution have become globally increasing concerns.
The world has around 1.2 billion passenger cars and 380 million commercial vehicles, and
these numbers are expected to increase significantly [1]. Land and marine transport and air
transport by jet engines are almost entirely powered by internal combustion (IC) engines.
IC engines operating on fossil fuels provide 25% of power generation and produce 10%
of greenhouse gas (GHG) emissions [2,3]. Improving thermal efficiency and reducing fuel
consumption and GHG emissions motivate the technological progress of the automobile
and engine industry. According to the International Energy Agency (IEA) projections, 70%
of vehicles will be powered by gasoline engines, and almost all vehicle models will use
gasoline or diesel engines for light-duty vehicles and passenger cars in 2030. By 2050,
58% of passenger cars will still use IC engines, with hybrid configuration as an effective
auxiliary [4].

To lower GHG exhaust, various emission standards on fuel consumption have been
proposed. The National Highway Traffic Safety Administration (NHTSA) and the Environ-
mental Protection Agency (EPA) have jointly developed a national plan for fuel economy
standards and GHG emissions in two phases (Phase I: 2012–2016 and Phase II: 2017–2025)
for light-duty engines (trucks and passenger cars) [1]. In April 2020, the EPA and NHTSA
modified the Corporate Average Fuel economy and GHG emissions standards for light
trucks and passenger vehicles, covering model years 2021 through 2026. The target of
CO2 lessening for 2025 is a 15% reduction compared to 2021 for light commercial vehicles,
while for 2030, the objectives are a 31% reduction for light commercial vehicles and 37.5%
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reduction for passenger vehicles (see Figure 1) [4]. In Europe, major light-duty vehicle
(LDV) markets are targeting 95 g/km CO2 by 2020. In the US, the average reduction rate of
CO2 emission for 2017 through 2021 is 3.5 percent per year and 5 percent per year for 2022
through 2025. In Japan, a project named the Research Association of Automotive Internal
Combustion Engines (AICE) has been started, aiming at improving the thermal efficiency
of a gasoline engine to the level of 50% by 2020. In China, the fuel consumption standard is
6.9 L/100 km for domestically produced passenger cars, which will be lowered to 4.0 in
2025 and 3.2 in 2030.
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To meet these stringent regulations, developing more efficient IC engines seems urgent
nowadays. Currently, the commercial spark-ignition (SI) engines can work with a brake
thermal efficiency (BTE) of about 30–36% [5] and compression-ignition (CI) engines can
reach a level of around 42–43% [6,7]. In the brief period, the maximum BTE is expected to
be 45% by optimizing established techniques [5,8]. Some studies have expected that the
BTC can reach 50% through the integration of various technologies, such as advanced gas
exchange (e.g., Atkinson cycles) [9,10], advanced combustion modes (e.g., low-temperature
combustion) [11,12], advanced thermal and energy management (e.g., exhaust heat recov-
ery) [13,14], low friction [9], etc. Figure 2 explains the history of the BTE and its future
direction. In terms of vehicle systems, the development of engines and conventional pow-
ertrains singly can reduce the fuel consumption of LDVs by more than 30%. Compared
with the average level, the implementation of other technologies such as lightweight and
hybridization can reduce fuel consumption by 50% [15]. Between model years 2017 and
2025, the suggested passenger car demands are expected to increase in stringency from 213
to 144 g/mi, while the demands for light trucks are expected to rise from 295 to 203 g/mi.
If all the reductions are achieved, the average fleet-wide (such as medium-duty passenger
vehicles, light-duty trucks, and all passenger cars) carbon dioxide compliance level would
be 243 g/mi and 163 g/mi between the years 2017 and 2025, respectively.

Currently, IC engines face great challenges of higher efficiency and lower CO2 emissions.
Although some numerical and theoretical work has presented a BTE of over 55% [16–18], it
seems rather difficult for IC engines to achieve the target in realistic situations. Despite
this, engine researchers have made great efforts in the improvement of thermal efficiency,
where they have devised a future roadmap that includes many advanced technologies
and methods concerning combustion, after-treatment, and control systems, as well as
partial electrification in the case of hybridization, along with more efficient auxiliary
systems and vehicle weight reduction [19]. This review article aims to emphasize the
potential of maximizing the thermal efficiency of IC engines and shed useful light on the
development direction of advanced engine technologies. A comprehensive review of over
440 references has been reviewed, addressing the recent progress and remaining challenges
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in the thermodynamic cycles, advanced gas exchange, advanced combustion, and thermal
and energy management (see Table 1).

Table 1. Section presents the way in which the review is organized.

Research Aspects Paper Type Numbers Reference Order

Thermodynamic
Cycles

Review 3 [21–23]
Research 12 [10,24–36]

Advanced gas
exchange

Review 7 [37–43]
Research 87 [44–133]

Advanced
combustion

Review 18 [43,134–149]
Research 176 [150–338]

Thermal management Review 11 [6,339–349]
Research 63 [20,350–417]
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2. The Thermodynamic Cycle of IC Engines

Advanced thermodynamic cycles are of significance in achieving greater engine per-
formance and thermal efficiency. The first and second thermodynamic laws provide the
potential and limits for engine thermal efficiency. Starting with the universal expression
of thermal efficiency, Otto, diesel, and hybrid cycles are discussed to provide insights into
maximizing thermal efficiency. Specific heat is also an important parameter responsible for
thermal efficiency. Today, most IC engines in vehicles are operating at a four-stroke cycle
with spark ignition or compression ignition. The two configurations have both similarities
and significant distinctions [24]. The BTE (ηb) is a function of four elements [21], as shown
in Equation (1), which indicates the ways of maximizing engine thermal efficiency.

ηBrake = ηCombustion · ηThermodynamic · ηGasExchange · ηMechanical (1)

where ηCombustion : combustion efficiency, ηThermodynamic : thermodynamic efficiency ,
ηGasExchange: gas exchange efficiency, and ηMechanical : mechanical efficiency.

2.1. Otto Cycle

The Otto cycle is often applied in SI engines where fuel and air are mixed in the
intake manifold or engine cylinder, and then the premixed mixture is ignited actively by a
spark plug [418]. When the stoichiometric mixture is compressed, a fuel resistant to the
auto-ignition, such as gasoline, must be used to avoid engine knock. Some drawbacks
limiting the thermal efficiency of SI engine are as follows:
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• Lower compression ratio (CR).
• Longer combustion evolution.
• Gas exchange losses by throttle valves.
• Lower specific heat ratio.

The theoretical thermal efficiency of the Otto cycle can be determined employing
Equation (2) [22,25,26]:

η = 1− CR1−γ (2)

where CR is the compression ratio and γ is the specific heat ratio. In general, two effective
methods are used to improve thermal efficiency. The first one is increasing the CR through
enlarging compression stroke or retarding exhaust valve opening timing. The second way
is using lean burning to modify specific heat ratios. Dilution combustion is an efficient
technique for overcoming engine knock and reducing heat loss. These obvious advantages
have motivated the extensive applications of dilution combustion in IC engines in recent
years. Nonetheless, engine knock and combustion instability are not solved and stay at the
stage of fundamental studies [27].

2.2. Diesel Cycle

Engine combustion with diesel cycle involves complicated, turbulent, and multi-phase
processes that take place in high-temperature and -pressure environments [28]. In the
intake stroke, only air is introduced into the cylinder, and the reactive fuel is directly
injected into the cylinder near the end of the compression stroke to achieve auto-ignition.
Thanks to the high compression ratio and the lack of throttle intake loss, diesel engines
have a higher thermal efficiency than SI engines [10]. With the fuels tending to spontaneous
ignition, diesel engines do not use a spark plug and combustion processes are characterized
as diffusion combustion [6]. Despite the advantages in thermal efficiency and reliability,
diesel engines are generally associated with the trade-offs between thermal efficiency
and pollution emissions, particularly NOx and PM [29]. After-treatment systems, such
as Selective Catalytic Reduction (SCR) and Diesel Particulate Filtration (DPF), are often
employed in modern diesel engines [23,30].

The theoretical thermal efficiency of the diesel cycle can be determined by Equation (3):

η = 1− 1
γ

[
Tγ

R(CRγ)1−γ − 1
TR − CRγ−1

]
(3)

where CR is the compression ratio, γ is the specific heat ratio, and TR is the temperature of
the turbocharger.

Traditional turbocharged diesel engines are usually integrated with a turbocharger
where the brake thermal efficiency, thermodynamic efficiency, and combustion efficiency
are close to 44%, 50%, and 99.9%, respectively [31,32]. Low-temperature combustion
strategies such as homogeneous charge compression ignition (HCCI), reactivity controlled
compression ignition (RCCI), and partially premixed combustion (PPC) can deliver higher
efficiency than traditional turbocharged engines [33]. However, the LTC concepts are
limited by combustion control and load extension, which in turn affects mechanical and
gas exchange efficiency. Despite this, low-temperature combustion plays an important role
in improving thermal efficiency.

2.3. Hybrid Thermal Cycle

A high-efficiency hybrid thermodynamic cycle can be defined as the configuration
integrating various thermodynamic cycles [34]. In this cycle, the air is squeezed into an
isolated combustion chamber, enabling true isochoric combustion and lengthy combustion
time. Specifically, the compact hybrid thermodynamic cycle adopts rotary pistons and
independent revolving combustion chambers. Two pistons spin and reciprocate simul-
taneously and two roller bearings hold them in place. Intake and compression strokes
are carried out by one piston, while exhaust and expansion strokes are done by the other.



Energies 2022, 15, 6222 5 of 60

In contrast to traditional engines, one can expect a decrease in energy losses, moving
components, and weight and height [26]. The principal idea is to increase the thermal
efficiency of IC engines [35]. The benefits of the hybrid thermal cycle are the possibility of
achieving constant combustion volume at higher compression ratios and over-expanding
the working fluid. Consequently, more heat energy can be converted into useful work. The
main characteristics of the hybrid thermal cycle include [26]:

1. Air is compressed to high CRs like those in the diesel cycle.
2. Constant-volume combustion and isochoric combustion.
3. Expansion volume is greater than compression volume.
4. Water is added optionally during combustion and/or expansion.

The key implementation challenges of the hybrid thermal cycle involve larger mechan-
ical losses, a larger percentage loss of heat transfer, and rousted thermal management for
minimizing heat transfer [34].

The theoretical thermal efficiency of the hybrid thermodynamic cycle can be deter-
mined by Equation (4):

ηHEHC
th = 1− γ

rE − rC

rγ
E − rγ

C
(4)

where CR is the compression ratio, γ is the specific heat ratio, TR is the temperature of the
turbocharger, rC is the compression ratio, and rE is the expansion ratio.

An efficiency comparison has been made assuming that the maximum degree of
volume change is identical to traditional diesel engines, with the same amount of heat
supplied [25]. The thermal efficiency of the ideal Otto cycle is significantly higher than
the actual is that combustion does not happen at constant volume indeed. Under a given
compression ratio, the ideal Atkinson cycle has higher thermodynamic efficiency than
the Otto cycle and Diesel cycle. Therefore, it can be achieved by the late closure of intake
valves. The distinction between actual efficiency and ideal efficiency is less for the hybrid
thermodynamic cycle than the Otto cycle because combustion takes place at a genuinely
constant volume. Furthermore, the pressure curve slopes down when the piston moves
out from the top dead center in the Otto cycle. Therefore, it is reasonable that the thermal
efficiency of a hybrid thermodynamic cycle would be closer to or resembling its ideal cycle.
An ideal thermodynamic efficiency of the hybrid thermodynamic cycle (62.5% at CR = 18)
can be 17% higher than diesel (53.6% at CR = 18) and 19% higher than Otto (52.5% at
CR = 12), as shown in Figure 3. Indeed, the ideal cycle efficiency of these engines would be
higher than its actual efficiency. Nevertheless, the combustion of the hybrid thermodynamic
cycle is carried out in an isolated chamber under the condition of a genuinely constant
volume and is permitted to continue significantly longer than in traditional engines.
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In another recent study, the effects of the hybrid fuel cell (FC)-ICE cycle on efficiency
were examined numerically by Diskin and Tartakovsky [36]. The analysis shows that the
hybrid cycle combining electrochemical, combustion, and thermochemical recuperation
processes can reach thermal efficiency values above 70%.

3. Advanced Gas Exchange for Improving Thermal Efficiency
3.1. Variable Valve Systems

The intake and exhaust valve systems of an engine are critical subsystems that influ-
ence engine performance and thermal efficiency. The major function of the valve actuation
system is to regulate the gas exchange into and out of a combustion chamber via intake and
exhaust valves, respectively [37]. Valve actuation systems are divided into two categories:

• Cam-driven systems: cam lobes are used to actuate the valve lift.
• Cam-less systems: various actuators are used, such as hydraulic, electromagnetic, or

pneumatic, to vary valve lift with flexibility in control.

Technical difficulties and commercial issues are some of the challenges that inhibit
the cam-less system from being implemented in production. Therefore, the review will be
focused on the cam-based systems involving the following:

1. Variable valve lift (VVL).
2. Variable valve timing (VVT).
3. Variable valve duration (VVD).

The VVA adds flexibility to the engine valve train by enabling VVT and VVL events. It
can enable a Miller cycle, engine braking, internal EGR, swirl control, variable compression
ratio, and improved torque in diesel engines, while in SI engines it reduces the HC emissions
during cold start, enables unthrottled operation, and optimizes torque characteristics [44,45].
The VVA system can change the intake valve closing on each cylinder individually using a
simple switching valve, which modifies the effective compression ratio [46]. In this case,
the VVA system will boost the transient response to illustrate the effectiveness of variable
valve actuation. An experimental and simulation study assesses the Miller cycle’s effects on
engine efficiency and exhaust emissions [47]. It is found that the application of the Miller
cycle negatively affects the BTE at lower engine speed. In contrast, the BTE increases at a
higher engine speed and the specific fuel consumption decreases. Further studies showed
that very high turbocharger efficiency is necessary for the Miller cycle process to minimize
fuel consumption [48]. Recently, Guan et al. [49] found that a highly improved Miller cycle
with EGR increased the fuel conversion efficiency by 1.5% at a high load of 1.7 MPa, thus
dropping the overall fluid consumption by 5.4%. Advanced combustion techniques based
on the VVA could also control the temperature of the exhaust gas and engine-out emissions
at low engine loads, as well as improve the efficiency of fuel conversion and total fluid
consumption at high engine loads. Possible advantages of the VVA in RCCI engines can
be obtained from comprehensive research on HCCI [50–56], which partly shares the same
challenges in terms of load limitation and complicated thermal management for efficient
after-treatment systems.

3.1.1. Variable Valve Lift

The amplitude of the valve lift profile, particularly the peak value, is referred to as
valve lift [57]. Martins and Lanzanova [58] found that a regular camshaft profile increased
global indicated efficiency, but net indicated efficiency was reduced. Flierl et al. [59]
designed a fully variable valve lift and timing system. They found that it was feasible to
enhance the engine’s fuel consumption by up to 13% compared to the basic engine. On
the other hand, Li et al. [60] conducted a comparative analysis between the continuous
variable valve lift (CVVL) and VVT on the pumping losses of gasoline engines. The results
showed a reduction in the BSFC of CVVL and were more than 20% at 2000 rpm when the
lift of the intake valve was maximum.
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3.1.2. Variable Valve Timing

Valve timing denotes the phase shift in the crank angle window of the valve lift profile,
particularly the valve opening and closing events [61], such as the EVO, EVC, IVO, and
IVC. The VVT is to control the timing of an IVC and thus adjust the effective compression
ratio (ECR) [62]. Valve timing techniques are used to assist the combustion process and
after-treatment system [63]:

1. Early exhaust valve opening (EEVO).
2. Exhaust valve re-opening (2EVO).
3. Intake valve re-opening (2IVO).
4. Negative valve overlap (NVO).

Fuerhapter et al. [56] invented a technique known as the Secondary Exhaust Valve
Opening, in which the exhaust valve was designed to be re-opened during the intake stroke.
This method was studied for low to intermediate loads for the HCCI engine. The in-cylinder
charge temperature was increased efficiently when the hot exhaust gases were re-introduced
from the exhaust manifold owing to the second opening. Furthermore, this has achieved
the best auto-ignition timing. Sugimoto et al. [64] recorded a 10% decrease in BSFC due to
late IVC. In addition, the VVT strategy requires low ECR to control the maximum pressure
rise rate (MPRR) at high load [65]. Fallahzadeh et al. [66] registered an increase in BTE for
their EIVC engine accredited to a decreased residue gas fraction and thermal transfer. Fuel
consumption also decreased by 20–25%, owing to lower pumping loss effects during partial
loading, the exhaust gas temperature dropped 4–5%, and the intake manifold pressure rose
by 50–60%. Another study observed that the use of VVT in SI engines reduced pumping
work up to 36%, and the thermal efficiency was improved by 7.7% [67].

