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Abstract: This paper is concerned with the issue of the diagnostics of process faults and the detection
of cyber-attacks in industrial control systems. This problem is of significant importance to energy
production and distribution, which, being part of critical infrastructure, is usually equipped with
process diagnostics and, at the same time, is often subject to cyber-attacks. A commonly used
approach would be to separate the two types of anomalies. The detection of process faults would be
handled by a control team, often with a help of dedicated diagnostic tools, whereas the detection of
cyber-attacks would be handled by an information technology team. In this article, it is postulated
here that the two can be usefully merged together into one, comprehensive, anomaly detection system.
For this purpose, firstly, the main types of cyber-attacks and the main methods of detecting cyber-
attacks are being reviewed. Subsequently, in the analogy to “process fault”—a term well established
in process diagnostics—the term “cyber-fault” is introduced. Within this context a cyber-attack is
considered as a vector containing a number of cyber-faults. Next, it is explained how methods used
in process diagnostics for fault detection and isolation can be applied to the detection of cyber-attacks
and, in some cases, also to isolation of the components of such attacks, i.e., cyber-faults. A laboratory
stand and a simulator have been developed to test the proposed approach. Some test results are
presented, demonstrating that, similarly to equipment/process faults, residua can be established and
cyber-faults can be identified based on the mismatch between the real data from the system and the
outputs of the simulation model.

Keywords: failure detection; cyber-attack detection; cyber-attacks isolation

1. Introduction

Each industrial installation is at risk of damage or destruction. The reasons may differ,
ranging from spontaneous failures, errors and damage to control systems, incorrect actions
of operators, and sabotage actions or cyber-attacks.

In the case of faults, the advanced techniques of automatic fault diagnosis have
been developed for years. This is due to the disadvantages of commonly used alarm
systems, which are the simplest diagnostic systems, as well as the advantages of advanced
diagnostics, which contribute to increasing the efficiency and safety of processes. In the
case of critical facilities, a properly functioning diagnostic system may prevent accidents
that may threaten human health or life, as well as the natural environment.

Fault detection can be carried out using different types of models: analytical [1–3],
neural [4–6], fuzzy [7], and statistical [8,9]. A among them, techniques based on partial
parametric models identified in the fault-free state deserve special attention. In such cases,
there are two options for obtaining knowledge about the impact of faults on residuals: using
expert knowledge [1–3] or learning [5]. The learning technique requires the acquisition
of experimental data not only for the normal state but also for all faulty states that are
to be recognized. In practice, this is often impossible, because some faults are very rare.
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The fault isolation methods that use expert knowledge to design the relationship between
diagnostic signals resulting from the assessment of residuals and faults are of fundamental
importance and will be addressed in this paper.

Currently, in contemporary control systems, the areas of the operational technology
and the information technology are considered. The first of these, Operational Technology
(OT) is hardware and software that detects or causes a change, through the direct moni-
toring and/or control of industrial equipment, assets, processes, and events. The second
area, Information Technology (IT), is the use of computers to create, process, store, retrieve,
and exchange all kinds of data and information in order to increase a company’s revenue
by optimization of business operations. It should be emphasized that OT has become
established to demonstrate the technological and functional differences from traditional IT
systems and Industrial Control Systems (ICS).

As one can see, there is a clear difference between the IT and OT areas. IT deals with
information, its flow and administration, while OT manages the operation of physical
processes and the machines used to implement them. Before the Internet era, the boundary
between IT and OT was noticeable. Traditionally, OT systems have not been connected to
an external network or digital technology. However, recently, these boundaries began to
blur. Companies began the process of implementing solutions in their networks aimed at
automation improvements by adding smart devices to increase production efficiency and
data availability.

Thus, IT and OT systems currently operate in parallel and monitor and regulate the
course of industrial processes through data exchange. The technologies being developed
and implemented have the potential to enable connectivity between every device in the
office and industrial workplace in order to increase the availability of OT components while
collecting and analyzing data about them. Currently, two-way data exchange between IT
and OT networks is called IT–OT convergence [10].

The convergence of OT and IT technologies, in addition to emerging opportunities,
brings many challenges. Large data flows, also outside company networks, result in many
threats related to the security of their operations. Therefore, understanding these risks and
the impact of industrial network security incidents is one of the industry sector’s main
challenges. Production plants and all industrial devices communicate in real-time, and
safety and security become a priority in this case. In this situation, standard solutions
are not enough to meet the industry’s requirements, and it is necessary to develop a
new generation of diagnostic systems that take into account threats from cyber-attacks.
Therefore, this article proposes implementing such a system for the OT area.

Important and current research directions are the development of Cyber-Physical
Systems (CPS) [11,12] and the industrial transformation—Industry 4.0 [13]—in which CPS,
next to cloud computing technology and big data, are a key element of the new strategy
for industrial production. New technological solutions have many advantages but also
contribute to the emergence of new threats [11,14].

The openness of the systems, new communication possibilities, including Indus-
trial Internet of Things (IIoT) and wireless technologies, and the trend of integration of
the communication of individual system elements lead to the growing threat of cyber-
attacks [11,14–16]. Examples of such attacks are given below:

(a) One of the most famous examples of an attack on a critical installation was Stuxnet [17–19].
It was aimed at industrial control system—OT. The creators of malware had detailed
knowledge of the target. Not only about a structure of industrial installation but also
about the type of installed equipment. The Stuxnet was not an isolate case. There was
a series of OT based cyber-attacks [19]: Havex (2013), Irongate (2014), BlackEnergy
3 (2015), Crashoverride (2016), Trisis/Triton (2017).

(b) The Dragonfly group utilized Havex malware that targeted many industrial control
systems with emphasis on the energy, pharmaceutical, defense, and petrochemical
industries. Researchers estimates that malware was put on over 2000 sites [20]. That
malware used for its attack the Open Platform Communications (OPC) protocol, which
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complied with the accepted standard, so its implementation did not differ between
industrial plants. The operation of the HAVEX malware was to map industrial
hardware and devices on the ICS network. The campaign created by the Dragonfly
group focused on espionage activities. There was no physical damage to industrial
installations in the course of the attacks. However, the data obtained during the
attacks could be used to plan future attacks.

(c) During the Irongate attack, a German steel mill was successfully hacked [21]. Hackers
gained access to the plant’s network and then blocked the possibility of turning off
the furnace. This led to damage to many components of the industrial plant and to
the eventual shutdown of production.

(d) BlackEnergy 3 and CRASHOVERRIDE malware have caused power outages in
Ukraine [22,23]. The first attack on the power grid took place on 23 December 2015. It
caused the power to remain off for 6 h and caused difficulties in accessing the network
for 225,000 customers. Malicious software made it possible to take control of SCADA
systems and to shut down power substations. In 2016, a CRASHOVERRIDE attack
based on the same mechanism led to an hourly power cut in Kiev.