As addressed in the literature [68], the VVT can also bring significant benefits to
diesel engines. In the super-truck application, variable IVC timing has been studied as one
potential method of improving thermal efficiency to attain flexible control of compression
ratio and LTC timing. During the compression stroke, the EIVC lowered the pressure
and temperature, resulting in a longer ignition delay. The results showed that the use of
the EIVC behaved substantial improvements (~5%) in fuel efficiency and decreased the
differential pressure in IC engines. The longer ignition delay increased the fuel quantity in
the premixed flame and decreased the diffusion flame magnitude, thereby improving the
thermal efficiency [46].

Wu et al. [69] studied the effects of intake valve closing timing (IVCT) on thermal
performance and pollution emissions using a two-stage turbocharged diesel engine. Tests
were conducted at various loads and engine speeds on a heavy-duty engine. The results
showed that the IVCT reduced the difference in intake and exhaust pressure, decreased
the loss of pumping, increased efficient thermal efficiency, and minimized pumping work
effectively at high speed. A different IVC timings range, covering both EIVC and LIVC,
was also evaluated on a “heavy duty compression ignition (HDCI) engine” [70]. The main
conclusions are as follows:

1. The EIVC and LIVC strategies reduce the mass flow, thereby decreasing pumping
work and improving gas exchange efficiency.

2. The decline of the trapped mass generates a higher combustion temperature and leads
to an increase in the heat losses, offsetting the lowering of the pumping work.

3. Since IVC timing has such a poor effect on engine friction, the BTE does not improve
significantly or settle constant during tested conditions.

While there are some benefits and challenges in the VVT systems:

1. The uncommon valve lift profiles with EIVC cannot correspond practically with
traditional camshafts [58].

2. Solenoid-actuated valves and EIVC can achieve the highest efficiency.
3. The gas exchange process and engine performance can be optimized by utilizing VVL

technology [71].
4. It cannot be employed to increase the compression ratio beyond the geometric limit.
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Table 2 shows the benefits of using some of the VVA technologies as a single or
combination technique in terms of fuel economy. It is observed that the best fuel economy
can be achieved through (EVVT + VVL) (~20%), but the cam-less VVA has the better fuel
economy (~25%), with its ability to enable the HCCI combustion. Moreover, Figure 4 gives
the principle of the VVA technology on natural gas and diesel engines to alleviate some
shortcomings while pointing out the knowledge gaps in terms of load range extension,
efficiency improvement, and thermal management [72]. It indicates that each VVA strategy
has its specific benefit, such as (1) the LIVO for improved combustion efficiency at low
loads, (2) the EIVC for extending high load range, and (3) the 2EVO for improved thermal
management and combustion efficiency.

Table 2. The benefits of various valve systems for fuel economy [37].

Refs. Model Type of System Fuel Economy

General HVVT 3–5%
BMW Double Vanos HVVT <10%

[73] General EVVT 3–5%
[73] Audi AVS system DVVL <7%
[74] GM intake valve lift DVVL <4%

Honda i-VTEC DVVL + VVT <13%
[73] BMW Valvetronic CVVL + VVT <10%

Toyota Valvematic CVVL + VVT <6%
Fiat MultiAir LMVVA <10%

[75] General EVVT + VVL <20%
[75] General Camless VVA <25%
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3.2. Exhaust Gas Turbocharging
3.2.1. Variable Geometry Turbocharging

Variable geometry turbocharging (VGT) is a very successful method to improve the
transient operation of turbocharged diesel engines. Contrary to most other methods, the
improvement is achieved by pivoting the angle of the swing blade or by moving the nozzle
sidewall, rather than the reduction in the inertia. A combination of improved mechanical
innovations such as multiple injections and elevated injection pressures and advanced
control have mitigated the noise level concerns mainly in the current generation of common
rail designs. The power output has also greatly increased through the use of varying
geometry turbines in conjunction with advanced injection technology [76].

ηmTC MT − |MC| = GTC
dωTC

dt
(5)

where MT and MC represent the torque of the turbine and compressor respectively, ωTC is
the turbocharger speed, and ηmTC is the mechanical efficiency of the shaft.
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For advanced diesel powertrains for future trucks, the VGT is of particular interest as
they can significantly increase the transient system response to abrupt changes in engine
speed and engine load. The VGT systems are also considered to be a key enabler in the EGR
system for “heavy-duty (HD)” diesel engines [77]. The main problems associated with the
noise level have been mitigated by a combination of improved mechanical, technological
innovations, higher injection pressure, and multiple injections [78]. Zheng et al. [79] found
that the expansion ratio, pressure ratio, intercooler, and turbine bypass mainly affected
engine efficiency, pumping loss, and boost pressure. The results obtained from the exper-
imental analysis of the single and twin-entry VGT designs of automotive turbochargers
showed that the twin-entry VGT could allow better use of energy from pulses [80].

The comparisons between VGT and fixed geometry turbocharging (FGT) from the
numerical and experimental studies are reviewed by Tang et al. [38]. They reported an
improvement in numerous significant aspects comprising transient response, part-load
fuel efficiency, load control range, and full-load performance (2–7% for part-load fuel
consumption and 15% for full load performance), respectively. Furthermore, the transient
response was improved over a broad range in terms of vane controlling as an instance.
Furthermore, engine downsizing is an effective technique to improve fuel economy by
using a smaller engine to operate at higher efficiency and higher specific engine load. For
gasoline engines, turbocharging is more challenging than for diesel engines because of
higher airflow variability and higher exhaust temperature. Although the VGT can improve
low-end torque, reduce part-load fuel consumption, and afford fast transient response,
its cost, durability, and currently allowable turbine inlet temperature are limited. Among
the available types of VGTs, the variable nozzle form has the highest efficiency in a wide
flow range. In contrast, the variable flow and sliding wall types have lower costs and
better reliability [38]. Using the VGT in one turbine compressor setup would be a way to
afford the required flexibility, but it increases the entire system’s complexity [58]. In terms
of engine efficiency, Wu et al. [81] investigated the effect of the VGT and Miller cycle on
six-cylinder heavy-duty diesel engines. The results showed that high thermal efficiency
could be obtained by Miller cycles and cooperative control of the VGT.

3.2.2. Multi-Stage Turbocharging

Turbocharging plays a principal role in the development of engine downsizing and
down-speeding [82–85]. There are various benefits to the two-stages turbocharging system
over a single-stage turbocharging system. One obvious benefit is the high intake manifold
pressures and the corresponding BMEP, the prerequisite for engine downsizing and down-
speeding and lessening pumping losses [86]. Other advantages are that the transient
performance is improved because a smaller turbocharger is selected as a high-pressure
turbocharger [78], and the two turbochargers can cooperate under low load [87]. The
disadvantage of this type is the turbo lag, especially large turbochargers, which take time
to spool up and provide a useful boost. When considering the operation of two-stage units,
especially at low engine speeds, however, the BMEP curve remains unfavorable; hence,
turbocharger lag effects are still present [76].

Chadwell et al. [88] tested the effect of the boost method on the function of high-
efficiency alternative combustion engines. Their investigation showed that the projected
BTE reacted positively with an estimated BTE of 43.6% when the isentropic turbocharger
efficiency was improved.

High demands on a turbocharging system are being brought forward by new high-
efficiency combustion modes such as PPC [89,90], dilution combustion [91], RCCI [12],
and “gasoline direct-injection compression ignition” (GDCI) [92]. The effects of different
turbocharger approaches on the transient operating conditions have been investigated [93,94].
The literature shows that the use of electrical turbocharger systems helps to boost transient
response and fuel consumption. The two-stage turbocharging system with Miller cycles
improved fuel efficiency, which was ascribed to the reduced heat losses at lower combustion
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temperature and the high-efficiency inter-stage cooler leading to increased pumping work,
as shown in Figure 5 [95].
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Zheng et al. [79] found that the two-stage turbocharging can achieve a compression ra-
tio of more than 4 bar, which is not effectively achieved by a single-stage unit. Furthermore,
a traditional one-stage turbocharger system is commonly utilized to improve fuel efficiency.
Additionally, applying an electrical supercharger helps strengthen transient responses and
increases the pressure under heavy EGR conditions. Yoo et al. [96] investigated the effects
of a two-stage turbocharger coupled with electric supercharge under various engine loads
and engine speeds. They observed that BSFC decreased and thermal efficiency increased
when electric supercharging was employed. Moreover, applying dual-loop EGR with an
electric supercharger can also decrease BSFC by as much as 5.86%. Recently, Wu et al. [97]
suggested a method to match two-stage turbocharging to obtain high thermal efficiency for
a full range of operating conditions. They found that an enhancement and lowering fuel
consumption were achieved when the two-stage turbocharger was matched compared to a
traditional single turbocharger.

3.2.3. Electrically Assisted Turbocharging

The electric turbocharger assistance (ETA), mechanically coupled with a turbocharger
shaft, offers tremendous opportunities for improvements in fuel efficiency [98]. The ETA is
primarily used to boost the transient response and low-end torque that indirectly reduces
engine fuel consumption and CO2 emissions [99,100]. It might also be used for the recov-
ery of part of the waste heat by employing electric turbo compounding [101]. It can be
considered one of the most appealing solutions as it extracts mechanical energy from the
engine exhaust gas to support boost. Therefore, engine downsizing can be achieved by
improving transient response [98]. The ETA has several advantages, including eliminating
the turbo-lag, regulating the turbocharger speed, facilitating engine downsizing [102], and
improving fuel efficiency [103].

Xue and Rutledge [104] provided a comprehensive evaluation of the electric assistance
and VGT system to understand and appreciate the potential of electric assistance and a
VGT system on both steady-state and transient engine performance. It showed that a
higher efficiency was achieved over a broad range of ETA operations, with the ability
for engine downsizing from 9.3 L to 7.1 L. Giakoumis [76] observed that selecting the
optimal configuration for a particular application depends on many parameters, such
as cost, matching process, control system, and engine type, as well as driving cycles.
Moreover, even under steady-state conditions, electric-assisted turbocharging can benefit
engine performance, while the transient performance of turbocharged diesel engines is
worse than that of naturally aspirated diesel engines, especially at low load and low speed.
Lee et al. [39] recently confirmed that the ETAs could provide a high boost at low RPM
than a conventional turbocharger. The shortcoming was related to the high-temperature
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influence on the electric machine. Therefore, clutches and a large airgap permanent magnet
machine were employed to mitigate this issue.

The hybrid boosting system with the screw-type supercharger displays dramatically
improved output at low speed and in transient situations while sacrificing the fuel economy.
Compared to a similarly designed dual-stage turbocharging system with a bypass valve,
the dual-stage turbocharging system with EIVC demonstrates improved performance and
fuel economy. The hybrid boosting system with the VGT shows the best performance in
both steady-state and transient conditions and fuel economy. The electrical compressor
hybrid system demonstrates excellent performance under steady-state conditions but poor
performance due to insufficient electrical power in transient conditions [78]. Figure 6 shows
the comparison between various boosting systems and engine baseline in terms of engine
thermal efficiency. Noteworthy, these comparisons are based on modeling and estimated
results, and it can be noted that the highest thermal efficiency up to 30% can be achieved
for mechanical super turbo, followed by electrical supercharging, which exhibits 24.45%
thermal efficiency. A similar performance of ~20% can be obtained through activating
the control turbocharger, electrical turbo compounding, turbo-super generator, and series
sequential turbocharger. Furthermore, the VGT can offer 15% higher thermal efficiency than
the FGT, while the series multi-stage turbocharger gives an increase of thermal efficiency of
17% [40]. Alshammari et al. [105] recently observed that although various boosting systems
are available, selecting an optimum strategy is still tricky since it depends extensively on
the applications.
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3.3. Exhaust Gas Recycle

EGR systems can be categorized into internal and external EGR systems. The internal
EGR, which is normally uncooled, refers to the trapped combustion product in-cylinder
residue and the reverse gas flow between the exhaust manifold/port and the cylinders.
The external cooled EGR is typically more powerful for reducing emissions and for ele-
vating fuel economy than the uncooled internal EGR, although the heat rejection must be
controlled by the cooling system. High-pressure loop (HPL) EGR, low-pressure loop (LPL)
EGR, and hybrid EGR systems are categorized as external EGR [41]. Furthermore, there are
also two operating modes for the cooled EGR [42]:
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• A reforming mode involves injecting a small amount of diesel fuel into the EGR stream
and then reforming catalytically in the rich combustor to create gaseous fuels like
hydrogen for enhancing engine combustion.

• An oxidation mode in which the products of incomplete combustion are oxidized on a
palladium/platinum-based catalyst to reduce the instability caused using EGR.

3.3.1. External Exhaust Gas Recycles

The external EGR is a common method to inhibit in-cylinder NOx generation, which
is ascribed to the dilution and thermal effects of exhausted gases [106–110]. The EGR
technique is originally employed in diesel engines and then extended to gasoline engines
coincidentally with other superior techniques. The cooled EGR can benefit the stable control
of low-temperature combustion with low soot and NOx emissions. It may also have the
potential to reduce the fuel penalty of diesel after-treatment systems and EGR valve fouling.
The rate of EGR needed by an engine change with engine speed and load, and proper
regulation of the quantity entering the cylinders is essential for achieving optimal engine
performance and minimal NOx emissions. Nevertheless, regulating the quantity of EGR
entering the intake manifold does not guarantee that the EGR rate will be spread uniformly
throughout the engine’s cylinders [111]. This lead to deteriorating particulate matter(PM)
and NOx emissions. Therefore, according to the findings of Pavlos et al. [111], the amount
of turbulence in the flow that is produced at the place where EGR diffusion occurs is the
primary component that determines how well an EGR mixer functions.

Selim et al. [112] explored the impact of engine speed on thermal efficiency at different
EGR ratios and found that as the EGR rate increased from 0% to 5%, thermal efficiency
tended to increase insignificantly, particularly at 1600 rpm, while with further increases
from 10% to 15%, thermal efficiency decreased due to the degradation of combustion.
Duchaussoy et al. [113] compared the role of lean-burn and cooled EGR and found that
the cooled EGR was more beneficial than lean-burn in terms of heat exchange and engine
performance. The EGR can also significantly improve fuel efficiency in spark-ignited direct-
injection engines. Wei et al. [109] observed that the hot EGR could improve combustion
efficiency and fuel efficiency by heating the intake charge, while the cooled EGR increases
intake density and thereby volumetric efficiency. Hoepke et al. [114] obtained an increase
of 5% in gross thermal efficiency using an 18% EGR rate on a boosted “spark ignition
direct injection (SIDI)” engine, without obvious knocking tendency due partially to slower
combustion. Li et al. [115] analyzed the impacts of cooled EGR on fuel efficiency and found
that EGR led to an increase in the specific heat ratio of working gas, diminished the fraction
of heat transfer through the cylinder wall, and enhanced the pumping work during gas
exchange. Additionally, EGR can advance the combustion phasing, increase the constant
volume heat release, and replace the fuel enrichment at high loads. Moreover, there is a
1.1–4.1% enhancement in the BTE by applying 12–17% of the EGR rate.

Zheng et al. [116] found that 47.5% indicated thermal efficiency could be observed at a
30% EGR rate, but when the EGR rate increases to 50%, it descanted due to the prolonged
ignition delay, retarded combustion phasing, and the deteriorated combustion efficiency.
Liu et al. [117] observed that the indicated thermal efficiency and combustion efficiency
were reduced when the premixed ratio is increased from 0% to 50%. However, the increase
in premixed ratio permits more fuel to enter cylinder-wall and clearance regions, resulting
in more incomplete combustion products. Nevertheless, the combustion efficiency and
indicated thermal efficiency exhibit an increasing trend as the premixed ratio increases
from 50% to 100%. Figure 7 shows the indicated thermal efficiency as a function of EGR
rates. It suggests that there is a significant increase in the indicated thermal efficiency for
EGR rate below 30%, which is mainly ascribed to low-temperature combustion. Beyond
the critical threshold, the beneficial effect becomes no longer obvious and even decreased
due to the deterioration of combustion.
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3.3.2. Internal Exhaust Gas Recycles

The intake charge temperature can influence combustion efficiency and exhaust gas
temperature [43]. However, a rapid temperature increase of the inlet mixture might not be
possible, especially during a cold start and transient operating conditions. Retaining hot
residuals from the previous cycle is another successful way of rising in-cylinder and the
EGT. This technique is commonly called recirculation of internal exhaust gases [118]. The
residual gas fraction can be defined as the mass of the burned gas divided by the total mass
of the in-cylinder (burnt and unburnt) before combustion. Factors such as engine speed,
valve timing, and pressure differentials depend on exhaust gas quantity trapped within
the cylinder.