(e) In 2017, the SIS system of a petrochemical plant in Saudi Arabia was attacked with
the TRISIS malware [22,24]. It was a very powerful and advanced software designed
to attack a specific system of security instruments (SIS). The attackers reprogrammed
the SIS system driver in order to trigger an emergency and, as a result, to shut down
the installation.

Threats related to damages and human errors or intentional external and internal
attacks are particularly dangerous for critical infrastructures, such as power plants, water
supply systems, power grids, chemical industry, etc. [16]. Despite various reasons, the
effects of serious damage and attacks may be the same: e.g., fire, explosion, environmental
contamination, the destruction of the installation, or process halt. Therefore, one of the
main aims of this work is to demonstrate the need to develop an integrated approach to
ensuring the safety of ICS. It should include [25,26]:

• technical safety—the problem of preventing serious industrial failures caused by the
unreliability of technological installation components (e.g., pipeline cracks), damage
to control system components, and human errors;

• security—the issue of protection against intentional unfriendly attacks from the out-
side (e.g., hacking attacks on control systems) and sabotage actions carried out from
the inside.

For software systems, there are some works related to combined treatment of both
safety and security issues—a good overview of actual state of research can be found in [27].

The postulate of a comprehensive security strategy is formulated in the works [25,28],
with a special attention to safety and security co-assurance [29], but in practice, it has not
been fully implemented so far, as evidenced by:

• separate standards for functional safety and information protection in ICS, including
separate Safety Integrity Level (SIL) and Evaluation Assurance Level (EAL) specified
in these standards;

• separate departments related to safety and security in industrial enterprises;
• Independent Intrusion Detection System (IDS) and Fault Detection and Isolation

(FDI) diagnostics.

The development of methodology and tools for an integrated approach to detecting
and isolating anomalies (process damage and cyber-attacks) has a high practical rank. It is
a current challenge for scientific research. The importance of these issues is particularly
high in the case of critical installations with the risk of a serious industrial failure, such as
energy production and distribution.

The main contribution of this study is to show that by using partial models of the
diagnosed system for a normal state of operation, and expert knowledge in the form of
Fault Isolation System (FIS) containing the relationship between faults and the values of
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diagnostic signals, it is possible to detect and, to some extent, also isolate various anomalies.
It has been noticed that the structure of a cyber-attack, determined by its scenario, is
complex. In order to enable a uniform approach to the diagnosis of various anomalies,
elementary influences of a cyber-attack were distinguished, describing them as cyber-faults.
A cyber-attack consists of a collection of cyber-faults. This approach makes it possible to
use a uniform description of the relationship between anomalies and their symptoms.

The layout of the work is as follows: The second section presents the research problem,
indicating potential threats to the safety of industrial processes. Section 3 is devoted to
an overview of techniques for detecting cyber-attacks. Section 4 proposes an integrated
solution for faults and cyber-attacks detection. Section 5 is devoted to the implementation of
the proposed solution for an example object, Section 6 indicates further research directions.
The article ends with Section 7, which is a summary of the work.

2. Problem Formulation, Research Method

The proper functioning of ICS is exposed to two types of dangers:

• Hazards related to damage and human errors not related to cyber-attacks,
• Threats related to destructive targeted activities, such as cyber-attacks and sabotage actions.

Therefore, ensuring an increase in ICS security in the event of threats related to damage
to technological equipment, measurement, and automation devices and human errors and
destructive targeted actions, such as cyber-attacks and sabotage actions is an important
problem. The current solutions are not satisfactory. They relate to specific threats, and there
are no holistic solutions that comprehensively address security issues.

The structure of the security systems for both hazards and threats is layered. The
standard EN 61511 for functional safety for the process industry defines the Layers of
Protection (LoP). The Defense in Depth strategy developed by the National Security Agency
(NSA) at the US Department of Defense proposes a hybrid, multi-level approach to security.
It consists of six steps: Security Plan, Network Separation, Perimeter Protection, Network
Segmentation, Device Hardening, and Monitoring and Update. In the case of physical
attacks and cyber-attacks, the security layers are referred to as Ring of Protection—RoP.
The principle in the layered approach is: the more security layers, the higher the level of
risk reduction. However, there is no integrated approach to different types of threats.

The protection of the digital part of the control system is achieved mainly by using
demilitarized zones (DMZ), firewalls, data encryption, virtual private networks VPN
(IPsec), network segmentation, identity verification, access authorization, and password
management, among others. An example solution is given in [30]. The detection of cyber-
attacks is carried out by monitoring network traffic, which does not allow the detection of
all anomalies [31]. The solutions used in IT systems do not guarantee that an attack cannot
get into the control system, and thus do not guarantee the elimination of its destructive
influence on the controlled process [32].

Safety Instrumented Systems (SIS), which implement the algorithms of interlocks and
automatic protections, are of key importance in the structure of process security. However,
the operation of these systems stops all or part of the process, resulting in economic losses.
Therefore, it is advisable to use solutions that can guarantee the elimination of threats
at an early stage and thus prevent the SIS systems from operating and the process from
being shut down. The proposed solution to the problem is the early detection of various
anomalies and their accurate isolation [14,31]. Many studies have shown that detection
methods are sensitive to the types of anomalies mentioned above.

However, the following research and technical problems emerge:

• Is it possible to develop the signatures for cyber-attacks?
• Is it possible to develop an inference method that allows the isolation (differentiation)

of these various anomalies?
• Is it possible to integrate detecting and recognizing cyber-threats and process faults?
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Solving these problems is of high practical importance because effective security
measures can only be taken when the threats are known. Therefore, for an effective
response to emerging hazards and threats, the early detection of anomalies and their
complete isolation are necessary.

This study shows that:

• the use of model-based detection methods is an effective method of detecting various
types of anomalies, both process damages and cyber-attacks;

• it is possible, in some cases, to develop signatures for cyber-attacks;
• the use of diagnostic inference methods makes it possible to distinguish between

damage and cyber-attacks, as long as their signatures are known and are different;
• it is possible to integrate the tasks of diagnosing process damages and cyber-attacks

into the diagnostic system.

A case study was used as the research method. The possibilities of solving the formu-
lated research problems were analyzed on the example of the system of faults and attacks
diagnostics for a set of tanks with the control system and the SIS system.

It was assumed that in the case of industrial processes, and especially critical objects,
it is impossible to obtain training data for object states with existing damages and cyber-
attacks. It eliminates the usefulness of all anomaly detection and isolation approaches
that use such data, e.g., classification methods to identify anomalies. Therefore, for the
detection of anomalies, fuzzy partial models representing the normal state of the diagnosed
object were used. Such models have already been used for damage detection. In this study,
their usefulness for detecting various anomalies was examined. Their signatures were
developed for the specified damage and cyber-attacks, the detection and distinguishing of
these anomalies were analyzed, and simulation and laboratory tests were carried out.