Mirko et al. [119] observed that iEGR had a more remarkable ability to control EGR in
transient operations than external EGR. It was also observed that the use of iEGR moderated
combustion by delaying the ignition time, thus eliminating the oscillations of the in-cylinder
pressure [120]. Cho et al. [121] reported that the variable exhaust valve actuation with iEGR
in diesel engines was beneficial for post-injection.

Pan et al. [122] investigated the influences of excess air ratio on ignition and combus-
tion characteristics under various EGR concentrations as well as the impacts of different
iEGR concentrations on ignition and combustion stability of gasoline compression ignition
engines. They found that the heat effect caused by iEGR had a significant effect on the
ignition stability at low loads. Torque increased first and subsequently decreased as EGR
rates increased, with the maximum torque at a 20% EGR rate. Excess air ratio had a similar
impact on EGR rates. Torque and combustion efficiency drop when the excess air ratio
increases when beyond 3.0, as shown in Figure 8.
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3.3.3. Hybrid Exhaust Gas Recycle

It is crucial to optimize the EGR system to attain high-efficiency clean combustion
in engines [123,124]. There are numerous EGR systems for EGR implementation such as
high-pressure loop (HPL-EGR), low-pressure loop (LPL-EGR), and the combination of
two loops commonly called dual loop (DL-EGR) [125]. The HPL-EGR is commonly used
in diesel engines owing to its simplified configuration, lower compressor fouling effect,
and increased EGR responsiveness performance. By increasing the HPL-EGR rate, the
exhaust backpressure is reduced. Consequently, the pressure differential between the intake
and exhaust manifold decreases [126]. The HPL-EGR and LPL-EGR have benefits and
drawbacks when implemented in diesel engines, which indicates that the simultaneous
application of the HP-EGR and LP-EGR has the potential to improve fuel economy [127].
The DL-EGR system, which has both HP-EGR and LP-EGR systems, is being utilized for
diesel engines to obtain the best outcomes in the BTE [128]. In contrast, the low-pressure
proportion is influenced by engine operating conditions. However, the activation of the LPL
is proved to be useful for turbocharger performance, rising its rotational speed and thereby
better transient response [129]. As shown in Figure 9, the HPL-EGR capacity to minimize
pumping losses declines relative to lower loads for the situation of 1.43 MPa BMEP. The
indicated gross thermal efficiency of HPL-EGR also drops faster as the EGR rate rises. If
load rises, the indicated gross thermal efficiency diminishing rate exceeds pump losses at a
lower EGR rate. In addition, from the comparisons of various engine loads and speeds, it
can be found that the BTE of DL-EGR is higher than that of the LPL-EGR and the DL-EGR
achieves the highest BTE and low speed under 20% EGR and 1.43 MPa BMEP [128].
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A direct comparison of the HP-EGR system and the LP-EGR system was conducted
by some researchers [130–132]. Park and Bae [127] observed that the HPL and LPL EGR
proportions did not influence CA50 and MPRR. Furthermore, the pumping loss tended
to decrease with the increased LP EGR portion since the VGT nozzle was opened more
widely to sustain the boost pressure, which contributed to the lower BSFC. Cho et al. [133]
studied an HPL, LPL, and double-loop EGR and found substantial variations in engine
efficiency for different EGR sources. In particular, the double-loop EGR method has the
potential to extend the regime for high-efficient clean combustion.
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EGR can reduce oxygen availability and extend load range. In advanced diesel
combustion systems, internal and external EGR methods have been proved to better form
the homogeneous mixture and ignition timing control. In comparison, external EGR is less
costly to mount and simplistic to apply, while internal EGR is more expensive to mount and
complicated to control in a real engine. Furthermore, the cooled EGR is an effective way
in gasoline engines, contributing to suppressing knocking combustion. From the above
studies, including e-EGR, iEGR, and hybrid EGR applications, it can be observed that
the exhaust back pressure is reduced when using the HPL-EGR. This indicates a decrease
in pumping loss and increased thermal efficiency. EGR systems can be improved by the
integration of HPL and LPL. The integrated control of these systems offers great potential
for improving engine performance and thermal efficiency.

4. Advanced Combustion for Improving Thermal Efficiency

There have been various advanced combustion strategies proposed to improve ther-
mal efficiency. The first section mainly introduces the low-temperature combustion (LTC)
modes involving the homogeneous charge compression ignition (HCCI), partially premixed
combustion (PPC), reactivity-controlled compression ignition (RCCI), and spark-assisted
compression ignition (SACI). The second section mainly introduces the high dilution
combustion, including advanced ignition systems, hydrogen-enriched combustion, and
thermochemical recuperation. The last one is based on integrated combustion strategies,
which involve ultra-high-pressure injection, variable compression ratio, double compres-
sion expansion engine, and knocking control.

4.1. Low-Temperature Combustion

The LTC is one of the promising advanced techniques for in-cylinder combustion
to minimize emissions with a beneficial impact on high efficiency and specific fuel con-
sumption. It features improved mixture preparation, fuel atomization, reduced combustion
temperature, and lower local equivalence ratios, which simultaneously increase the chances
of reducing emissions while retaining higher thermal efficiency. The LTC is mostly accom-
plished through several approaches, namely the HCCI, RCCI, PPC, SACI, etc. [134].

4.1.1. Homogeneous Charge Compression Ignition

For the HCCI mode, a mixture of air and fuel homogeneous or well-mixed ignite
without a spark at the end of the compression stroke. Combustion occurs in many locations
in HCCI engines due to the self-ignition of the mixture that reaches its chemical activation
energy, and automatic combustion occurs without any apparent propagation of flame front
or diffusion flame. Furthermore, one-third to one-half of the operating load can be used for
SI and CI modes, and the remaining load for HCCI mode.

Polat et al. [150] examine the effects of boost pressure on combustion and output at a
low CR of an early direct-injection HCCI engine. The experiments were conducted using
n-heptane fuel at various intake manifold absolute pressures from 1.0 to 1.6 bar at different
engine loads. As a result, the operating range can be expanded, and the HCCI combustion
process can be operated at a low CR of 9.2 by supercharging application. As the boost
pressure rose, an improvement in thermal efficiency was seen. The volumetric efficiency,
in-cylinder gas temperature, and in-cylinder pressure were increased with increased intake
manifold pressure, and the combustion phase was advanced. Therefore, combustion events
with CA50 2–3◦ CA aTDC demonstrate the highest thermal performance, especially under
low boost pressures. The test results have shown that the HCCI operating range can be
prolonged, particularly at high load limits, by increasing the intake manifold pressure.

Maurya et al. [151] investigated combustion characteristics and emissions of HCCI
engines fueled by ethanol under various inlet temperatures of 120–150 ◦C. The results
showed an increase in combustion efficiency, indicated thermal efficiency, and gas ex-
change efficiency of 97.45%, 44.78%, and 97.47%, respectively, particularly at 393 K of air
temperature and lambda 2.5. The low reactivity of n-butanol aids in obtaining optimal
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thermal efficiencies comparable to conventional diesel combustion (43–46%) is consistently
accomplished [152]. Ganesh et al. [153] observed there was a reduction in the BTE when a
mixture of vaporized jatropha methyl ester and the air is inserted into the cylinder through
the intake stroke. The indicated thermal efficiency of ethanol/n-heptane blend fuels HCCI
combustion can be increased up to 50% at high load due to the delay of the ignition timing
by the ethanol addition [154,155]. Nagarajan et al. [156] experimentally investigated HCCI
with 100% gaseous fuel LPG. They reported that the BTE increased at part loads for all EGR
rates, but higher flow rates of EGR negatively affected the BTE at full load.

Because HCCI combustion uses heavily diluted charges with either a high degree
of EGR or lean mixtures, the in-cylinder temperature will remain low, comparable to
conventional diesel combustion. The principal shortcomings of this combustion mode
have been summarized as follows [157]: (i) low power density, (ii) high combustion
noise, (iii) limited operating load, (iv) low combustion efficiency, and (v) poor combustion
phasing control. In terms of engine efficiency, 15% of thermal efficiency was observed
for multiple injections [158]. In Refs. [151,159], 29–37% and 44.78% indicated thermal
efficiency was obtained when lambda equals 2.0 and 2.5 respectively. In contrast, the BTE
was decreased with vaporizer, and high EGR rate [160], and advanced injection timing [161]
and it increased with injection timing [162].

Duan et al. [135] comprehensively reviewed various effective techniques such as fuel
reactivity, fuel additives, alternative fuels, reactive species, reforming, and modification,
which were used in HCCI engines to control combustion phasing and ignition timing
(Figure 10). Main conclusions were found of these strategies applied in HCCI engines
summarized as follows:

1. Designing, modifying, and controlling fuel compositions, and employing fuel physical-
chemical properties in HCCI engines to improve the combustion phasing and ignition
timing and expand operating loads.

2. Fuel reactivity stratification may be an attractive method of controlling ignition timing
and reducing the excessive PRR.

3. Fuel reforming and modification were common techniques for adjusting the chemical
components to control combustion phasing and ignition timing.

4. As compared to preheated intake temperature, reactive species, and fuel additives
have potential advantages in HCCI engines by lowering the intake temperature and
making it easier to control the combustion timing.

5. In contrast to conventional gasoline and diesel fuels, alternative fuels have remarkable
superior advantages in regulating combustion phasing and ignition timing.

6. Negative valve overlap is an efficient way of increasing in internal EGR of the HCCI
engine, which leads to delay in the auto-ignition for high load, hence retard the
combustion phasing.

7. Combining external and internal mixture preparation can be considered effective
method for controlling ignition timing and combustion phasing.

8. The preheating of intake air and boosting the air pressure can shorten ignition timing
and extend the load engine to high. Therefore, the combination of the two ways is
commonly used in the HCCI engine.

9. To stratify the temperature distribution in the cylinder of the unburned mixture
before auto-ignition, thermal stratification can be used. It is an efficient technique for
governing the HRR and controlling the auto-ignition.

10. The combustion phasing and auto-ignition can be controlled using a variable com-
pression ratio instead of preheating the air intake.

11. Applying the SACI mode in the HCCI engine can give an effective approach that
operates with lean mixture, controlling combustion phasing, expanding the engine’s
load range, and sustaining high thermal efficiency.
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Pressure rise rate (PRR) increases as a premixed ratio increases while decreases with
vaporizers, high EGR rate, and lean mixtures. Additionally, the maximum PRR was higher
without EGR than that with EGR in all pilot quantities as well as it was very high for
a rich mixture. This issue can be settled by delayed the combustion phasing to reduce
the PRR. Delayed combustion phasing can, however, result in a sacrifice in efficiency.
Though HCCI has a limited range of load operations and very rapid PRR due to the
auto-ignitions characteristics, a load of up to 2 MPa of IMEP for naturally aspirated can
be realized under steady-state conditions, but transient operation conditions remain a
challenge. Furthermore, the very rapid pressure rise rate, other parameters can limit
the HCCI’s operating range, such as misfiring at low loads and engine knock at high
loads. Therefore, numerous strategies are suggested to extend the high load operating
limits through turbocharging or supercharging, VCR, SACI, and PPC operation, charge
stratification, changing the coolant temperature, variable intake air temperature, VVT, EGR,
injection timing, and utilizing alternative fuel with high octane number to avoid engine
knock and misfiring [160,164–168].

4.1.2. Reactivity-Controlled Compression Ignition

RCCI is a dual-fuel combustion technique that uses an in-cylinder blend of at least
two fuels with various auto-ignition characteristics to control the heat release rate (HRR)
and combustion phase [169,170]. The major part of the total injected fuel should be low
reactivity fuel (LRF), while the high reactivity fuel (HRF) is utilized to trigger the combus-
tion process [171]. Unlike all other LTC modes, RCCI combustion can achieve significantly
higher BTE, with comparatively lower PM and NOx emissions [172,173]. In addition, it
facilitates a smoother combustion process by diminishing engine knock [174], which offers
good ringing intensity and is better than HCCI engines [175]. The other advantage of RCCI
mode combustion is the ability to operate under a wide range of engine loads with accept-
able pressure rise, and low ringing intensity, and can produce higher thermal efficiency
~56% [43,176]. Another merit of RCCI combustion is regarded as one of the best promis-
ing modes of LTC compared to the other methods and promising technology to improve
thermal efficiency under highway navigating conditions. It can also be observed from this
strategy for all tested fuels that the heat release rate was higher than conventional diesel
combustion [134]. The key benefit of a dual-fuel system is dominating the combustion
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process by enhancing the blended fuel reaction. To distinguish the combustion process from
HCCI or PCCI, led to the term RCCI. The foremost benefits of this strategy include [43]:

1. Low emissions such as NOx and soot.
2. The losses in heat transfer are lessened.
3. Thermodynamic efficiency and fuel efficiency increased.

Although RCCI offers low emissions and high efficiency, it still has numerous chal-
lenges, such as excessively high MPRR at high loads and excessive UHC and CO emissions
at low loads. These two restrictions limit the RCCI’s working range to moderate loads,
making it unsuitable for use in real-world applications [171]. Han et al. [177] showed that
PCCI and HCCI combustion modes produced significantly lower soot and NOx emissions,
but RCCI mode combustion showed comparatively higher efficiency with superior com-
bustion control compared to other LTC techniques also can have a lower peak pressure
rise rate (PPRR) and a longer combustion duration. Notwithstanding the low combustion
efficiency, the gross thermal efficiency of RCCI was somewhat higher due to reducing the
losses of heat transfer arising from the decline of peak pressure rise rate. The outcomes
of pump fuel revealed that it was seen the reactivity of the premixed fuel had increased,
and the combustion efficiency was increased to a comparable value to that of the PPC
(see Table 3) [178].

Table 3. Review and comparison between three different advanced combustion technologies [178].

Primary Reference Fuel Pump Fuels

Fixed Condition HCCI PPC RCCI Fixed Conditions PPC RCCI

GIE (%) 47.1 45.6 47.5 GIE (%) 46.9 46.1
NOx (g/kg-fuel) 0.05 0.01 0.04 NOx (g/kg-fuel) 0.15 0.05
COV of IMEP (%) 2.6 2.5 2.6 COV of IMEP (%) 2.5 2.1

Comb. Efficiency (%) 92.8 93.1 91.5 Comb. Efficiency (%) 93.7 93.2
PPRR (bar/deg) 14 16 5.8 PPRR (bar/deg) 16.4 11.7

CA50 ± σ50 [aTDC] 3.5 ± 0.5 2.5 ± 0.3 2.2 ± 0.5 CA50 ± σ50 [aTDC] 3.2 ± 0.4 2.7 ± 0.9

Several further studies confirmed that gasoline-diesel RCCI can minimize NOx and
soot emissions [179–182], but the gross indicated thermal efficiency greater than 55% is not
replicated. On the other hand, some researchers have reported a remarkably high peak
value of 56% at medium loads [43]. Splitter et al. [16] proposed that the gross indicated
thermal efficiency of up to 60% was needed with reduced frictional and pumping losses.
The findings demonstrate that, with optimization thermodynamic conditions, combustion
management, disabling piston cooling, and increasing the compression ratio to 18.7, 60%
gross indicated thermal efficiency have been achievable, offering a route to having reached
55% BTE. The BTE is directly proportional to the gross indicated thermal efficiency, where
some restrictions can be observed that would reduce the thermal efficiency represented by
PMEP and FMEP. Therefore, a maximum BTE can obtain if these losses decreased as much
as possible with the possibility of increasing the gross indicated mean effective pressure
(IMEPg), as shown in Figure 11. The same authors [183] recorded a maximum GIE of
59% when using PFI of E85 and DI of diesel, with the possibility to extend the load easily
compared to their previous work [16]. Additionally, at all tested load points up to 16.5 bar
IMEPg, lower EGR rates were needed.