Note that there is an extensive literature related to security of data, i.e., how to prevent
eavesdropping/stealing of information; sometimes called a “passive attack” (e.g., [33,34]).
The method proposed in this paper relies on the deviations of process variables from their
normal operation routine. Hence, it can only be applied if an attack is causing such changes,
i.e., it is an “active attack”, rather than a “passive attack”. It could be argued that the
IT domain is concerned with data security, whereas the OT domain is more concerned
with equipment security [14]. Hence, IT methods may be better tuned towards “passive
attacks”. Nevertheless, it should be stressed that, in some circumstances, the solution used
in IT to detect and prevent cyber-attacks may alone be sufficient. For instance, to detect so
called replay attacks an authenticated encryption with freshness protection is often applied
successfully. Nevertheless, as the defense methods became more advanced, the cyber-
attacks also became more sophisticated. In this work we postulate that the knowledge of
the process characteristics and observing deviations from these characteristics provides
additional information, which may be rather difficult to acquire by an attacker and may
therefore, combined with other methods, improve the chances of detecting an attack. The
methods proposed in this article to detect attacks are also considered as the last layer of
security that can be used when the attacker gets through the classic security characteristic
for IT systems. The use of such algorithms in no way excludes the possibility and need to
apply security in the IT layer.

3. Main Directions of Research towards Recognition of Cyber-Attacks

Fault diagnostics methods have been developed for about 40 years now. Hence,
the knowledge in this field is already well-established. Many monographs (e.g., [35–40]),
review articles (e.g., [41–43]) and a lot of works on specific issues have been written. Various
diagnostic systems for industrial processes have been developed (e.g., [38,44–46]).

Research on the development of methods for diagnosing cyber-attacks started much
later, and therefore it is less advanced. The proof of this is the lack of books that would
comprehensively cover the issues of detection and recognition of cyber-attacks. However,
synthetic and review works [27,32,47–52] on this subject and many articles on specific
issues have been published.
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The problem of detecting cyber threats can be considered already at the stage of
systems analysis. In [53] the new approach, STPASec was proposed. STPASec is an
extension of the System-Theoretic Process Analysis (STPA) [54] with security considerations.
In described approach, systems are modelled as hierarchical structures. Higher layers are
responsible for control processes, via so called actors placed at lower layers. In the opposite
direction, sensors (placed on lower layers) send feedback to the controllers. The list of
scenarios which can lead to losses is usually a result of STPASec analysis. Wide overview
of this technique can be found in [55].

The papers [35,50,56] present the classifications of cyber-attacks in network control
systems (NCS) and in CPS. The attack vector and the three-dimensional attack space have
been defined, the axes of which are: disruption resources, disclosure resources, and system
knowledge. In this space, the place of the distinguished types of attack has been defined:
denial of service (DoS) attack, replay attack, bias injection attack (false data injection
attacks), zero dynamic attack, and covert attack. Models of particular types of attacks
have been given. The approach proposed in the above works, which focuses on control
issues, allows the assessment of the effects of attacks and the analysis of methods of their
detection, as well as the design of attack-resistant structures. The publication [47] has
additionally defined the “impact space” in which the above types of attacks were located.
In the review [32] only three types of attacks are considered: DoS attack, replay attack,
and deception attack. Deception attacks are also known as false data-injection attacks or
malicious attacks. It should be emphasized that it is usually not necessary to recognize the
type of attack. It is important to detect the existence of an attack in order to take appropriate
security measures [57].

In the field of cyber-attacks’ diagnostics, the following research directions can be
distinguished:

• Detection based on traffic supervision in industrial networks;
• Detection based on the analysis of process data and indicators characterizing the

operation of control circuits;
• Isolation (identification) of cyber-attacks.

Techniques for detecting intrusion prior to cyber-attacks are mainly divided into two
categories: based on abuses (signatures) and anomalies. Techniques based on signatures
require a precise definition of the functioning of the system, i.e., its model, in the event
of a given type of attack. Anomaly-based attack detection techniques use the definition
of normal system functioning and detect deviations from normal behavior as deliberate
attacks or unintentional errors [58]. This approach is analogous to that in the case of fault
diagnostics. To detect specific states with faults, process models representing this faulty
state could also be used. However, this approach is rarely applied. The dominant solution
is anomaly detection with the use of normal state models. The deviations of residues from
the zero value are symptoms of faults.

In [58], three types of anomaly detection approaches were distinguished:

• detection based on network traffic exploration;
• detection based on the analysis of network protocols;
• detection based on the analysis of process data.

Attacks on ICS often cause unusual network traffic or violate network protocol spec-
ifications. Moreover, they influence the functioning of the control systems, and thus the
operation of the controlled process. The first two solutions are related to the supervision of
network traffic. This approach, even when it comes to industrial networks, is derived from
methods used in IT systems. Specialized IDS tools dedicated to OT are already offered
on the market. Machine learning based approaches are still being explored, such as the
hybrid system for distinguishing between attacks with known signatures, attacks with un-
known signatures, and normal network traffic described in [59]. The third solution, on the
other hand, is specific to control systems. It comprises the early detection of discrepancies
between the current and reference functioning, represented by models characterizing the
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normal state of the controlled process [35–38]. The detection scheme presented in [58,60] is
identical to the fault detection scheme used for a long time in FDI methods.

Detection methods, especially those derived from approaches known in IT networks,
have already reached a high level of advancement, as measured by a large number of
publications and the offered IDS systems using these techniques [61]. The solutions derived
from the approaches developed in the automation environment, which include intrusion
detection based on the analysis of process data and the supervision of the control loop, have
appeared much later and are less well documented. On the other hand, there are very few
works on the isolation (identification) of cyber-attacks and their differentiation from damage
that may cause similar symptoms. The state of research in all of the above-mentioned areas
is described below.

3.1. Detection Based on Traffic Supervision in Industrial Networks
3.1.1. Detection by Exploring Network Traffic

Under normal conditions the control systems are characterized by stable network
traffic patterns. Fluctuations in network traffic typically indicate a change in ICS state,
which enables intrusion detection based on network traffic exploration. These methods use
data mining technologies to identify unusual system behavior. Commonly used motion
mining techniques include: supervised clustering [42], partially supervised clustering [43],
mixed Gauss model [44], neural network [45,62], fuzzy logic [46,47], single-class support
vector machine [48], the multiclass support vector machine [49], and deep learning [50].

3.1.2. Detection Based on the Analysis of Network Protocols

The protocol specifications define the packet formats and communication modes
allowed by the protocol. This method of attack detection consists in checking whether
the transmission packets in the industrial control network violate the specifications of
the industrial protocol [58]. Detection is based on rules defined on the basis of protocol
specifications.