The most important results obtained from the review made by Reitz and Duraisamy [12]
were: (i) gasoline/diesel offered high thermal performance over a broad range of load
engines, with a maximum GIE of 56% under 0.93 MPa IMEP operating conditions on heavy-
duty (HD) engines, (ii) the utilize of E85 and B20 permitted the maximum BTE of RCCI to
increase from 40% with the gasoline-diesel operation condition to 43 %. Soloiu et al. [184]
observed that RCCI leads to delayed ignition by 7 CAD compared to conventional diesel
engines, resulting in a sharper rise in pressure. This strategy increased peak heat release
rate (PHRR) and delayed ignition due to reactivity stratification and prolonged mixing
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time, causing faster flame speeds, as well as an increase in ITE reaching 58% at 4 bar IMEP.
Another study conducted by Benajes et al. [185] showed that the thermal efficiency of RCCI
operating with E85 was higher than with gasoline. In addition, a higher value of BSFC
with E85 than with gasoline. Pan et al. [186] reported that the BTE increased up to 7.08%
with 18.5 CR and under high loads due to a decrease in heat loss, resulting from the lower
combustion temperature. Similarly, Gross and Reitz [187] reported increased BTE levels of
32.34% at 2300 rpm and 4.2 bar BMEP due to lower combustion losses. Biodiesel/diesel
RCCI combustion leads to an increase of BTE by about 31% and reduces cylinder gas
temperature due to the better-premixed combustion [188]. Mujtaba et al. [189] numerically
investigated RCCI combustion fueled by NG/Diesel to optimize the engine efficiency using
AVL-file software. The simulation results observed that 55.05% of GIE was obtained at
13.5 bar IMEPg.
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Other significant efforts have been made by Jing et al. [175] to review and summarized
the effect of the LRF ratio on the engine performance of RCCI combustion. They found that
as the low reactivity fuel (LRF) ratio increased, the engine performance improved. Recently,
Butanol Isomers (n-butanol, iso-butanol, and tert-butanol) as an LRF besides n-heptane as
HRF, injected directly into the cylinder, have been studied by Han and Somers. Their study
was conducted from low to medium-high loads, and the results showed that the highest
GIE could be obtained (>52%) with tert-butanol/n-heptane in most operating loads [190].
Pan et al. [191] found that iso-butanol/diesel RCCI has a longer ignition delay (ID), CA50-
CA10 and combustion duration (CD), later combustion phasing, lower maximum PRR, and
higher ITE, compared with the gasoline/diesel RCCI mode.

Recently, Eyal et al. [192] explored an innovative concept integrating the advantages
of High-Pressure Thermochemical Recuperation and the LTC mode. This combination
facilitates mitigating pollutant emissions and achieving high thermal efficiency in a wide
range. The findings demonstrate a 4- to 9% improvement in thermal efficiency compared
to conventional diesel combustion (CDC) with the same engine operating.

In summary, it was observed that LRF such as natural gas is permitted to extend
load limits and combustion processes [12]. Moreover, this concept (RCCI) is presented to
control better combustion and improve thermal efficiencies than other approaches, such
as HCCI, PCCI, single-fuel PPC, dual-fuel HCCI, and PCCI [16]. RCCI combustion also
has limitations, such as lessening combustion efficiency at low loads and restricting high
load expansion due to excessive PRR [193,194], distributing LRF through port fuel injection
(PFI), controlling cycle-to-cycle variation through the transient conditions, modification
of fuel injection strategy, and lower exhaust temperatures also pose significant challenges
for after-treatment systems. These can be alleviated by improving various control pa-
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rameters [195] involving VVT, intake air temperature, injection strategy, EGR rate, boost
pressure, etc.) [157].

4.1.3. Partial Premixed Combustion

The PPC concept originated from the PCCI engine but is more similar to modern
diesel engines [196]. PCCI or PPCI are other acronyms for a PPC. PPC is an LTC concept
with its combustion regime sandwiched between HCCI and diffusion combustion [197].
Along with some of the control authority of diffusion combustion, this approach affords
low heat loss and pollutant emission. The use of PPC exhibits a significant reduction in
heat transfer losses, resulting in an improved engine efficiency [89,198], and its benefits are
similar to RCCI [157]. To achieve the PPC, the extension of ignition delay is an essential
issue for that purpose, and it can be accomplished by excessive EGR rate, reduced CR, and
fuel reactivity [136,162,199–201].

Moreover, PPC is a concept that involves fuel stratification to accomplish the desired
combustion phasing and ignition timing. Multiple injections and advanced injection
strategies are used with this concept to determine the stratification level. Additionally,
it endeavors to utilize clean combustion and improved blending of fuels [89]. PPC is
an intermediary combustion technique between HCCI and CCM, providing a sufficient
ignition delay, hence improving the air-fuel mixture [202]. Combustion has been stratified
through PPC, and the fuel-lean, besides fuel-rich regions, decreases NOx and PM emissions
without affecting efficiency. Furthermore, fuel injection timing and inlet air temperature
were controlled during the combustion stages, although chemical kinetics continues to play
a significant role. As a result, more attention has been devoted to the PPC inquiry in recent
years [203–205].

Manente et al. [206] found that with the use of high-octane fuel in PPC, under high
loads of more than 7 bar of IMEP, and 50% EGR, the combustion efficiency was more than
98%. In addition, the values of BTE can reach higher than 48%. Han et al. [207] evaluate
the feasibility of employing n-butanol for two types of combustion modes, PPC and HCCI.
The results show that both PPC and HCCI of n-butanol can produce low NOx and close
to zero smoke emissions while attaining diesel-similar engine efficiency. Zincir et al. [208]
investigated the impact of intake temperature on the limitation of PPC at a low load fueled
by methanol. The results revealed that with higher intake temperatures, the GIE began
to increase (41–42%) because of an increase in combustion efficiency (96–99%) affected
by intake temperature. This is attributed because higher intake temperatures under low
loads can obtain more complete combustion. Another study conducted by Yin et al. [209]
observed that the maximum GIE of 51.5%. When the refinery fuel was used; the GIE was
increased up to 50% under high loads and about 45% for the other points. Furthermore,
some differences can be observed in increasing and decreasing GIE, especially at the
16–20 bar of IMEPg. This is due to several important reasons [210]:

1. Increase thermal exhaust losses with other residual losses.
2. Combustion was delayed for 20 bar IMEPg due to hardware limitations.
3. Low fuel pressure, extended injection period, and long combustion duration.

Numerous studies reveal that the advanced SOI leads to decreased cylinder pressure
and HRR [161,211], and the others show an increasing cylinder pressure and HRR [212,213].
It is observed sometimes increasing and sometimes decreasing, and this also includes BTE
and BSFC. The reason is that each study has its operating conditions, such as engine type,
injection pressure, injection type, fuel type with its blend, EGR rate, etc. In summary, the
BSFC was increased in most studies because they depend on several parameters. On the
other hand, an increase in BTE and combustion efficiency can be demonstrated because the
combustion process of the PPC is very sensitive to boundary conditions.

The optimization of charge stratification is considered one of the essential factors to
improve combustion performance, and it can be achieved by employing multiple injection
strategies. Zhang et al. [214] analyzed the multiple injection strategies utilizing thermo-
dynamic approaches to study how the combustion phasing, the heat release energy, and
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the heat transfer loss affect the GIE of PPC combustion in heavy-duty optical engines. The
results showed that a higher GIE could be obtained in the late double injection with a later
combustion phasing compared to the early double injection cases and 47.9% of GIE for
the triple injection case. In addition, the interaction between the post-injection and main
combustion was a critical point for combustion efficiency, although less influence on the
combustion phasing. Additionally, Mao et al. [215] explored a multiple-injection strategy to
achieve the highest BTE of 44% in a multiple-cylinder heavy-duty diesel engine [215]. Re-
cently, Aziz et al. [216] investigated a multiple injection (double and triple) strategy on the
performance of PPC at low load fueled by Methanol in a single-cylinder heavy-duty engine.
They found that the GIE was improved using multiple injection strategies compared to a
single injection. Another recent study was conducted by Dimitrakopoulos and Tuner [217]
to reduce the high combustion instability (COV) at a low load of Gasoline PPC using glow
plugs. The results showed that inlet air temperature was reduced by glow plugs, hence
keeping the combustion stable and having an insignificant effect on efficiency.

In summary, the PPC can provide better mixing before the combustion since it is based
on the prolonged ignition delay. Although PPC has many merits over HCCI, it presents
some critical challenges related to combustion stability and controllability, high HRR, high
PRR at low and medium loads, as well as poor combustion efficiency at low loads. Using
multiple injections and throttling the engine and running at a lower lambda, RCCI and
SACI are likewise methods to resolve the poor combustion efficiency at low loads. For
high loads, further investigations are required to use oxygenated fuel with a high CN, glow
plugs, high boost pressures, high EGR ratios around 50%, advanced injection strategies,
and placed the main injection nearby TDC.

4.1.4. Spark-Assisted Compression Ignition

The SACI is an efficient strategy proposed to optimize the robustness of ignition
control, achieve stable phase control, and extend the HCCI load range [218,219]. SACI
strategy is based on a lean mixture via injecting fuel within the combustion chamber
through the early intake stroke. An external ignition source was utilized to initiate a flame
front propagation, and compression ignition is initiated by exceeding the auto-ignition
threshold. The auto-alignment threshold relies on the air-fuel mix, fuel type, and residual
gas amount [220]. The purpose of SACI is to achieve supplementary HCCI combustion
control. SACI is an intermediary concept involving flame improvement initiated via spark
discharge, accompanied by HCCI kinetic combustion. A spark discharge has been added
to improve combustion stability in terms of the IMEP [221]. The combustion properties
of HCCI, SACI, and SI mode were contrasted by Wang et al. [222]. They have found that
SACI can attain higher thermal efficiency than spark ignition combustion, particularly at
8.2 bar of IMEP.

Many researchers have expanded the engine loads into the SACI system by modulating
some variables [219], such as spark timing [218], internal and external EGR rates [223],
intake temperature [224], and effective compression ratio with LIVC [54]. Chiodi et al. [137]
have shown that ~44% indicated thermal efficiency is considerably higher than that of
flame propagation combustion and reduces specific fuel consumption to a minimum. This
rapid energy release results in the highest peak pressure, even higher than the limited
flame combustion without knocking. This is noteworthy because the total energy released
is substantially higher due to the lambda value being richer. Ortiz et al. [225] noted that the
combustion strategies for HCCI and SACI showed potential increases in the ITEnet of up to
30%, with an additional 12.5% with the potential to incorporate less detrimental control
strategies, as shown in Figure 12. Yun et al. [226] showed that the ignition delay became
shorter due to the delay in spark timing, meaning that the beginning of the combustion
would be rapid. Finally, using the spark assisted HCCI combustion, the operating range
was extended. Furthermore, under higher load in SAPCCI mode, the BTE of low-octane
fuel is better than the baseline G100 (~43%) [227].
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Zhou et al. [228] showed that the iEGR ratio and ignition timing were essential fac-
tors for controlling the SACI combustion process. As a result, iEGR principally controls
the combustion phase by varying intake air mass flow and the initial in-cylinder temper-
ature. To accomplish stable SACI combustion and overcome ringing, Chen et al. [229]
employed late side injection to adjust fuel distribution. They found that controlling the
peak HRR value between 81.72 J/CAD to 148.92 J/CAD can result in stable SACI without
ringing. In addition, the late side injection strategy decreases auto-ignition flame speed,
suppresses engine knock, and improves thermal efficiency, thereby realizing SACI combus-
tion. Jacek et al. [230] explained how the SACI achieves appropriate PRR and combustion
stability under high load boundary conditions, which was beneficial to the HCCI/SACI
transition. The results showed the ability to operate SACI at IMEP of 5 bar with an SFC of
207 g/kWh for heavy-duty engines. It is essential that the PRR and variation of IMEP do
not exceed 2.5 bar/CAD and 3%, respectively, thus affording the considerable potential
of load extension. Biswas and Ekoto [231] concluded that the impact of ozone addition
was more significant for the low loads. Moreover, ozone addition decreases specific fuel
consumption by up to 9%, with enhanced combustion stability comparable to similar
conditions without ozone.

Recently, a comprehensive review has been conducted by Robertson and Prucka [232]
to determine the key factors required to realize a feasible production-workable control
strategy for SACI engines. The literature demonstrated that brake thermal efficiency of up
to 44% was achievable in the product. The efficiency advantages are determined by the
increased compression ratio, higher specific heat ratio, reduced pumping work, lower heat
transfer, and shortened burning period. They found that charge stratification can achieve
flame propagation and reduce the auto-ignition of the reaction rates.

4.1.5. Summary of the LTC Modes

As addressed in the above studies, the LTC mode has faced several challenges such as
load extension and control of the knocking at high load [134]. First, combustion control and
ignition timing. Because this combustion mode is ruled by chemical kinetics, it is extremely
complicated to control these parameters. However, combustion can be governed by the
temperature-time history of the fuel-air mixture and the fuel’s properties. Temperature-
time history can be altered by adjusting the intake air temperature, VCR, EGR, etc. The
second is combustion stability and its noise (misfiring and torque oscillation). The use of
closed-loop combustion control can mitigate this issue by regulating combustion timing,
such as ignition delay and peak PRR. The third is combustion phasing, which is based
on the signal of in-cylinder pressure. Fourth, cold start. Three methods can resolve this
issue, such as providing glow plugs, utilizing some fuel additives, and adding vaporizer to
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biodiesel fuels. Finally, an extension of the highest possible load limits. To overcome this
issue, two ways can be adopted, e.g., adaptation booster and compound injection strategy
and using diesel blended renewable fuel such as ethanol and biodiesel.

Among the different LTC technologies, it was observed that intelligent charge com-
pression ignition (ICCI), which is not covered in this article, has unique merits and potential
in high efficiency (up to 50% of ITE at medium loads), combustion efficiency is significantly
higher at low loads, and low emissions under wide load range over other LTC modes, so it
is a suitable combustion mode to overcome high MPRR at high loads and low efficiency
at low loads. ICCI can be enhanced in-cylinder reactivity, reformulating the cylinder’s
concentration stratification and composition at low loads [233]. Thus, that is why this
concept can produce higher thermal efficiency. Maybe soon the ICC mode will be attractive
in commercial applications.

4.2. Highly Dilution Combustion

Highly dilution combustion has been known to afford advantages for higher thermal
efficiencies and lower emissions [234]. High dilution is one type of LTC strategies improve
efficiency by reducing pumping work and heat transfer, as well as increasing the ratio of the
specific heat. However, the high dilution harms deflagration flame propagation, raises the
ignition energy required for auto-ignition, and limits peak engine load [232]. Some innova-
tive strategies have been proposed to overcome these drawbacks, including an advanced
ignition system, hydrogen-enriched combustion, and thermochemical recuperation.

4.2.1. Advanced Ignition System

Advanced ignition systems have been studied as a technology for downsizing boosted
engines with dilution combustion. These technologies comprise [235]:

• Laser ignition.
• Microwave high-frequency ignition.
• Dual-coil offset/ignition.
• Active and passive jet ignition.
• Multi-charge ignition.

Advanced igniting systems for gasoline engines are necessary to improve engine
thermal efficiency under dilution combustion conditions [138]. In addition, many of these
systems improve the combustible mixture’s ignition energy or dispersed the ignition
energy into the entire combustible charge [139]. Due to the plenty and complexity of
ignition technologies, only three types will be discussed and briefly summarized here, and
the scope of their impact on thermal efficiency is as follows:

1. Laser ignition system (LIS).
2. Low-temperature plasma (Corona ignition system (CIS).
3. Turbulent jet igniters (TJI).

4.2.2. Laser Ignition System (LIS)

It has been pointed out that the LIS can raise the peak cylinder pressure by 5% and 15%
on average, respectively [236]. The laser source that is used to initiate combustion has several
potential advantages. Although there are still some limitations, they have come to be an
attractive research field to substitute conventional electrical discharge systems [139,236–238].
The main advantages of the laser ignition system are:

• It is an electrode-less ignition system.
• No electrodes were eroded or quenched effects.
• A laser ignition system’s lifetime will far surpass the spark plug’s lifespan.
• Random position of ignition plasma, capability for the leanest mixture, and precision

ignition timing.