3.2. Detection Based on the Analysis of Process Data and Indicators Characterizing the Operation
of Control Circuits

The values of the industrial process variables should be consistent with the relation-
ships describing the physical phenomena in the process. Damage and attacks cause changes
to the functioning of the process. The symptoms of these changes can be detected on the
basis of the observation of the discrepancy between the normal behavior of the process and
the disturbed one. Thus, for symptom generation, models are needed that represent either
the normal state or models in states with existing damage or attacks.

As in the case of fault diagnostics, one can distinguish between passive and active
approaches to the detection of cyber-attacks. Passive methods are based on operating
signals, while active methods require the introduction of an appropriate input signal and
an analysis of its influence on the output signals of control systems. Active approaches
were presented in [63–65]. In this paper, only passive approaches will be used.

In [32], the authors point out that attack detection plays a key role in maintaining per-
formance of CPS. Classifying attack detection methods for industrial CPSs, they distinguish
the following approaches:

• Bayesian detection with binary hypothesis;
• Weighted least square approaches;
• χ2—detector based on Kalman filters;
• Quasi-FDI techniques.

In the opinion of the authors of this paper, the methods which evaluate the integrity
of process data collected from measuring devices, actuators, and controllers will have the
greatest practical significance. For this evaluation, methods developed on the basis of fault
diagnostics, based on models linking process variables, can be used. Anomaly detection
is based on the generation of residues, which are the difference between the value of the
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process variable measured and calculated on the basis of the model representing the normal
state of the process [58,60].

The advantage of the above approach is the possibility of using various models for the
detection of anomalies: analytical (non-linear and linear) as well as models created on the
basis of measurement data, e.g., neural, fuzzy, additive, etc. In the research on detection of
cyber-attacks, a prevailing approach is linear state-space models [50,51,58,60]. For example,
in [51,66], linear observers are used; in [67,68], Kalman filters; and in [69], a nonlinear
interval observer. The use of neural models for the detection of anomalies was the subject
of works [70,71].

For the detection of anomalies, not only quantitative but also qualitative models can
be used. In the works [14,72], models in the form of rules were presented, enabling the
detection of both damage and attacks that cause the feedback sign to change from negative
to positive or to block the actuator.

Research on the detection of cyber-attacks usually focuses on a specific type of at-
tack. The largest number of works is related to the detection of false data injection at-
tacks [69,73–78]. The lower number of publications present studies on the methods of
detecting replay attacks [78], covert attacks, and zero dynamics attacks [79].

Cyber-attacks could cause the detrimental changes of control performance indicators.
Hence, the methods which are used for assessment of control loop performance can be
applied to detection of not only faults but also other anomalies, such as cyber-attacks.
These methods, sometimes referred to as “minimum-variance performance assessment”
are mainly based on evaluation of stochastic properties of signals in the control loop.

A comprehensive report prepared by Arizona State University [80] indicates impor-
tance of considering stochastic characteristic of the process noise, as a useful indication
of intrusions into the signals in control loops. Hence, the signal’s parameters, such as
correlation, distribution, and difference in means, can be tested to enhance the knowledge
of anomalies and possible artificial injections of signals.

Article [76] proposes a technique based on the CUSUM (cumulative-sum) algorithm to
defend cyber-attacks in power distribution networks. CUSUM algorithm applied here has
its origins in Statistical Process Control (SPC), where it is commonly used for the on-line
monitoring of the system’s performance.

In [75], certain measures of distance of two probability distributions, derived from
measurement variations and obtained from historical data, are explored. The assumption
is that when false data are injected into the power systems, the probability distributions
will deviate from those recorded previously.

The common motive in the above works is that additional level of knowledge to
detect cyber-attacks can be obtained by analyzing the stochastic characteristics of signals,
including the measures used for assessment of the performance of control loops in the
process control system. This is the level of knowledge would be much more difficult to
replicate by the attacker.

3.3. Isolation (Identification) of Cyber-Attacks

The detection of cyber-attacks based on network traffic monitoring or network protocol
control allows detecting of many but not all attacks. Most IDS will be rather specific about
the type of attack. If the system relies on remote attestation features, detection will also
point to the exact integrity violation, e.g., the localization of the attack point. However, this
is not always the case when using FDI techniques. Here, detection means that an attack
has occurred but does not specify the type of attack. In many cases, this is sufficient to
take appropriate protective measures. Signature-based anomaly detection techniques can
accurately identify the type of attack. However, it is very difficult, in a general case, to
provide exact definitions (models) for all potentially possible attack scenarios. In the case
of anomaly-based detection techniques, the occurrence of a deviation from the normal state
signals the occurrence of a symptom, the cause of which may be either various cyber-attacks,
damage (faults), or other disturbances. Isolating these anomalies is a separate task.
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Few publications deal with the isolation of anomalies. Ref. [51] characterizes fun-
damental monitoring limitations from system-theoretic and graph-theoretic perspectives
and proposes centralized and distributed attack detection and identification monitors.
Ref. [81] investigates the attack isolation and attack location problems for a CPS based on
the combination of the H-infinity observer and the zonotope theory.

In [82], an algorithm is proposed enabling the correct estimation of the actual state of
the process supervised by dispersed agents, such as sensor networks or power grids. The
algorithm at each iteration collects information from local measurements, exchange this
information with other nodes in neighborhood, and aggregates the received measurements
using coordinate-wise trimmed means. Thanks to such techniques, it is possible to obtain
the resilience of a multi-agent system despite the compromise of some of its nodes.

The anomaly isolation scheme (IOS—Iterative Observer Scheme) is proposed in [83].
The research concerned the Smart Grid system. The scheme is an extension of the known
GOS scheme, which was used to isolate faults in individual sensors. The IOS scheme divides
the set of sensors that provide measurements in the power grid system into subsets and
iteratively performs subset tests. The method enables the isolation of damaged/attacked
sensors. These types of anomalies are not distinguished.

In [84], the innovative secure state estimation framework was investigated which
combines the IMM (Interactive Multiple Models) filter with a fuzzy-based attack isolation
mechanism. A hybrid state model consisting of two behavior modes, one corresponding to
the ideal scenario and one associated with the attack behavior mode are used. Three types
of attacks were simulated: constant attacks; time-varying attacks; and stochastic attacks
(possibly non-Gaussian).

The problem of simultaneous Cyber-Attacks and Faults Detection and Isolation
(CAFDI) in CPS has not been fully analyzed in the literature [85].

In [85], a methodology based on the CPS two side filters and an Unknown Input
Observer (UIO)-based detector is proposed. A linear time-invariant model is used, taking
into account both the impact of damage and cyber-attacks. It is shown how to generate
four residuals in order to detect an actuator cyber-attack, sensor cyber-attack, actuator
damage, and sensor damage. Components’ damages have not been taken into account.
The conditions under which the proposed methodology can detect fraudulent attacks,
such as stealth attacks, zero dynamics attacks and replay attacks that are considered
undetectable [86], are characterized.

The basic method used to isolate cyber-attacks is UIO [85,87]. This method, which
was developed for the needs of fault diagnostics has been presented in many publications,
including [36]. This method consists of developing an observer sensitive to a specific
damage/attack and at the same time making this observer independent (decoupling it)
from other unknown inputs (damage/attacks and disturbances). However, the number of
unknown inputs to which immunity can be obtained is limited. Therefore, this approach in
industrial practice is not feasible if all possible damage and disturbances are to be taken
into account, e.g., component damage level, which is often omitted in publications.

In the above works [51,81–85], failure detection is carried out on the basis of analytical
models: modified Luenberger observer [51], H-infinity observers [81], Kalman Filter [83],
interactive multiple model (IMM) filter [84], and UIO [85]. Linear models introduce signif-
icant limitations in the case of industrial applications because real objects are non-linear.
Moreover, obtaining analytical models that take into account the impact of damage and
cyber-attacks is very difficult and expensive, especially in the case of large-scale systems.

Therefore, research on the application of anomaly detection and isolation methods with
the use of non-linear process models created on the basis of measured data is purposeful.
The problem of adaptive error detection and isolation (FDI) for non-linear networked
control systems in periodic denial of service (DoS) attacks was analyzed in [88]. A solution
using a set of switching fuzzy T–S observers was proposed. The use of artificial intelligence
models was also assumed in [14]. However, to record the sensitivity of the residues
generated with the use of models to various anomalies, both the FSM (Fault Signature
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Matrix) [35,36] and the FIS [38] used in fault diagnostics can be used. Their design does not
require models that take into account the influence of anomalies, but the knowledge which
resides with the designers of diagnostic systems.

4. The Concept of an Integrated Approach—A System for Diagnosis of Faults
and Cyber-Attacks

In industrial practice, it is necessary to consider all possible process faults and cyber-
attacks. The omission of certain types of anomalies during the analysis may generate false
diagnoses in the event of their occurrence. Therefore, methods of attack detection and
isolation based on process data cannot disregard the possibility of faults. Likewise, fault
diagnosis systems must take into account cyber-attacks. Hence, it is purposeful to research
solutions that:

• take into account the need to integrate the detection and isolation of cyber-attacks;
• use nonlinear analytical, fuzzy, neural, and other models to detect anomalies;
• use the knowledge of experts to determine the relationship between anomalies and

the values of generated diagnostic signals.

This approach creates the greatest potential for industrial applications. This work
proposes such an approach.

When conducting research reported in this paper, it was assumed that a good starting
point would be the system based on the FIS [3].

An inference system defined in this way can be used both for the isolation of process
failures and for cyber-attacks. Figure 1 shows the potential impact of both faults and
cyber-attacks on an industrial installation. As can be seen—as both types of anomalies
can manifest themselves with similar effects—the occurrence of discrepancies between the
signals measured at individual points of the installation and their expected values obtained
from the model/partial models. The only condition for the correct detection of cyber-attacks
is the ability to define diagnostic signals that will be sensitive to them. Therefore, the set
of diagnostic signals has been extended with new elements and the controller has been
modelled. This device is rarely considered by classic industrial diagnostic systems (due to
the advanced self-diagnosis usually available in devices of this type). On the other hand,
an attack on the controller as such is possible and poses a real risk to the system. In order to
generate the diagnostic signal, either the analytical model of the controller or the identified
model can be used. Due to the fact that the analytical form of the PID controller is well
known, in the example discussed in this paper an analytical model was chosen. The real
and virtual controllers work in parallel, using the same deviation signal, and their outputs
are compared. In the event of significant discrepancies, a diagnostic signal is generated.

The concept of a cyber-fault has been introduced. By analogy to spontaneous failure, a
cyber-fault is the term used to define a malfunction of a separate component of a supervised
process, caused by changes in its software or in data transmission. The cyber-fault should
be distinguished from a cyber-attack. Typically, one cyber-attack can cause multiple cyber-
faults. Cyber-fault is detected by the FIS in the same way as a process fault, i.e., each
cyber-fault has an assigned signature, showing the values of diagnostic signals at the time
of its occurrence.

Distinguishing between cyber-fault and process fault is a problem that requires more
attention. In the classic FIS approach, two failures are distinguishable if they have different
signatures; however, single fault scenarios are usually considered. In the case of cyber-
attack, multiple cyber-fault scenarios must be usually considered. In such a case, defining
the pattern values of diagnostic signals for particular cyber-attack scenarios is not a trivial
task. As part of further research, FIS extensions are being proposed, taking into account the
multivalent assessment of symptoms, the time of symptom appearance, or the sequence
of their occurrence. Each of these techniques potentially makes it possible to distinguish
between cyber-faults and process faults. For example, let us consider the sequence of
symptoms. In the case of a physical fault in the system components, such a sequence is
often determined by the physical phenomena occurring in the process—e.g., the clogging
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of the liquid flow at the inlet of a tank, usually a symptom related to the flow model—will
appear first, and after some time, a second symptom—a symptom related to the level model
in the tank—will appear. In the case of a cyberattack, there is no such limitation—if the
measurements are distorted, both symptoms can occur at the same time. However, the
exact determination of the possibility of distinguishing cyber-attacks from physical damage
using these techniques requires further research.
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Figure 1. Faults and cyber-attacks and their influences on industrial systems.

It seems that the challenge for the proposed technique will be detecting replay-type
attacks when, from the point of view of the diagnostic system, a record of the correct
operation of the installation is observed and examined; therefore, no symptoms that may
indicate a cyber-attack will be observed (the diagnostic system is blinded, similarly to the
operator). In such a case, it is desirable to be able to use active diagnostics to impose an
additional input on the control signals, the effects of which should be observable in the
measured values of the process variables.
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5. Research Results—Example of a Group of Tanks
5.1. Description of the Process and the Simulator

For the purpose of this research, a simulator of the two-tank system has been de-
veloped. It allows for the testing of the algorithms of the detection of the process faults
and disturbances. In the proposed approach, the FDI methods can be used. Moreover,
because of the simulator’s ability to inject process faults, the issue of distinguishing between
cyber-faults and process faults can be researched. The communication channels are also
modelled, and these channels are the places where cyber-attacks can be injected.

The simulator was developed in MATLAB/Simulink (version R2021b by The Math-
Works Inc.). The general block diagram of the simulator is presented in Figure 2.
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Figure 2. Block diagram of the simulator in the MATLAB/Simulink environment.

In the simulator, one can distinguish the following main subsystems:

• Process. A subsystem which represents components of the physical process together
with measuring devices.

• Control. A subsystem representing the PLC controller, on which signals controlling
the configuration are developed, and the control system is implemented.