Laser ignition can precisely control the ignition energy deposited in the ignition plasma
and feasibility multi-point ignition easily. These advantages of laser ignition have great
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potential in practical applications and could be used dramatically to improve the combustion
process, which has increased research about laser ignition in the past few years [140]. One of
the significant advantages of LIS is that it is easy to perform multi-point ignition, which is
essential to burn lean mixtures, overcome the loss of flame speed, and reduced combustion
duration [141,239–241]. The various strategies to implement multi-point laser ignition in a
constant volume chamber of an engine have been studied [140,242,243]. The possibility of
multi-point laser-induced ignition has been proved for the combustible mixture for either
constant volume [240,241,243,244] or IC engines [245–247]. A significant improvement in
the combustion of a lean mixture has been obtained by igniting the mixtures at multiple
positions. An increment in peak pressure and PRR was seen for multi-point laser ignition
compared to the single-point ignition.

Bihari et al. [248] observed that laser ignition improved combustion stability under
all operating conditions; furthermore, they noted that the lean ignition limit could be
significantly extended. The study also found that the BTE obtained was 32% when the
laser ignition system is applied. Pal and Agarwal [249] observed that the BTE improves for
both LIS and SI with BMEP rise. Additionally, the superior combustion of the hydrogen-
air mixture within the combustion chamber is associated with higher BTE. Furthermore,
this results in higher combustion efficiency inside the combustion chamber and a higher
BTE for laser ignition (LI) than SI. Patane and Nandgaonkar [140] have reviewed several
technologies utilized for multi-point laser ignition. They found that the increase in laser
energy indicates improved combustion characteristics.

Recently, Prasad et al. [250] found that a maximum BTE is obtained for 31◦ CA bTDC
ST (spark timing) for all hydrogen-compressed natural gas (HCNG) mixtures, and it was
reduced for both advanced and retarded sparking timings. This experimental study also
shows that laser ignition is proper for HCNG engine deployments.

4.2.3. Corona Ignition System (CIS)

In the past few years, radio frequency (RF) corona ignition technology has attracted
much attention. The benefits of the corona ignition system (CIS) comprise continuous
energy delivery, large ignition volume, and the feasibility of combustion diagnosis. In
addition, the CIS can promote near-simultaneous and near-located multiple ignition points,
thereby reducing the (0–10) burning duration [251]. A high-frequency power supply, a
resonant igniter, and corresponding network circuits are the key elements. Therefore, the
CIS can make combustion stable and extend engine operating range and lean stability limits
compared to other ignition systems [252–255]. In comparison to the conventional spark
ignition systems, the CIS can create a significantly larger high-intensity plasma ignition
source, as shown in Figure 13.
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Several studies demonstrated that the early flame propagation had been accelerated,
and the dilution limitation was extended, resulting in more stable operation, improved
fuel economy, and provides further efficiency benefits [235,256–258]. A less than 3% of
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the “coefficient of variation. (COV) of IMEP (COVIMEP)” and shorter ignition delay can be
obtained using an advanced corona ignition system (ACIS) [235]. In addition, it was noted
that the flame propagation, ignition, and flame kernel generation were more robust [251].
Moreover, the ACIS enables advanced combustion strategies like highly diluted mixtures,
very high EGR, and lean-burn, further increasing fuel efficiency [419].

Recently, experiments had been conducted in a single-cylinder optical research engine
through Biswas et al. [420] to investigate the effect of three types of ignition systems on the
performance and emissions, including ACIS, barrier Discharge Igniter, and Nanosecond
Repetitive Pulse Discharge (NRPD). The experimental outcomes revealed that the lean
limit was extended in both ignition systems (ACIS and NRPD), where the COVIMEP is less
than 3% [420]. Another study conducted by Ricci et al. [259] showed that corona igniters
can extend. the lean. stable limit by increasing the early flame growth speed.

In summary, among the non-thermal plasma ignition techniques, the CIS shows
the most possibility for adapting to changing in-cylinder thermodynamic conditions. In
contrast, one of the CIS challenges ensures corona discharge’s inception while avoiding arc
touchdown, particularly in high-density conditions if a higher voltage is necessitated [138].

4.2.4. Turbulent Jet Igniters (TJI)

Another promising approach for improving dilution combustion is the pre-chamber
technique with an auxiliary fuel supply system, usually called turbulent jet ignition
(TJI) [260]. The TJI systems can be categorized into passive pre-chamber systems, in which
the fuel is supplied externally into the pre-chamber, and active pre-chamber systems, in
which fuel is injected inside the pre-chamber. A passive pre-chamber consisting of a cover
with holes encapsulated a smaller volume of fluid. As shown in Figure 14, the pre-chamber
is linked to the main chamber through one or more tiny orifices (~1.25 mm diameter) [421].
This leads to promoting the quenching of flame and penetration into the main chamber. The
main chamber combustion is initiated by the reacting mixture of pre-chamber in multiple
locations throughout thermal, chemical, and turbulent influences [142,261,421].
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The spark plug electrodes are utilized as an improver of ignition energy for the main
combustion chamber [143,262]. The mechanisms behind the TJI combustion include the
intricate coupling of factors [263,264], such as turbulent mixing, chemical reaction, flame
quenching, and flame-piston impingement [265]. The TJI has the merits of enhancing
burning rates and extending gasoline engine lean-burn limits. Some experimental studies
by Refs. [261,266] reported an ITEnet of 42% using the TJI system, and it is an efficient way
to extend the knock limit. Another work made by Bueschke et al. [267] proved that using
the TJI leads to developing flame front, and a short combustion duration has been obtained.
Furthermore, ultra-lean combustion and best fuel consumption can be achieved as well as
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improved engine performance by utilizing a fueled pre-chamber, which indicates that the
TJI is more feasible for engine combustion under partial load conditions [260].

The TJI could be considered one of the solutions for increasing the flame speed and
stabilizing the combustion process. Hua et al. [268] conducted experiments in a single-
cylinder gasoline engine with different ignition systems, involving one-hole TJI, twin spark
ignition, single spark ignition, and seven-hole TJI under various air/fuel equivalence
ratios and various engine loads. The results showed that the cycle-to-cycle variants of
the TJI combustion assessed by the COVIMEP and coefficient of variation (COV) of peak
pressure are significantly reduced due to the rapid combustion rate caused by the jet flame.
Additionally, the single-hole TJI combustion seems to have the best combustion stability,
particularly lowering COV of peak pressure.

Recently, Distaso et al. [269] analyzed the combustion by implementing the numerical
simulation for the active pre-chamber technique of a lean operation engine. The analy-
sis indicated that the overall operation of the TJI with an active pre-chamber could be
subdivided into six principal phases, described as mixing, flame propagation, filling and
scavenging, ejection, re-burning, and extraction and expulsion. At the TDC, approximately
40% of the cylinder volume has been occupied by flames, while traditional spark plugs only
reported 18%. The results revealed an improvement in the engine performance compared
to conventional spark plug when using a TJI system in terms of efficiency.

4.2.5. Hydrogen-Enriched Combustion

Hydrogen enrichment can significantly increase efficiency while reducing emissions
without extensive engine modifications. One option for enriching the hydrogen source is
to produce hydrogen on the vehicle through steam reforming methane actively [270]. The
speed of the hydrogen flame is nine times greater than that of the diesel flame. Therefore,
diesel combustion in the presence of hydrogen would achieve more fast and more complete
combustion [271]. In addition, hydrogen is considered a high energy source because of
the higher heating value, higher flame speed, low ignition energy, and the fact it does not
have carbon atoms. These characteristics make it an essential source for emission control
and the CI engine’s performance improvement [144]. A mixture of hydrogen and methane
showed that CO, CO2, and HC decreased with the increase of hydrogen percentage while
NOx increment [272]. Excessive air ratio fueled with methane and hydrogen showed that
the maximum PCP decreased with an increased excessive air ratio [273]. On the other hand,
under injection timing of 5◦ ATDC with an injection duration of 90◦, the BTE increased
from 23.6% to 29.4% compared to diesel due to better mixing of hydrogen with air, resulting
in enhanced combustion. Although 31.67% of the BTE can be achieved at 15◦ ATDC with
60◦ CA, an engine knock issue has been observed at this condition [274].

Karim et al. [275] reported that with increasing hydrogen content share, BTE had
increased. Another study was conducted by Akansu et al. [274], and their conclusions were
similar. Bari and Mohammad Esmaeil [271] observed that the BTE improved from 32%
to 34.6%, 32.9–35.8%, and 34.7–36.3% at 19, 22, and 28 kW, respectively, by increasing the
percent induction of H2/O2 mixture enrichment. This will lead to higher peak pressure
near the TDC and generate a higher effective pressure for the work to be done, thereby
contributing to efficiency improvements. Deheri et al. [144] revealed that the use of biogas
in diesel engines decreases the BTE by up to 13% while increasing fuel consumption by
up to 36%, which can be enhanced by using such techniques as advanced injection timing
or higher compression ratios up to 10 to 12 %. In contrast, the combustion duration and
ignition delay can be reduced by simultaneously providing biogas and hydrogen to the
cylinder with advanced injection timing and higher CR. It appears that owing to the large
flammability and high hydrogen flame speed, after hydrogen enrichment, the BTE at a
lean-burn limit has been increased and reaches its maximum value of 18.99% when the
fraction of hydrogen volume is one percent [276].

Zareei et al. [277] conducted a simulation study of a diesel engine fueled with hydrogen-
compressed natural gas (HCNG) (the hydrogen amounts used in HCNG are 10, 20, 30, and
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40%) using AVL Fire software based on the method of finite volume. The results reveal
that the BTE has been improved when the concentration of hydrogen in the HCNG blend
increased compared to CNG and pure diesel. This is because of the higher diffusivity
of hydrogen (a homogenous mixture between hydrogen and air would be better). The
BTE has increased up to 8.44% and 14.85% at 2400 and 1200 rpm, respectively, by utiliz-
ing 40% hydrogen in the HCNG blend compared to pure diesel, as shown in Figure 15.
Alrazen et al. [145] analyzed the effect of the hydrogen addition to diesel engines on the
performance and emissions. Therefore, an increase in BTE was observed due to short
combustion duration, increased heat release, and cylinder pressure caused by hydrogen
addition. In brief, hydrogen addition can help to enhance the poor combustion process of
natural gas, which reduces the ignition delay, and improves the flame propagation speed,
peak HRR, and peak cylinder pressure. Nevertheless, it also leads to a pinging sound and
engine knock [278,279].
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4.2.6. Thermochemical Recuperation

One viable method of waste heat recovery (WHR) to utilize the energy of the hot
exhaust gas to maintain the endothermic fuel reforming reaction is defined as thermo-
chemical recuperation (TCR) [280]. The TCR has two main advantages. First, through the
endothermic fuel reforming reaction, the LHV of the fuel is increased due to the WHR
process. Second, the mixture of gaseous reformed products usually has a higher hydrogen
content, which increases burning velocity, a higher octane number, higher resistance to
engine knock, and a more comprehensive range of flammability limits [281,282]. Therefore,
the TCR can improve the efficiency due to the WHR process and lean burn operating
feasibilities, thereby improving the ICE efficiency, approaching the theoretical Otto cycle,
and the potential for increasing its compression ratio.

Popov et al. [283] have concluded that the TCR would improve energy efficiency by
up to 10–25% compared to the traditional recuperation systems. Pashchenko et al. [284]
analyzed the first law energy analysis of TCR by steam reforming several liquid biofuels,
especially methanol, ethanol, glycerol, and n-butanol. The maximum efficiency of TCR
use is at 600, 700, 850, and 900 K for methanol ethanol butanol, and glycerol, respectively.
The results revealed that it was possible to choose the type of fuel owing to steam reform-
ing, and it could be used for the first law energy analysis of the TCR system by steam
reforming of liquid biofuels. However, Chakravarthy et al. [280] demonstrated that for a
stoichiometric mixture of methanol and air, TCR could improve the ideal engine’s second
law efficiency by over 5% and about 3% for volume reforming and constant pressure,
respectively. Furthermore, for ethanol and isooctane, the estimated second law efficiency
increased by 9% and 11% for constant volume reforming, respectively. Brinkman and
Stebar [285] indicated that the improved thermal efficiency resulted from the advantageous
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characteristics of H2-rich methanol-reforming products, such as broader flammability limits
and higher burning velocity, compared to gasoline.

As can be seen in Figure 16, employing the high-pressure methanol steam reforming
(MSR) of 26 bar or higher and DI injector reference flow diameter (IRFD = 3.84 mm)
affords engine efficiency enhancement of 12% to14% in comparison with the gasoline-fed
counterpart. Additionally, the predicted improvement in the engine thermal efficiency will
be much higher under partial loads. This is due to the lean-operating feasibilities permitted
via the high hydrogen content in the reforming products [286]. Previous simulations have
also shown that engine fueling with ethanol decomposition and methanol steam reforming
(MSR) products reduces pollutant emissions more than gasoline [287].
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Another study by Poran and Tartakovsky [288] revealed that the engine feed with
high-pressure methanol steam reforming leads to an improvement in an ITE of 18–39%
(as shown in Figure 17), compared with gasoline feeding. Generally, the reformatted fuels
have revealed a significant enhancement over gasoline in combustion performance, such as
reducing COV for quicker HRR and a wide range of EAR. Tartakovsky and Sheintuch [289]
provided an inclusive review of research on fuel reforming for IC engines. It involves
a discussion of factors to consider before choosing the primary fuel. Steam reforming
provides moderate thermochemical recovery and is suitable for methanol and ethanol
feeds. Air reforming reduces the degree of recuperation but opens up opportunities for
utilizing heavier fuels (like diesel and gasoline). Dry reforming (with carbon dioxide) can
provide the best recuperation, but it is vulnerable to rapid coking.
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Recently, Hwang et al. [290] experimentally studied a “novel thermally incorporated
steam reforming TCR reactor, which utilizes sensible and chemical energy in the exhaust
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to afford the required heat for hydrous ethanol steam reforming. Off-highway diesel
engines were run at three different speeds and loads with diverging hydrous ethanol flow
rates arriving fumigated energy fractions of up to 70%”. The results show that the engine
combustion and thermal efficiencies have suffered under low load conditions but exceeded
conventional diesel combustion (CDC) values during high loads. The increase in operating
temperatures permits CDC, such combustion efficiencies, while providing sufficient heat
to generate a more significant energy content stream. In summary, TCR has significant
benefits for improving IMEP and engine efficiency. Still, further research endeavored to
improve IC engines’ startup, and transient behavior with the TCR is needed to extend the
range of feasible applications.

4.3. Other Advanced Technologies and Strategies
4.3.1. Ultra-High-Pressure Injection

Higher pressure injection has become a practical solution as implementing electronic
fuel injection apparatus promotes engine performance and reduces emissions. In the past
few years, 100 MPa injection pressure with an inline or a rotary pump system has been
considered high pressure. However, in recent years, the pressure has risen to 160~180 MPa
and even beyond 200 MPa. Likewise, engine power output was increased due to lower
ignition delay duration at high injection pressure, leading to better BSFC [291]. On the one
hand, raising the injection pressure enables increasing engine efficiency and decreases fuel
consumption [292].

Researchers in diesel engine manufacturing start to talk about “30–300–3000” tech-
nologies as prospect trends, i.e., “30” represents high power density (30 bars of BMEP),
“300” means 300 bars of peak cylinder pressure (PCP) to promote high thermal efficiency;
and “3000” represents maximum fuel injection pressure in bar for governing NOx, soot,
and enhanced combustion efficiency [6]. Nowadays, the injection pressure has attained
2500–2700 bar [293], and a few studies have attempted to create fuel systems with 3000 bar
injection pressure (Delphi, Denso). Gumus et al. [294] show that the increased injection
pressure provided better outcomes for BTE and BSFC. Additionally, 41.31% of BTE was
obtained with the B100 for 240 bar injection pressure. To obtain better diesel performance,
some authors even put forward average suggestions on how to change the injection pres-
sure [292]. High pressure directly decreases the diameter of droplets. This helps shorten the
most prolonged combustion phase. Lee and Park [295] investigated atomization processes,
spray break-up, droplet diameter, and velocity from a gasoline direct injector fueled with
n-heptane under high injection pressure up to 300 bar. They affirmed that the injection
pressure plays a crucial role in droplet breakup, but there is a limitation in injection pressure
to improve droplet breakup.