• Operator interface. The subsystem corresponds to the HMI/SCADA system on which
the operator interface is implemented.

The process part schematic diagram is given in Figure 3.
Depending on the configuration of valve states V1, V2, V3, Vd1, and Vd2, various prop-

erties of the control object can be realized (e.g., First Order Lag/Second Order Lag/Delay).
The set of available process variables in the experimental stand is given in Table 1. For the
purpose of this paper the configuration with two tanks and no delay in water supply line
was considered.
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Table 1. Set of available process variables.

Name Description Units Range Signal

SPL Tank level setpoint % 〈0, 100〉 -
CVV Control signal % 〈0, 100〉 〈4, 20〉 [mA]

F1 Water flow at the inlet to the tank I L/min 〈0, 6.5〉 〈4, 20〉 [mA]
L1 Tank level I m 〈0, 0.5〉 〈4, 20〉 [mA]
L2 Tank level II m 〈0, 0.5〉 〈4, 20〉 [mA]

PVL

Controlled level:
100 [%] = 0.374 [m] for L1 control
100 [%] = 0.374 [m] for L2 control

% 〈0, 100〉 -

5.2. Faults and Cyber-Faults

Moreover, for the purpose of the FDI research, additional parametrizable blocks have
been added to the simulator:

• Disturbances. Process disturbance generation subsystem. The simulator takes into
account the possibility of simulating process disturbances in the form of fluctuations
in the pump efficiency and outflow from tank II. The list of disturbances and their
parameters are presented in Table 2.

• Process faults. Process fault generation subsystem. The list of faults and their param-
eters is presented in Table 3.

• Cyber-faults. Each cyber-attack is conducted according to the designed scenario—a
specific attack method. Such a scenario defines independent sub-activities influenc-
ing individual system components and communication channels. Each activity is
determined by the place of influence, its nature, and variability over time.
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Table 2. The set of process faults in configuration for two tanks operation.

F Description Range

f1 The fault in the measurement channel 〈−7.5, 7.5〉 [L/min]
f2 The fault in the measurement channel 〈−100, 100〉 [%]
f3 The fault in the measurement channel 〈−0.5, 0.5〉 [m]
f4 The fault in the transmission of 〈−100, 100〉 [%]
f5 The fault of the pump P (change in pump flow) 〈−100, 0〉 %
f6 The obstruction in the pipe between tanks T1 and T2 〈0, 100〉 %
f7 The obstruction in the pipe out of tank T2 〈0, 100〉 %
f8 The leak from tank T1 〈0, 100〉 %
f9 The leak from tank T2 〈0, 100〉 %
f10 The leak from the inlet to tank T1 〈0, 100〉 %

Table 3. The set of cyber-faults.

Name Description

c f C
F Modification of the measurement signal F at the input to the control system

c f UI
F Modification of the F measuring signal at the input to the operator station

c f C
L1 Modification of the L1 measuring signal at the input to the control system

c f UI
L1 Modification of the L1 measuring signal at the input to the operator station

c f C
L2 Modification of the L2 measuring signal at the input to the control system

c f UI
L2 Modification of the L2 measuring signal at the input to the operator station

c f C
CV Modification of the CV control signal at the input to the process (actuator)

c f UI
CV Modification of the CV control signal at the input to the operator station

c f C
SP Modification of the SP set point at the input to the control system

c f MODE
PID Changing the controller’s operating mode

c f SET
PID Modification of the controller settings

The vectors of setpoint values and configuration options, the control and configuration
signals, and process variables are exchanged between subsystems. It is realized by blocks
that symbolize specific communication standards (IO communication). The parameters of
individual process components, including actuating and measuring devices, were selected
experimentally to reflect the behavior of real components as faithfully as possible, including
such elements as non-linearities, dynamics, and the amplitude of measurement noise.

Cyber-faults presented in Table 3 show almost all possible points of influence realized
during a cyber-attack, consisting mainly in changing the values of signals transmitted
between the components of the process, the control system and the operator’s interface.
Additionally, the possibility of influencing the control algorithm is considered—by changing
the mode of operation and settings of the controller. The lower index of the cyber-fault
denotes the affected signal or component, and the upper one denotes the affected signal
path (C—signals to/from controller, UI—signals to/from operator interface) or the kind of
performed action.

The considered cyber-faults, presented in Table 3, represent the effects of the changes
introduced by the attacker, not the manner in which the change was introduced. In most
real-life cyber-attacks, individual cyber-faults are caused by attacks on the software, as a
result of which the transmitted values of control and measurement signals will be disturbed
and the operating modes and parameters of the control algorithms will be changed.

Due to a large number of possible places of impact on the process by the attacker, as
well as possible different time scenarios of such an impact, the number of possible attack
scenarios is very large. In the analyzed simulator, the possibility of simulating six different
scenarios, characterized by different ways of influencing the process, was designed. The list
of scenarios along with the symbolic designation of the attack vector for a given scenario is
shown in Table 4.
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Table 4. The set of considered cyber-attack scenarios.

Name Description Vector of the Attack

casA
1

Cyclic playback of the recorded history of all available
measurement and control values

[
c f P

CV , c f UI
CV , c f C

F , c f UI
F , c f C

L1, c f UI
L1 , c f C

L2, c f UI
L2
]

casB
1

Cyclic playback of the recorded history of all available
measurements and the values of the control signals transmitted to

the operator’s interface

[
c f UI

CV , c f C
F , c f UI

F , c f C
L1, c f UI

L1 , c f C
L2, c f UI

L2
]

casC
1 Cyclic playback of the recorded history of the controlled variable

[
c f C

L2, c f UI
L2
]

cas2 Gradual modification of the controlled variable
[
c f C

L2, c f UI
L2
]

casA
3 Changing the controller’s operating mode to “reverse”

[
c f MODE

PID
]

casB
3 Modification of controller settings

[
c f SET

PID
]

casC
3

Changing the controller’s operating mode to “manual” and
setting a specific control signal

[
c f MODE

PID
]

5.3. Algorithms of Process Diagnostics

In the considered example, the detection of cyber-attacks has been carried out with
the use of algorithms prepared for the detection and isolation of process faults.

In this respect, three residues using models reconstructing individual process variables
have been used. The residuals are generated based on the following scheme:

rj = PVj − PV∗j

where: PVj denotes process variable used in j-th residual, and PV∗j denotes value of process
variable reconstructed by the model.

Then, after low-pass filtering, each of the residuals is subjected to a three-valued
evaluation assuming the constant lower (LIML

j ), and upper (LIMH
j ) limits of the j-th

residual variability area in the state without faults and a dead band ∆j:

sj(k) =



1+ : rj > LIMH
j + ∆j

1− : rj < LIML
j − ∆j

0 : LIML
j ≤ rj ≤ LIMH

j

sj(k− 1) : otherwise

The set of residuals together with the diagnostic matrix for the purposes of the detec-
tion and localization of process faults is shown in Table 5. Thus, the diagnostic signals take
one of the three values sj = {1−, 0, 1+}. Two possible signatures have been shown in the
diagnostic matrix for damages to the measurement and to the control signal transmission
lines, i.e., for the case when the signal value is underestimated (↓) or overestimated (↑) in
relation to the real value. The diagnostic matrix shows that there are two groups of damages
that are not distinguishable conditionally or unconditionally: 〈 f2, f6〉 and 〈 f3, f5, f10〉. These
have been highlighted in the table accordingly.

Table 5. The set of considered residuals and diagnostic matrix for process fault diagnosis.

Residual/Diagnosic Signal f1↓ f1↑ f2↓ f2↑ f3↓ f3↑ f4↓ f4↑ f5 f6 f7 f8 f9 f10
r1 = F1−f(CVV) s1 1− 1+ 0 0 0 0 1− 1+ 1− 0 0 0 0 1−

r2 = L1−f(F1) s2 1+ 1− 1− 1+ 0 0 0 0 0 1+ 1+ 1− 1− 0
r4 = L2−f(L1) s4 0 0 1+ 1− 1− 1+ 0 0 0 1− 1+ 0 1− 0

The indicators of the presence of individual process faults are determined on the basis
of rules corresponding to the signatures indicated in the diagnostic matrix for that fault by
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comparing the current values of diagnostic signals with those indicated in the signatures,
e.g., for f1:

f1 =

{
1 : [(s1 = 1−) ∧ (s2 = 1+) ∧ 4 = 0)] ∨ [(s1 = 1+) ∧ (s2 = 1−) ∧ (s4 = 0)]

0 : otherwise

5.4. Algorithms of Cyber-Attack Detection and Isolation

For the purpose of detecting cyber-attacks, the set of residues, which was earlier
prepared for detection of process faults, has been extended by the fourth residuum using
the controller’s model:

r5 = CV − f (e)

where: e = PVL − SPL.
In Table 6, a theoretical analysis of the sensitivity of diagnostic tests to single cyber-fault

is presented. As can be seen, most of the cyber-faults are detectable and even hypothetically
distinguishable. In this analysis, it has been assumed that the diagnostic system uses in its
calculations the same signal values that are sent to the operator interface.

Table 6. Theoretical matrix of sensitivities of diagnostic checks to single cyber-faults.

cfC
F cfUI

F ↓ cfUI
F ↑ cfC

L1 cfUI
L1↓ cfUI

L1↑ cfC
L2 cfUI

L2↓ cfUI
L2↑ cfP

CV cfUI
CV↓ cfUI

CV↑ cfC
SP cfMODE

PID cfSET
PID

s1 0 1− 1+ 0 0 0 0 0 0 1± 1+ 1− 0 0 0

s2 0 1+ 1− 0 1− 1+ 0 0 0 0 0 0 0 0 0

s4 0 0 0 0 1+ 1− 0 1− 1+ 0 0 0 0 0 0

s5 0 0 0 0 0 0 1± 0 0 0 1− 1+ 1± 1± 1±

Indicators of the presence of individual cyber-faults could be determined analogously
as indicators of process faults, on the basis of rules corresponding to the signatures indicated
in the sensitivity matrix depicted in Table 6.

In Table 7, the theoretical matrix of the influence of the cyber-attacks considered in the
example of cyber-attacks on individual residues is shown. It can be noted that one of the
scenarios is undetectable, and the others can be divided into two groups that differ in the
observed symptoms. The two groups are highlighted in the table accordingly. Therefore,
potentially, there is a possibility of locating (distinguishing) attacks from these two groups.

Table 7. Matrix of sensitivity of residues to factors related to the implementation of individual
cyber-attacks.

casA
1 casB

1 casC
1 cas2 casA

3 casB
3 casC

3
s1 0 0 0 0 0 0 0 0 0
s2 0 0 0 0 0 0 0 0 0
s4 0 0 1− 1+ 1− 1+ 0 0 0
s5 0 1± 0 0 1± 1± 1±

General cyber-attack detection signal is generated based on all diagnostic signal values:

caD = (s1 6= 0) ∨ (s2 6= 0) ∨ (s4 6= 0) ∨ (s5 6= 0).

The indicators of the presence of cyber-attack from one of the two groups:
(
{

casB
1 , casA

3 , casB
3 , casC

3
}

and
{

casC
1 , cas2}) are determined analogously as the indicators
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of process faults, on the basis of rules corresponding to the signatures indicated in the
sensitivity matrix depicted in Table 7:

caIG1 =

{
1 : (s1 = 0) ∧ (s2 = 0) ∧ (s4 = 0) ∧ [(s5 = 1+) ∨ (s5 = 1−)]

0 : otherwise
.

caIG2 =

{
1 : (s1 = 0) ∧ (s2 = 0) ∧ [(s4 = 1+) ∨ (s4 = 1−)] ∧ (s5 = 0)

0 : otherwise
.

5.5. An Example of Detecting an Attack of Type: Replay Attacks in Open Loop—Scenario casB
1

In the first example, a cyber-attack was carried out according to the caB
1 scenario, which

consisted of the cyclical reproduction of the recorded history (from a period of 200 [s])
of process quantities

[
c f C

F , c f UI
F , c f C

L1, c f UI
L1 , c f C

L2, c f UI
L2
]

and the control signal
[
c f UI

CV
]
. The

reconstructed signal values were sent to both the control system and the operator interface.
The cyber-attack started at 700 [s] of the simulation. The control scenario implemented in
the system consisted in introducing step changes of the set values at the moments 400 [s],
800 [s], and 1000 [s]. The initial period of 100 [s] is not shown on the graph as it is related to
the stabilization of the diagnostic algorithms after their activation (initialization phase).

In Figure 4, the most important signals related to the implementation of both process
diagnostics and cyber-attack detection algorithms are shown.

On the charts we can observe:

(a) Only residuum r5 shows a clear reaction to the introduced cyber-damages.
(b) Immediately after the onset of the attack, either the symptom 1+ or 1−—of the

diagnostic signal s5 is observed.
(c) The cyber-attack detection signal is actually active from the very beginning (caD).
(d) The possibility of an attack from group I (caIG1) is indicated practically all the time.
(e) Working in parallel, independently operating process diagnostics algorithms do not

detect or indicate any of the process faults. This is due to the fact that a cyber-
attack only causes the appearance of a symptom of a new diagnostic test not used in
process diagnostics.

(f) In this case, it is possible to fully distinguish a cyber-attack from a process failure.