Several studies have been conducted using an “ultra-high injection pressure” or
“micro-hole nozzle” with its effect on the engine performance and emissions characteris-
tics [296–298]. However, fuel injection equipment with “ultra-high-pressure injection” is
still being created [299,300]. Li et al. [301] concluded that, for GDI injectors that use ethanol
fuel, the “ultra-high injection pressure” up to 300 bar is a potential method to improve the
homogeneity of the air/fuel mixture. The specific power must be increased concurrently
with an increment in the injection pressure [302]. Mohan et al. [291] studied the effect of
fuel injection strategies on improving engine performance and emissions control. They
noted that increasing fuel injection pressure could improve fuel atomization and enhance
the combustion process and thus increasing BTE. Aoyagi et al. [303] found that the merge of
high EGR rate and high boost pressure as well as the high injection pressure up to 200 MPa
is a practical and effective strategy that can simultaneously reduce the exhaust emissions
and fuel consumption of diesel engines. They also observed that the BTE can be obtained
at 46.3% and 49.7% under the PCP of 28 MPa and advanced the start of combustion (SOC)
to −6◦ ATDC for single and six-cylinder, respectively.

The influence of “ultra-high injection pressure” on diesel ignition and flame character-
istics was numerically studied using the KIVA-3V code with the KH/RT spray breakup
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model [304]. Due to the in-cylinder pressure build-up effect, the “ultra-high injection pres-
sure” will not cause an increase in the length of the flame lift-off. Therefore, the flame lift-off
lengths are approximately the same when the injection pressure is 180 MPa and 500 MPa.
They reported that increasing the injection pressure means shorter injection duration, more
rapid heat release, a shorter burn duration, faster flame penetration, and higher in-cylinder
pressure rise when the amount of fuel injected is the same. In an investigation into the
influence of “injection pressure of a diesel engine”, Kim et al. [305] exhibited that the com-
bustion pressure and HRR became high with increasing fuel injection pressure. As a result,
the ignition delay period was lessened when injection pressure increased, but combustion
duration was extended. In addition, the increase in injection pressure leads to improved
fuel atomization, which improves the BSFC and BTE. In a study that set out to explore
the impact of fuel injection pressure on diesel engines, Şen [306] observed that changing
the fuel injection pressure looks to be a promising technique for improving combustion
characteristics. It is the primary determinant of fuel stratification within the chamber and
has a considerable impact on the combustion process. Moreover, high injection pressure
releases fuel as smaller droplets, resulting in (i) a higher surface area to volume ratio,
(ii) improves the vaporability of the fuel and forming complete combustion, (iii) shortening
the combustion duration, (iv) decreases BSFC, and (v) improves the BTE at low speeds.

There are few fundamental studies currently investigating the combined impact of
“ultra-high injection pressure” usage and “micro-hole nozzle” on the combustion processes
and mixtures formation. Consequently, the use of an “ultra-high injection pressure” and
“micro-hole nozzle” (d less than 0.10 mm) can provide significant improvements in diesel
engine performance [307]. The combination of “ultra-high injection pressure” and “micro-
hole diameter” helps avoid the interference of lift-off length and liquid length, reducing
the formation of soot. Another study conducted by Zhai et al. [308] revealed that the
injector with the “micro-hole diameter” and under “ultra-high injection pressure has a
lower average spray equivalence ratio, better

.
MA/

.
MF ratio, and larger spray area and

spray angle. Recently, Zhao et al. [293] experimentally found the cessation of an increment
of fuel consumption under the injection pressure above 3500 bar. The fuel state change
results in a decrease in the sound local velocity due to an increase in fuel temperature
resulting from the increase in injection pressure. As the injection pressure increases, the
fuel velocity from the nozzle holes and fuel consumption stop increasing.

Furthermore, the design of the nozzle orifice’s influence on the combustion characteris-
tics was investigated by Ewphun et al. [309] under PCCI mode conditions and multi-pulse
“ultra-high-pressure injection”. The experiments were performed on a “single-cylinder”
engine at 0.55 MPa IMEPg at 1750 rpm, where the injection pulses were three pulses equally
mass for the main injection at injection pressures of 1500, 2000, 2500, 3000, and 3500 bar.
The results show an increase in thermal efficiency, NOx, and smoke.

In summary, higher injection pressure results in higher thermal efficiency, and fuel
consumption would be better. On the other hand, ultra-high injection pressures reduce soot
emissions, essentially attributed to better air entrainment and spray atomization, leading
to increased BSFC and NOx. Therefore, fuel injection strategy modifications are required
up to 300 MPa to attain higher thermal efficiency.

4.3.2. Variable Compression Ratio

The variable compression ratio (VCR) concept is a promising approach to improving
engine performance, thermal efficiency, and decreased emissions. The higher compression
ratio achieves faster laminar flame speed; hence, the ignition delay period will be shorter.
High CR significantly improves the expansion efficiency and BTE. The VCR technology is
characterized by higher power output under high load operating conditions and higher
efficiency under lower load. This leads to a lessening in fuel consumption and CO2
emissions [310]. Moreover, combining the advanced technology in combustion processes,
internal aerodynamics, and emissions formation to VCR engines will assist high design
power and torque engines as well as satisfy the compression ratio required [311–313].
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Several authors reviewed the geometric methods and solutions used to implement
VCR and predicted what benefits VCR would bring to current engine designs [146]. Based
on the effort performed by Hariram and Vagesh [314], a decline in BSFC was observed
by about 30% when CR raised from 16 to 18, and BTE increased by 13% at a full load of
the VCR CI engine. Asthana et al. [310] exhibited that the change in the CR from 9 to 11
improved the BMEP by a moderate amount. Aoyagi et al. [303] performed experiments on
a single-cylinder diesel engine to study the influence of the VCR on fuel consumption and
pollutants under high EGR rate and high boosted pressure conditions. They observed 46.3%
of BTE achieved when the ECR is reduced by employing a VVT system while retaining the
PCP at 280 bar. Muralidharan et al. [315] conducted experimental research on biodiesel
and its blend at a set compression ratio of CR = 21. The BTE is directly proportional
to the applied load and increased, while SFC was inversely proportional to the applied
load. Therefore, compared with diesel, the maximum BTE at full load is increased by 4.1%.
Mohanraj and Kumar [316] noted that the BTEs of the biodiesel has been increased for
all compression ratios (CR = 14~18), and the highest value was 30.57% for compression
ratio 18. Bora et al. [317] found that the best BTE obtained at full load was 20.04% at a CR
of 18 with a rice bran biodiesel-biogas dual fuel.

Pan et al. [318] observed that cycle to cycle variations could be significantly reduced
by increasing CR at a given EGR ratio. This is mainly because of the influence of laminar
flame speed and turbulence intensity, which increases with the increase of CR. Sharma and
Murugan [319] have conducted experimental investigations under various compression
ratios of 16.5, 17.5, and 18.5 with the oil gained from the pyrolysis of waste tires blended
with diesel for about 80% and 20%. It showed a clear outcome that the BSEC would be
diminished for the blend while the engine’s compression ratio increased. In addition, the
BTE increased by 8% (at full load) when the compression ratio rose from 17.5 to 18.5. In
another study, the performance of dual-fuel diesel engines was evaluated by Bora and
Saha [320] using rice bran biodiesel, and experiments were carried out under different
loads and various compression ratios of 18, 17.5, and 17 with fixed injection timing of 23◦

BTDC. It was remarked that the BTEs at full load were 20.27%, 19.97%, and 18.39% at CRs
of 18, 17.5, and 17, respectively.

Babu et al. [321] studied the impacts of fuel injection pressure and VCR experimentally
for a single-cylinder compression ignition direct injection (CIDI) engine, which runs with a
40% Palm Stearin methyl ester blend. The results showed that the BTE was higher at an
injection pressure of 21 MPa, and CR of 16.5, while the BTE had been higher for CR of 19
under the rated injection pressure of 19 MPa. Diesel with two biodiesel fuels (Simarouba
and Jatropha) were blended to investigate the VCR effect on the combustion characteristics
and emissions [322]. The main conclusion revealed that the increase in CR increased the
PCP, HRR, and PRR; meanwhile, the combustion characteristics had been improved for
all tested fuels. Kalbfleisch and Darbani [422] reviewed the effects of VCR on the BMEP,
BSFC, and emissions. The increase in CR results in a higher mean BMEP, lower BSFC, and
a higher HRR. Turning to a VCR engine can provide good performance under all loads
and give a higher combustion rate. Additionally, it clearly shows that the VCR engine can
improve combustion efficiency, reduce ignition delay (ID) under variable loads, and afford
a higher compression ratio. In addition, VCR engines have better control capabilities at
peak cylinder pressures (PCPs), thereby reducing fuel consumption [147]. Zhang et al. [323]
observed that the changing CR from 15.7 to 18.9 leads to an increase ITEg due to increasing
the CR.

Recently, engine combustion and emission performance of single-cylinder diesel
engines have been studied by Rosha et al. [324]. This study is fueled by 20% palm biodiesel
and blended with diesel fuel under various compression ratios (16, 17, and 18). For
palm biodiesel, peak cylinder pressure (PCP) was observed to be higher than neat diesel
operation at CR of 17 then increased further with increasing CR from 16 to 18 owing to the
improved BTE (14.9%) at higher compression ratios (CRs). The results show that the rise in
compression ratio increases the BTE [324].
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In summary, the VCR aims to decrease fuel consumption under low loads. It intends to
minimize environmental damage by lessening the CO2 emissions while affording improved
power and torque under high loads. Finally, it shows that the biodiesel-diesel blend ratio
and engine CR play a predominant role in enhancing engine performance and emissions.
Although inclusive studies have been conducted on the performance of biodiesel blends in
CI engines under fixed CR, there have been few dispersed studies on variable compression
ratio (VCR) engines using biodiesel as the blended fuel.

4.3.3. Double Compression Expansion Engine

Though much technological enhancement has been made in the last few years, the
four-stroke engine configuration remains unchanged. The need for high-efficiency engines
is a reason to research alternative engine principles. A split-cycle engine is an ICE that has
compression and expansion strokes in separate piston cylinders and operates on an open
cycle, like conventional engines. The most noted benefit available with split-cycle engines
is improved thermal efficiency over traditional engines [148]. Practical compromises or
inherent architectural split-cycle engine design limitations may include why improved
thermal efficiency is not realized practically, and thermal management has significant
challenges when the expansion cylinder is subjected to high constant temperatures [148].
Due to the engine cycle being performed in two or more cylinders, the double compression-
expansion engine (DCEE) idea belongs to the split-cycle engine family [325].

Several researchers have studied the effect of the DCEE on engine performance. Bha-
vani et al. [326] suggested that adopting an isobaric heat addition for a peak cylinder pres-
sure (PCP) could have enabled a high BTE as any other heat addition process besides engine
noise was lower. Lam et al. [24] simulated DCEE using the GT-power one-dimensional
software, and they found that the DCEE with Lambda 3.0 could give a BTE of 56%, but
decreasing the lambda to 1.2 could reach a BTE of 54.5%. This is mainly due to the higher
overall heat transfer losses that would be close to the stoichiometric combustion. Recently,
Lam et al. [327] reported that the growth in the load engine leads to increased efficiency due
to decreased inter-cooling relative loss and improved mechanical efficiency. Additionally,
engine tests reveal that a GIE of 47% was achieved in most operating conditions (98.2
to 310.4 mg/cycle of mass injecting). Furthermore, they found that a peak BTE of 52.8%
was attained at a very high injection mass. Though the DCEE can achieve higher thermal
efficiency, it suffers heat losses from the high-pressure method. Goyal et al. [2] analyzed
the efficiency of the DCEE concept using one, two, and three-injector events. The benefits
of these injector events are to minimize the convective heat losses. Therefore, GT-Power
software has been employed to simulate this study for one and three-dimensional. The
results reveal that the three-injector event minimized the heat transfer losses and enhanced
the brake thermal efficiency, compared to the single and two-injector events. In particular,
the three-injector event led to a high BTE and ITE of 54.2% and 58.5%, respectively.

4.3.4. Engine Knock Control

In SI engines, engine knock is an abnormal phenomenon that can restrain thermal
efficiency and engine performance [149]. The conventional SI engines, which run at a high
compression ratio, suffer from engine knock triggered by auto-ignition in the end-gas region
at high loads [328,423]. Several methodologies are used to improve the thermal efficiency
by suppressing engine knock. First, clarifying the inner mechanism between knocking
characteristics and auto-ignition [229,329]. Second, promoting SI flame propagation to
vanish the end-gas auto-ignition [330]. Third, using advanced compression combustion
approaches to govern auto-ignition [331].

There are several approaches to detect knock. The first is based on the direct
measurement of in-cylinder parameters. The second approach is based on indirect
measurements, such as cylinder block vibration and sound pressure [149,332–334]. Both
are listed as followed.
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• Heat transfer analysis.
• Temperature analysis.
• Cylinder block vibration analysis.
• In-cylinder pressure analysis.
• Acoustic emissions and light radiation analysis.
• Ion current analysis.

Furthermore, one of the significant challenges faced by the development of SI engines
is suppressing engine knock. Therefore, some methods can efficiently repress knock,
and each has its benefits and weaknesses. From the concept of increment in-cylinder
turbulence, Hibi et al. [335] studied the impact of various compression flow fields on
engine knock. The findings demonstrate that “end-gas auto-ignition” has been suppressed
more evident under quick flame propagation conditions. Optical studies have recently
shown that the auto-ignition does not necessarily cause engine knock when the auto-
ignition flame is controllable [336]. Chen et al. [337] demonstrated that “end-gas auto-
ignition” is an adequate condition of engine knock, and it is significantly associated with
the peak HRR, particularly when auto-ignition occurs. In addition, under extreme knocking
conditions, rapid turbulent flame propagation often leads to the advanced auto-ignition
timing, resulting in concentrated heat release and thus severe auto-ignition. In other
words, a higher flame speed may induce heavier engine knock at enhanced turbulent
intensity conditions.

Recently, Duan et al. [338] studied the efficiency, combustion, and knocking charac-
teristics of SI engines with a lean-burning engine fueled with n-butane liquefied methane
gas mixtures. The results indicated that the energy contribution of n-butane increased
with increased cylinder pressure, heat release rate, and accumulated heat release. The
burning location was also increased by 50%, the burning time was decreased by 10–90%,
and the knocking strength was increased. In addition, if the n-butane energy increased,
the oscillation amplitude also increased, leading to more significant cycle-to-cycle varia-
tions. Nevertheless, the IMEP and the ITE first raised as the percentage of n-butane energy
increased and then reduced. This is due to the increase in n-butane energy share which
leads to shortened combustion duration (10–90%) and advanced 50% combustion location,
thereby improving the ITE.

5. Advanced Thermal and Energy Management for Improving Thermal Efficiency

It is known that around two-thirds of the thermal energy is released into the atmo-
sphere as waste heat, i.e., by coolant, lubricating oil, and exhaust gas [350,351], and almost
40% of the heat energy is lost through exhaust gas [424]. Several techniques have been
adopted for further benefits of thermal and energy management in terms of thermal ef-
ficiencies, such as exhaust heat recovery (e.g., organic Rankine cycle and thermoelectric
generator) and adiabatic IC engines.

5.1. Exhaust Heat Recovery

Recovery of exhaust heat (EHR) essentially transforms the exhaust waste heat into
some usable energy. The recovered energy can either be used to generate electrical en-
ergy for storage in batteries or can be reintroduced into the engine as mechanical energy.
Here we will discuss some applications of the EHR which are represented by exhaust
gas turbocharging (reviewed in Section 3.2), organic Rankine cycle, and thermoelectric
generation. The BTE of the current road diesel engine at full load is close to 43%, of which
28% of the fuel energy is wasted in the exhaust gas (comprising 4% for pumping losses),
and 28% of the fuel energy is dissipated to the cooling medium as heat rejections to the
environment (containing 4% for parasitic accessory power and mechanical friction), and
2% for miscellaneous heat loss, as shown in Figure 18 [425,426].