5.6. An Example of Detection of Attack Type: “False Data Injection Attacks”—Scenario cas2

In the second example, a cyber-attack was carried out according to the ca2 scenario,
which consisted of falsifying the controlled variable

[
c f C

L2, c f UI
L2
]

by gradually lowering
its value (by subtracting the value increasing from 0 by 0.05 [m] over 100 [s], as well as
the control signal

[
c f UI

CV
]
. Both the value sent to the controller and the value sent to the

operator interface were falsified. The cyber-attack started at 700 [s] of the simulation. The
same control scenario was implemented in the system as in the first example (step changes
in the reference value).

In Figure 5, the most important signals related to the implementation of both process
diagnostics and cyber-attack detection algorithms are shown.

On the charts we can observe:

(a) Residuum r4 shows a clear and lasting reaction to the introduced cyber-fault. Residua
r1 and r5 react in transient states when the control signal (CV) reaches extreme values.

(b) Immediately after the onset of the attack, the symptom 1+ of the diagnostic signal s4
is observed. Symptoms of signals s1, s2, and s5 are observed in the transient states.

(c) The cyber-attack detection signal is actually active from the very beginning (caD).
(d) Finally, in steady states, the possibility of an attack from group II (caIG2) is indicated.
(e) In parallel, independently operating process diagnostics algorithms detect damage f3,

the signature of which is consistent with that of the cyber-fault c f UI
L2 .

(f) In this case, it is not possible to distinguish a cyber-attack from a process fault.
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Figure 4. An example of the detection of a cyber-attack casB
1 : (a) values of residuals (signals r1, r2 and

r4 overlap), (b) values of diagnostic signals (signals s1, s2 and s4 overlap), (c) signal of cyber-attack
detection, (d) indicators of location of groups of cyber-attack scenarios, (e) indicators of process
failures (all signals overlap and have the value of ‘0’), (f) main process variables.
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(e) indicators of process failures (signals f1 and f5 . . . f10 overlap and have the value of ‘0’, signals f4

and f2 have the value “1” only on the beginning of cyber-attack), (f) main process variables.
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6. Discussion—Research Problems to Be Solved

Introducing the concept of cyber-fault as the elementary interactions of a cyber-attack
makes it possible to formulate an attack scenario as a vector (set) of cyber-faults. This vector
is a formal record of a cyber-attack. In the future, it should be extended by the description
of the cyber-fault sequences.

For each cyber-fault, as for physical faults, the signatures of the faults can be deter-
mined. Because of this, it is possible to apply a uniform approach to the detection and
isolation of both faults and cyber-attacks. However, in the case of cyber-attacks, the signa-
tures for the entire cyber-attack should also be considered and not just for cyber-faults. Such
signatures, in general, can vary with time. Designing an appropriate inference mechanism
taking into account this aspect is undoubtedly a challenge and requires further research.

It is much more difficult than in case of process faults to analyze the potential impact
which the cyber-fault induced during an attack may have on the determined residues.
When designing process diagnostics algorithms, the occurrence of single failures is often
assumed. Such an assumption is justified due to the much lower probability of occurrence
of multiple failures that are independent of each other. Thus, for process faults, the problem
of fault influence compensation can usually be avoided. Unfortunately, when a cyber-attack
occurs, the situation is much more complex. As already mentioned, virtually every cyber-
attack consists of influencing a process through several different cyber-faults. Additionally,
the nature of the impact may vary over time. Therefore, in the case of cyber-attacks, unlike
the detection and localization of process faults, multiple failures should be considered. At
the same time, the impacts of individual cyber-faults on residua also depends on mutual
influence between them, which strongly depends on the nature of the cyber-attack. On the
one hand, it is an element that makes conclusions very difficult, on the other hand, it may
be an element that allows for the potential differentiation of a cyber-attack from process
damage, assuming that the latter occur as a single event.

The use of the three-valued assessment of residues and the record of the relationship
between anomalies and the values of diagnostic signals in the form of FIS creates, also in
the case of the detection and isolation of cyber-attacks, the possibility of obtaining a higher
distinguishability of anomalies compared to binary approaches.

The example shows that the used residues based on fuzzy partial models of the system
being diagnosed are sensitive to both process faults and cyber-faults. Residuals utilizing
this type of model can be used to detect anomalies not only at one operating point but also
in the whole area of variability of signals that were used for model building.

The analyzed example also shows the limited use of signature-based inference for
cyber-faults. Only the introduction of signatures for cyber-attacks allowed for their basic
differentiation.

It has been shown in the examples that in some cases it is possible to distinguish a
cyber-attack from a process fault. To achieve this, it is also necessary to use, in addition to
the process models, the models of the implemented controllers, as they may be the target
of an attack.

In the future, the presented method may be extended by:

• The consideration of the sequence of symptoms. The works [2,3] show that in the case
of a fault, taking into account the knowledge of the sequence of symptoms leads to an
increase in the discrimination of faults and thus the precision of diagnosis.

• The introduction of new techniques for assessing residues. One should take into ac-
count not only the fact of the difference between the modelled value and the measured
value of the supervised process variable but also the characteristics of this difference.
For example—in the case of a measuring sensor, its damage may lead to a decalibra-
tion (wrong value, but a natural measuring noise is still present), and in the case of a
cyber-attack, it may lock at a specific value (no noise).

• The use of anomaly diagnostics and also of detection methods based on traffic supervi-
sion in industrial networks. In the case of network traffic analysis, most solutions also
deal with a similar mechanism to technical diagnostics. In more advanced systems,
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when suspicious network traffic is detected, inference is made to determine its cause.
In the proposed solution, one common inference mechanism can be used for faults
and cyber-attacks, then the detected network traffic anomalies will become symptoms
for the inference system.

7. Summary

This article has proposed an integrated approach for the detection of faults and cyber-
attacks. Whereas a commonly used approach would be to separate the IT and OT systems,
consequently leading to the independent detection of faults and cyber-attacks, here it has
been argued that there could be a substantial benefit from using methods related to fault
detection and isolation to detect cyber-attacks. After a review of the types of cyber-attacks
and the methods of detecting them, the itemization of the vector of a cyber-attack by its
components—cyber-faults—has been postulated. Thanks to such an approach, residua can
be determined for each cyber-fault and therefore the methods of fault detection can be used
for the detection and localization of cyber-faults. The approach has been demonstrated on
an example that is simple in terms of the process structure but relatively difficult in terms
of the selection of residua with good sensitivity. The models used for the comparison of
undisturbed system behavior with a disturbed (attacked) system have been created using
fuzzy logic. The presented results are promising, but several questions are open for further
research: (i) how to identify the type of cyber-attack based on the combination of detected
component (cyber-faults)? (ii) how to establish conditions for distinguishability between
cyber-faults and equipment faults? (iii) extend the choice of residuals by incorporating the
stochastic properties of signals (some initial promising results have been obtained) and
incorporate these into the anomaly diagnosis system.
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