There are strong interactions between exhaust gas energy and heat rejections, largely
depending on pumping loss and EGR rate. When the EGR rate increases, exhaust energy
becomes less, and the heat rejections become higher. Pumping loss usually is related to
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EGR rate and air-fuel ratio (or turbine area, turbocharger efficiency, and EGR flow circuit
restriction). Such changes in energy distribution affect waste heat recovery strategies.
Through the allocation improvement target for each part of energy distribution or each
engine subsystem, a roadmap to achieve 50–55% BTE can be planned [6]. The realization
of various theoretical and experimental waste heat recovery (WHR) technologies showed
that each technology affects the improvement of BSFC and operability of diesel engines
under both steady-state and transient operation. In many diesel engine applications such as
marine propulsion, transport vehicles, and electricity development, the WHR can effectively
be applied [339,352–355].
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5.1.1. Organic Rankine Cycle

The exhaust gasses and the cooling liquid waste two-thirds of the fuel energy con-
sumed by IC engines (ICEs) [356]. The recovery from waste heat can greatly increase
thermal fuel efficiency, reduce engine emissions, and decrease fuel consumption. The most
suitable technology for mass processing uses an Organic Rankine cycle (ORC) to extract
low-grade waste heat from these systems. It can be considered a promising solution for
improving the efficiency of large vehicles such as trucks and buses [357]. The ORC system
does not generate steam from water but vaporized an organic fluid characterized by a
higher molecular mass than water, resulting in slower turbine rotation, lessened pressure,
and no corrosion of metal parts and blades. Moreover, the characteristics of the ORC
are simple structure, high reliability, low cost, and easy maintenance, but its efficiency
is reduced at higher temperatures (above 723 K) [340]. The efficiency of an ORC varies
typically from 10% to 20%; meanwhile, it is an attractive choice for heat recovery between
423~473 K [353,358]. Leading engine manufacturers recently announced that they have
developed an HD diesel engine for trucks with a BTE of 50%, and they plan to increase it to
55% using various Rankine cycle configurations [427,428]. Therefore, when constructing an
ORC, the selection of working fluid and the design of a suitable expander have to be given
particular attention [359–365].

Recent studies have investigated the application of the ORC system or the Steam
Rankine Cycle (SRC), as they are conducted considering that heat is extracted not only
from the exhaust gases but also from the charge air cooler and the exhaust gas recycling
system. Therefore, the maximum improvement in the BSFC can reach 9% in SRC and up
to 12% in ORC [366–368]. The electric energy generated by the onboard ORC can supply
auxiliary equipment such as air conditioners or recharge batteries. One of the principal
obstacles with the onboard ORC is the strict transient response, which needs complex
control schemes to sustain acceptable levels of efficiency and performance [369]. Endo
et al. [370] developed a Rankine cycle system for hybrid vehicles with automatic control
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based on engine load changes. The outcomes show that when driving at a constant speed
of 100 km/h, the maximum output power is 2.5 kW, and the thermal efficiency increases
from 28.9% to 32.7%.

Some studies on the ORC systems have been focused on recovering waste heat in
exhaust gasses only and working fluid selection, where performance analysis was exam-
ined in these studies [364,371–373]. To recover more waste energy and increase engine
performance, some researchers have resorted to the multi-heat ORC method that recovers
both the coolant and exhaust gases. The ORC preheating system and the ORC “dual-loop
system” currently constitute two principal kinds of ORC multi-heat sources. The study
shows that the difference between critical temperature and heat source temperature plays a
crucial part in choosing the working fluid because different optimum values are assumed
depending on device configuration. Accordingly, general guidelines for selecting working
fluids and device configurations are proposed, which any designer may use to optimize
power generation at certain heat source temperatures (120~180 ◦C). These guidelines re-
sulted from a variety of design optimizations of an extensive list of organic working fluids,
in which the cycle effectiveness and heat recovery efficiencies contribute separately to
achieving optimum device performance [374].

Zhang et al. [375] used the R245fa and R134a double-loop ORC to investigate the
performance of light-duty diesel engines. The findings showed that the output power
was raised from 14% to 16% in the peak thermal efficiency region and from 38% to 43% in
the small load area when an ORC system was used. Finally, the BSFC has also decreased
dramatically in the entire operating area of the engine. Their conclusion also revealed that
“the dual loop ORC system was a promising system for recovering waste heat from a light-
duty vehicle diesel engine in terms of fuel consumption and power output. Chen et al. [376]
proposed a confluent cascade expansion ORC (CCE-ORC) system for recovering engine
waste heat, which has a more simplistic structure, higher efficiency”, and less volume
than traditional dual-loop ORC systems. Thermodynamic models of these components in
the CCE-ORC system are recognizable as being sufficiently accurate to determine system
performance by comparison with Song and Gu [377]. The CCE-ORC system is more
compact because it can remove the intermediate heat exchanger and lessen its total volume
to 21 L (see Table 4). Furthermore, the result reveals that the net power with cyclopentane
is the largest, followed by pentane and R1233-zd-e, and peak thermal efficiency has been
enhanced from 45.3% to 49.5%. Furthermore, the BSFC is reduced from 185.6 g/kWh to
169.9 g/kWh. Regarding the power produced and real cycle efficiency, the ORC output
has been computed by considering n-Pentane as a working fluid by Mariani et al. [357]. As
a result, fuel consumption is decreased by 3.7% from 271.5 g/km to 261.4 g/km over the
driving cycle. According to the white paper on the US Super-Truck initiative, Cummins put
an ORC prototype in a heavy-duty vehicle. The outcomes indicated that the BTE could be
improved by 3.6 percent [378]. There have also been numerous reviews focused on ORCs
for waste heat recovery (WHR). Sprouse and Depcik [379] concentrated on the working
fluid selection and expander. Wang et al. [341] reviewed the working fluid selection,
expander design, and system configuration of ORCs. Zhou et al. [342] reviewed the ORC
architectures, working fluids, and components. Chintala et al. [343] reviewed CI engines
with ORCs concerning heat exchangers, back pressure, expanders, working fluids, and
performance analysis. Xu et al. [344] reviewed a wide range of subjects in the “heavy-duty
diesel engines (HDDEs)” ORC-WHR system development, including power optimization,
working fluid selection, expander selection, heat exchanger selection, system architecture
evaluation, control strategy evaluation, experimental and simulation work overview, and
limiting factors.

Recent progress has been critically reviewed by Tian et al. [345] to fill the gap between
the “Basic Rankine cycles and Heat source based ideal thermodynamic cycle concerning
the aspects of cycle configuration, working fluids, and key components. The analysis of
this review shows that siloxanes and CxHyOz with a high critical temperature (such as
benzene, cyclohexane, toluene, and MM) have a satisfying thermal matching with waste
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heat sources. Basic ORCs using these working fluids could produce a high thermodynamic
perfection (up to 54.1%)”, while the highest thermodynamic perfection of 62.3% can be
expected to achieve concerning the cycle configuration, dual-pressure Rankine cycles, and
cascade Rankine cycles.

Table 4. Comparison between dual-loop ORC and CCE-ORC systems [376].

Parameters CCE-ORC System Dual-Loop ORC System

Engine speed (rpm) 1400 1400
Net power output (W) 29,000 26,800

Total thermal efficiency (%) 11.67 11.39
Total exergy efficiency (%) 38.62 35.72

Heat transfer rate of the high-temperature evaporator (kW/◦C) 2.142 1.790
Heat transfer rate of the low-temperature evaporator (kW/◦C) 8.445 8.323

Heat transfer rate of the condenser (kW/◦C) 8.290 8.151
Heat transfer rate of intermediate heat exchanger (kW/◦C) 8.803

The heat energy of a high-temperature evaporator (W) 133,400 120,000
The heat energy of a high-temperature evaporator (W) 115,200 115,200

The heat energy of the condenser 219,700 208,400
The heat energy of the intermediate heat exchanger 102,700

High evaporating temperature (K) 488 488
Low evaporating temperature (K) 343.95 345.45

HT evaporating pressure (bar) 32.925 32.925
LT evaporating pressure (bar) 1.956 6.486

HT turbine pressure ratio 16.8 11.8
LT turbine pressure ratio 1.7 183

HT turbine mass flow rate (kg/min) 12.6 13.38
LT turbine mass flow rate (kg/min) 29.28 64.98

5.1.2. Thermoelectric Generation

Owing to the high heat loss, engine efficiency is poor during the burning process. The
heat loss is either from the coolant or the exhaust gas. If this heat is recovered or used
by some means, then it is possible to increase the overall engine performance. In recent
years, thermoelectric generator (TEG) devices have been developed to recover energy from
ICEs, mainly from exhaust systems, where a third part of the energy intake has been lost
because of stringent environmental regulations [380]. The TEG is a thermoelectric-based
solid-state system that directly transforms heat into electricity. Thomas Seebeck first discov-
ered the phenomenon of thermoelectricity in 1821 [346]. The TEG operates on the Seebeck
effect, which states that a voltage difference is induced between the two materials when
there is a temperature difference between two dissimilar electrical conductors or semicon-
ductors [347]. In other words, thermoelectric materials transform temperature gradients
directly, employing the Seebeck effect from any heat source into electrical power [381].

Numerous methods to harness the waste heat have been invented and added to the
diesel engine application. The use of TEG is one such. The key benefits of the TEG are
compact, no maintenance needed, quiet operation, no moving parts, and comparatively low-
pressure drop, so it is simple to implement [348,382,383]. The biggest obstacle to recovering
energy lies in the lower thermal efficiency of commercial thermoelectric modules [384].
The energy conversion performance of thermoelectric modules and materials has been
enhanced due to several research groups’ efforts worldwide [385]. Consequently, the
temperature gradient in the modules ought to be large to extract substantial quantities
of energy.

The TEG power output depends significantly on the type of engine it is mounted. This
is the purpose why several studies are concentrated on SI engines [386–388] or heavy-duty
engines [389–392]. Previous studies mainly related to the simulation results achieved on the
CFD model [393–395]. Nevertheless, these experiments are not appropriate for examining
two factors of the number and distribution pattern of the TEMs that influence ATEG
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electrical output power because they cannot accurately and rapidly obtain temperatures on
the hot and cold sides of each TEM. Romero et al. [396] analyzed the impact of different
engine efficiency factors throughout engine start-up and warm-up in various sections
of the New European Driving certification cycle, focusing on the engine’s operation in
transient conditions. Tao et al. [393] and Wang et al. [394] indicated that the total power
output increases rapidly due to increases in the number of TEMs. However, the output
power is quickly saturated while the number of TEMs is greater than the threshold through
CFD simulations. Furthermore, Weng and Huang [395] investigated the impacts of the
number and rate of coverage by choosing the varied lengths of TEMs and heat exchangers.
Nevertheless, CFD simulations cannot render a model for achieving the distribution pattern
and perfect number of TEMs. Although waste heat is considered a free energy source,
assessing conversion efficiency is essential for estimating the TEGs performance. The
conversion efficiency of waste heat recovery can be computed as follows [397]:

ηTEG =
Pmax

Qabsorb
(6)

or

η =
Poutput

.
mcp(Tin − Tout)

(7)

where Poutput, cp,
.

m, Tin, and Tout refer to the TEG’s power output, specific heat, mass flow
rate, inlet temperature, and outlet temperature of the exhaust gas system, respectively.

Figure 19 exhibits the TEG’s conversion efficiency with a maximum value of 2.8%
occurring at a BMEP of 0.6 MPa and 2000 rpm, as given in Table 5. The engine speed and
load have increased both the TEG conversion efficiency and power output. Furthermore,
by decreasing the heat loss of the exhaust gas to the environment and the contact resistance
between the cooler and the TEMs, the TEG conversion efficiency and output power can be
improved. The pressure drop of exhaust gas through the TEG is held below the level of
several kilopascals. Due to the TEG installation, a significant increase in back pressure on
the exhaust gas channel increases the engine fuel consumption, which will partly repeal the
TEG’s recovery of waste heat. Additionally, the pressure drop of exhaust gas through the
system increases with load engine and speed. However, under all experimental conditions,
the pressure drop on the TEG is lower than 1.46 kPa [397].
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Table 5. Characteristics of thermoelectric generation [397].

Speed
(rpm)

Load (BMEP)
(MPa)

Mass Flow Rate
(kg/h)

Exhaust Gas Inlet Temperature
(K)

Conversion Efficiency
(%)

1000

0.2 64.6 414.9 0.9
0.4 68.9 473 1.5
0.6 74.2 533.8 2.1
0.8 81.5 585.4 2.4
1.0 88.4 632.6 2.7

1500

0.2 80.4 447.9 1.3
0.4 94.6 509.79 1.9
0.6 108.3 562.5 2.3
0.8 124 608 2.7

2000
0.2 121.8 489.6 1.9
0.4 147.8 550.8 2.6
0.6 174.2 597.1 2.8

Cózar et al. [398] suggested a numerical model procedure to get the optimum number
and thermal configuration of TEMs. It found that the TEM sensitivity of each column
cannot be analyzed yet by numerical simulation. The total power output of automotive
thermoelectric generators (ATEGs) has been improved using genetic algorithms through
through [399,400]. Based on the numerical analysis, the optimization and design of the
ATEG system are unreasonable because the aim ignores the thermoelectric conversion
efficiency. Nag et al. [347] made reviewed the TEG application and the possible methods
that can be used to get maximum power generated from the EHR. They have found that
conversion efficiency can be improved by adopting and developing the semiconductors,
besides optimization of automotive exhaust thermoelectric generator (AETEG) can achieve
the same purpose. Recently, Ezzitouni et al. [401] performed a TEG design concentrated
on reducing the pressure drop. The results showed an increase of 13% was observed
in the TEG’s electric performance significantly when suitable isolation of TEG devices
was implemented. Secondly, thermoelectric generators could enhance global efficiency,
notwithstanding the low efficiency of current thermoelectric materials. These results show
a set of operations in which the TEG can improve transportation efficiency, which could be
improved in the future by increasing the efficiency of new thermoelectrical materials.

In summary, it appears that the TEG method is the simplest of these technologies
(ORC, and turbo compound), but its drawbacks have the lowest efficiency (<4%) [402].
Therefore, it will not be a good substitute unless highly efficient thermoelectric materials
should be available. The turbo-compounding method produces high engine backpressure
and is unable to utilize all engine waste heat, such as coolant waste heat. On the other hand,
the way is simple to implement and boost engine efficiency under certain conditions by
8% [403]. For the ORC, its high cost and complexity of the system are the key obstacles to
installing ground vehicles [403]. The Organic Rankine cycles techniques have the highest
promising overall efficiency with an adequate truck size compared to other techniques
and can recover waste heat energy from coolant, intercooler, and exhaust gases [355].
Furthermore, Rankine cycles with an organic working fluid appear to have the most
potential for efficiency gains.

5.2. Adiabatic IC Engines

The interest in adiabatic engines goes back to the 1930s of the 20th century when the
first adiabatic engines were produced [404]. In recent years, there has been a significant
interest in engines with low heat loss, sometimes called adiabatic engines. An adiabatic
engine is an engine that does not add or deducted heat in the process of thermodynamics.
However, reaching a 50% to 60% degree of adiabatic could be accomplished using advanced
ceramic materials. In many fields, adiabatic engines are called low heat rejection engines
(LHRE), known today as adiabatic technology, such as the insulation of the combustion
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chamber (piston crown, cylinder head, and cylinder liner), intake, and exhaust ports. The
exhaust manifolds, eliminating the cooling system and its related losses, and waste exhaust
heat utilization by turbo compounding are the adiabatic diesel engine results for future
revisions, which offer a reduction in BSFC [405]. In IC engines, heat loss occurs from
different sources, including exhaust gas, cooling water, and unaccounted losses.

Reducing heat loss is undoubtedly the most important means to improve efficiency
in-cylinder energy, transforming into an increase in thermal efficiency. Thermal barrier
coatings (TBC) technology coats a thin layer of material with lower thermal conductivity
and lower heat capacity on the base material (mostly piston surface). It has been considered
a key strategy to reduce cooling losses in the cylinder [406]. The TBC plays an essential
role in engine insulation elements, gas turbines, and aero engines that operate at high
temperatures. The TBC is a layering system deposited on thermally high-loaded metallic
ingredients, for example, in an engine characterized by low thermal conductivity. One of
the most frequently used TBC materials is Yttria Stabilized Zirconia (YSZ), which shows
good resistance to thermal fatigue and thermal shock at temperatures up to 1150 ◦C. The
YSZ coating shows increased combustion efficiency by 0.1–0.4%, and the GIE raised by
1.9–3.0% due to higher combustion efficiency and minimized heat loss. Furthermore, it can
significantly advance the auto-ignition point and shorten the combustion duration [407].
The utilization of the TBC leads to an increase in the temperature process, and hence the
thermal efficiency will be increasing. Contrary to metals, ceramics are usually more resistant
to corrosion, oxidation, and better thermal insulators. Furthermore, other materials like
rare earth oxides and lanthanum zirconate are becoming promising materials [429].

Several efficient approaches are required to improve engine thermal efficiency, such as
the thermal losses to the cooling system having to be reduced, the exhaust losses having to
be decreased, and the loss of friction being reduced. The most striking aspect is minimizing
heat transfer from the gas within the cylinder by coolant fluid (water or air). Therefore,
adiabatic processes must be occurring to attain high thermal efficiency. In the past few years,
much research has been conducted to reduce heat transfer to improve engine efficiency
by using materials with lower conductivity. Kamo et al. [430] used computational results
to determine the potential impact of thin Thermal barrier coatings (TBC’s) employed on
gasoline engines. They also suggested that the combustion chamber’s deposits could be
utilized as thin TBC’s. Assanis and Mathur [408] found that the brake power increased by
18%, and fuel consumption was reduced by 10% under low speed and part load conditions
using thin TBC’s in SI engines. Kawamura and Akama [409] have developed a heat-
insulating system for the combustion chamber to improve the engine’s thermal efficiency.
The findings showed that by using a heat insulation structure, the thermal efficiency will
increase by about 57.5%. Mitianiec [410] studied the impact of an adiabatic process on the
engine work parameters. The results showed that the total thermal efficiency increased
up to 37% at 2500 rpm for adiabatic engines. Karthikeyan and Srithar [411] have used
the Yttria Stabilized Zirconia (YSZ) to coat the piston, cylinder head, and valves to study
engine performance. They reported that the volumetric efficiency dropped by 9% at full
load for the insulated combustion chamber. This was due to a reduction in heat rejection
when the ceramic insulation was used, which led to an increase in the wall temperature of
low heat rejection engines. In addition, they found that the glow plug-assisted insulated
ethanol engine offered the highest BTE at all loads and attained 32% at 75% load.

In SI engines, increased wall temperature may promote engine knock due to the
auto-ignition of a “homogeneous air-fuel mixture in the end gas region”. Therefore, SI
engines must use fewer insulating materials to avoid excessive wall temperature. In
some cases, insulation is provided by means other than the TBC but increases the surface
temperature [431]. Combustion chamber insulation provides more advantages in a diesel
engine than in a gasoline engine. Based on this, the review will be focused extensively on
the adiabatic compression ignition engines. As mentioned early, the BTE of IC engines
is still about 42–43, which is mainly due to heat loss. To prevent heat loss, the LHRE
technology can be adopted, and it has been concentrated on for many years [349]. The main
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advantage of diesel engine heat insulation is improving thermal efficiency and reducing the
cooling system. Insulation of the combustion chamber surface, such as the piston crown,
may not significantly improve the thermal efficiency because it may increase heat transfer
through the untreated surface. At the same time, the overall loss remains almost unchanged.
In addition, the reduction in heat loss over the surface of the combustion chamber leads to
an increase in the energy contained in the exhaust gas. Increasing the surface temperature
of the combustion chamber due to additional insulation usually decreases volumetric
efficiency, and turbocharging will recompense for this reduction. Higher temperatures
in the cylinder can also reduce ignition delay. It also enables the engine to withstand a
relatively wide range of fuels. Kulkarni et al. [412] performed an experiments study on
modified diesel engines in two modes, normal and LHR. The results show that Mahua oil
methyl ester (MOME) exhibited lower in-cylinder pressure and HRR than diesel as EGR
increased. This could be attributed to the slow combustion process due to the dilution
impact noticed with EGR induction. In addition, with MOME fuel, the maximum BTE
attained with the LHR engine is 26.96%, while the maximum BTE observed in diesel engines
operating at 80% load is 31.25%.

Three components of a diesel engine, such as the cylinder head, piston top surface,
and cylinder liner, were coated entirely by partially stabilized zirconia (PSZ) [413]. The
utilization of an adiabatic engine was observed to be much better than that of the engine
baseline in terms of lower specific fuel consumption of about 8%, and an overall increment
of 10% in the BTE observed due to reduced loss of heat. Senthur et al. [414] used neat diesel
fuel and then mixed it with three different percentages of water, known as diesel water
mixture, where the piston, surface cylinder, and the facing of the valve were coated with the
PSZ, which has a low thermal conductivity property. The results showed that the DWM 3
held a higher BTE (0.93%) than the other tested fuels. Furthermore, the diesel engine had a
lower specific energy consumption among the tested fuels, as shown in Figure 20.
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The coated piston by YSZ with a thickness of 0.325 mm and surface roughness (Ra)
of 6 micrometers showed an increment in the GIE up to about 3.5% compared with the
uncoated piston under the same operating conditions [415].

Uchida [406] reviewed the influence of the TBC’s on combustion performance and
emissions of gasoline, diesel, and HCCI engines to investigate different TBC materials
characteristics. Among the different engine losses to be reduced, cooling heat loss is one
of the most prevailing losses. Many endeavors were made to reduce it by isolating the
wall of the combustion chamber, but most of them were unsuccessful. Charge air is heated
by the continually high temperature of wall insulation. It is a significant obstacle since it
leads to deteriorating the charging efficiency, increasing the knocking tendency in gasoline
engines, and increasing the soot and NOx emissions in diesel engines [406]. In conclusion,
an adiabatic engine has a high operation temperature, and low-grade fuels such as kerosene,
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esterified neem oil, alcohol, esterified castor oil, and fuel with a low cetane number could
be used.

Recently, a novel heat insulation technique was developed by Kawaguchi et al. [416],
which reduces cooling heat loss without heating the charging air Thermo-Swing Wall
Insulation Technology (TSWIN) by varying the surface temperature of insulation coating
rapidly after each engine stroke. The term “thermo-swing” refers to low heat capacity, low
thermal conductivity, and a thin insulating coating. It was employed on a diesel engine
piston and revealed an increment in thermal efficiency [416]. In conclusion, various material
coatings on combustion and emissions performance of diesel engines when adopting
biofuels are discussed recently by Pandey and Murugan [349]. Moreover, the possibility of
various kinds of biofuels with different coating materials has been reviewed. In general,
for the uncoated engine, the BSFC increased when fueled with biofuels while the BTE
decreased. Correspondingly, the BTE and BSFC were enhanced when the engine is coated
and fueled with biofuel. A coated engine such as piston coating is not proper for realizing
the best performance concerning the uncoated engine due to the high heat transfer rate
between the cooling jacket system and combustion chamber. Therefore, most researchers
have diminished the HRR by coated valves, cylinder heads, and cylinder liners. Moreover,
an increase in the peak in-cylinder pressure and EGT have been recorded [349].

6. Roadmap for Improving Thermal Efficiency

Improving thermal efficiency has been for a long time an aspiration goal of engine
researchers. In history, diesel engine brake thermal efficiency gradually increased from 34%
to 44% between the 1960s and early 2000s. Due to utilizing the cooled EGR, the BTE was
reduced to 42% to meet the emissions legislation during 2004–2010, and then it was slightly
improved to 43% despite more rigorous emissions regulations [6]. Engine efficiency has
considerably improved throughout the span of decades of development. Therefore, the
current spark-ignition engines can work with a BTE of about 30–36%. The present BTE
of diesel engines can attain 45–47% and is perceived as one of the most efficient power
units. Nevertheless, the primary key to simultaneously reducing greenhouse gas emissions
and energy consumption is to improve engine efficiency. Although there is a significant
improvement in thermal efficiency, diesel engines are still much higher than SI engines by
about 30.6–33.3% (i.e., 10~11 percentage points). The roadmap of the entire technologies
that have been reviewed in this article particularly will be focusing on diesel engines for
increasing the thermal efficiency between (55–65%), as shown in Figure 21.
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Four industry teams (Cummins, Daimler, Navistar, and Volvo) were competitively
selected for the Super-Truck program to improve engine efficiency, assuming a baseline BTE
of 42% [378]. All teams have recognized technical pathways to attain the 50% BTE target,
as shown in Figure 22. Throughout mid-2013 exhibits that all the teams have achieved
48% in the BTE, and just one of the teams has exceeded the 50% target. The research and
development of the Cummins team have been conducted based on its 15-liter ISX engine.
They demonstrated that 51.1% BTE could be obtained, exceeding the target (approximate
22% engine efficiency increase). This was achieved by optimizing gas flow, reduction in
parasitic losses, improvements in engine design, and improving after-treatment, and the
WHR system. In contrast, 14–15% engine efficiency increases were demonstrated in the
Daimler, Navistar, and Volvo teams.
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An efficiency pathway, comparing a traditional diesel engine with and without WHR
and the prediction of the “split-cycle engine” is shown in Figure 23 [7,20]. Compared
with the traditional four-stroke engine, the split-cycle has greater flexibility because the
cycle event is not limited to one cylinder, and this increased flexibility allows to improve
performance [20]. Therefore, a split-cycle engine represents an improvement of 33% over an
advanced “heavy-duty diesel engine” due to the short combustion duration can deliver sig-
nificant efficiency benefits [7]. As the combustion duration is reduced, similar advantages
could be obtained from a traditional diesel engine. Still, the split-cycle engine gives numer-
ous benefits in enabling a short combustion duration, such as lower PRR results in reduced
combustion noise, and rapid HRR leads to a lower peak cycle pressure; therefore, friction
would be lower [7]. Lastly, most of these technologies have been reviewed and accessed
by researchers over the previous years. Therefore, the combustion, after-treatment, and
control systems improvements, as well as partial electrification in the case of hybridization,
along with more efficient auxiliary systems and vehicle weight reduction, can achieve high
thermal efficiency goals [19]. In addition, it would be essential to achieve these demands.
A deeper understanding would encourage researchers to develop more efficient advanced
technologies such as clean diesel combustion, low-temperature combustion, and dilution
or lean burn gasoline combustion, which delivers higher thermal efficiency. This study
concludes that it is possible to achieve high thermal efficiency, but it requires significant
efforts to do so. Although vehicle weight and size have increased, engine performance
improvements have increased fuel economy. Therefore, for heavy-duty vehicles, 55–57%
ITE is estimated to increase between 2020 and 2025, respectively. Meanwhile, 30–35% of
fuel economy can be improved. Moreover, In 2050 about 0.85–1.01 mbpd (million barrels
per day) of fuel-saving can be benefited by employing advanced combustion engines and
fuels programs [432]. It is worth noting that there is a numerical study proved that it is
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possible to obtain a brake thermal efficiency of 55% without a WHR system for commercial
heavy-duty opposed-piston engines [17].
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7. Conclusions and Recommendations

The current review presents a set out of techniques and noteworthy contributions to
improving thermal efficiencies. Therefore, the main conclusions are drawn as follows:

1. Amongst variable valve actuation (VVA) strategies, early intake valve closing (EIVC)
exhibits the ability to extend the load, which requires optimizing combustion phasing.
The late intake valve opening (LIVO) has the potential for increasing combustion
efficiency at a low load. Due to excellent flexibility and control, the camless system
can be considered the best solution for the required profile and quick valve events. It
can also be considered an efficient technology for solving the VVA issues and enabling
HCCI combustion, thus improving fuel economy (25% better fuel economy) and
offering high-efficiency diesel engines.

2. Despite the advantages of exhaust gas recirculation (EGR), many restrictions prevent
access to the full features, such as fluctuations under transient conditions, misfire, and
cycle-to-cycle variations due to high EGR and reduced burning speed. A substantial
reduction in the flame speed is considered a significant factor as it affects combustion
stability and thermal efficiency related to flame kernel development. As such, com-
bustion initiation periods and burn durations are also increased. The development of
the early flame kernel can be completed by using fuels with high flame speed, which
makes it faster and less susceptible to cycle-to-cycle variants in turbulence, eventually
resulting in greater combustion stability.

3. HCCI, PPC, and RCCI have the potential to achieve >50% indicated thermal efficiency.
RCCI has been identified as one of the promising technologies, distinguished by its
superiority over the other LTC modes in terms of efficiency, emissions reduction,
and heat transfer. In comparison, the gross indicated efficiency of RCCI is 16.6%
higher than conventional diesel engines. However, this concept is limited by the
low combustion efficiency at low loads and high maximum pressure rise rate at high
loads. There are various feasible solutions to overcome, including reverse reactivity
stratification, control of equivalence ratio, low intake air pressure, adjusting EGR rate,
intake temperature, and injection pressure, slowest heat release rate, and the use of
direct dual fuel stratification. Apart from the operating parameters and fuel properties,
these strategies require further optimization to improve combustion efficiency and
reduce the maximum pressure rise rate.
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4. Most advanced ignition systems can extend the lean limits and improve thermal
efficiency. Amongst these ignition systems, laser ignition has an excellent potential to
ignite ultra-lean mixtures because of its feasibility of creating multiple ignition points
and high-power energy deposition. Compared to conventional spark ignition, multi-
ple ignition points show faster flame propagations, higher lean limits, fast combustion,
and improved cycle-to-cycle variations, as well as possess a range of combustion
characteristics, such as flammability range and reducing misfire. Consequently, flame
quenching has been absent, thus leading to improved engine thermal efficiency. The
high cost of this system is a significant challenge in terms of using it as a replacement
for conventional spark ignition systems. More efforts are thus needed to overcome
this obstacle and achieve further improvements in thermal efficiency by applying
this technique. Furthermore, the use of the TJI system is a vital method to improve
thermal efficiency and reduce the consumption of fuel and emissions in spark-ignition
engines (SIEs) but it is adding small costs to the engine compared to the LIS technique.

5. The addition of hydrogen through intake manifolds can better increase the BTE
compared to the direct injection due to a homogeneous mixture. The BTE increases
when hydrogen blends into diesel fuel. This can be explained by the fact that hydrogen
addition would shorten combustion duration and increase cylinder pressure and heat
release resulting from increased flame speed. Following the addition of 40% hydrogen
(H2) to compressed natural gas (CNG), a significant improvement in the BTE by 8–14%
compared to pure diesel was recorded. Correspondingly, port fuel injection has some
limitations that include knocking, pre-ignition, low volumetric efficiency, and backfire,
thus limiting engine load and efficiency improvement. Several recommendations
are proposed for further consideration, such as the mechanical durability of the
engines and safety, further development of an advanced direct injection, as well as
the optimization of injection timing and injection duration to sustain engine efficiency
at a high value.

6. A significant improvement can be obtained in engine efficiency when using an ultra-
high injection pressure and micro-hole nozzle (46.3–49.7% BTE). Ultra-high pressures
make the flow state in nozzle holes reach a supercritical state due to its thermal
effect. Therefore, realizing how fuel flows through nozzle holes at ultra-high pressures
remains a crucial challenge. Further experience in designing this technology is needed.

7. As the compression ratio increases, the thermal efficiency increases, and specific fuel
consumption is reduced. The compression ratio is limited in gasoline engines due
to the low resistance to engine knock. On the contrary, the BTE of diesel engines
increases significantly, particularly when biodiesel blends with diesel with sacrifices in
BSFC. The Miller cycle is suggested to improve thermal efficiency, reduce the knocking
issue, and maintain a high expansion ratio by reducing the effective compression ratio.
Various methods are used to apply the Miller cycle, amongst which the VVA is the
simplest. The Atkinson cycle can also perform the same purpose.

8. Most techniques for recovering waste heat have good benefits in terms of the BSFC.
Amongst these, Organic Rankine Cycle (ORC) is considered a promising technique in
terms of the BSFC (enables ~10% in fuel economy) and thermal efficiency (4.4–8.3%
increase in BTE) due to its lower temperature applications, quiet operation, smaller
expanders, and no interaction with an engine. In vehicle applications, the ORC is
not an appropriate option due to weight and space restrictions. Additionally, it has
drawbacks that restrict its commercial application, including safety issues, complexity,
cost, working fluid toxicity, flammability, and thermal management issues.

9. The key strength of the low heat rejection (LHR) engine is the high exhaust gas
temperature resulting from reducing the heat transfer. In turn, this provides more
potential benefits for energy recovery by employing turbochargers, superchargers,
or electric generators, among others, thus increasing engine efficiency and perfor-
mance. In contrast, using the LHR engines reduces volumetric efficiency due to high
cylinder temperature; however, this can be recovered by utilizing supercharging
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and turbocharging. The thermal barrier coating (TBC) assists in preserving the heat
content of the engine. However, the knocking issues remain a challenge due to the
higher wall temperatures caused by TBC. Notwithstanding this limitation, develop-
ing an innovative and higher-precision technique for TBC research is suggested to
obtain more reliable physical barrier coating models, which can improve combustion
characteristics.

In conclusion, a comprehensive review of these techniques and their effects on the
engine thermal efficiency and combustion characteristics were discussed clearly with
recommendations for future work. Among all the techniques, the highest brake thermal
efficiencies through numerical studies were recorded, 54.2–56%, and over 60% for the split-
cycle engine (DCEE) and HCCI engine, respectively. Therefore, DCEE can be considered a
promising strategy for achieving high BTE, notwithstanding some limitations related to
high mechanical strength, thermal insulation, heat losses from a high-pressure approach,
and a combustion system which needs to be extended to higher speeds and loads.
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