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Abstract: In recent years, replacing internal combustion engine vehicles with electric vehicles has
been a significant option for supporting reducing carbon emissions because of fossil fuel shortage
and environmental contamination. However, the rapid growth of electric vehicles (EVs) can bring
new and uncertain load conditions to the electric network. Precise load forecasting for EV charging
stations becomes vital to reduce the negative influence on the grid. To this end, a novel day-ahead
load forecasting method is proposed to forecast loads of EV charging stations with Bayesian deep
learning techniques. The proposed methodological framework applies long short-term memory
(LSTM) network combined with Bayesian probability theory to capture uncertainty in forecasting.
Based on the actual operational data of the EV charging station collected on the Caltech campus, the
experiment results show the superior performance of the proposed method compared with other
methods, indicating significant potential for practical applications.

Keywords: electric vehicle charging station; load forecasting; Bayesian deep learning; long short-term
memory (LSTM) network; capture uncertainty

1. Introduction
1.1. Background

With the rapid economic and social development, climate warming, energy shortage,
environmental pollution and other issues are becoming more and more serious and have
received continuous attention from governments and scholars worldwide [1,2]. Energy
use and pollution emissions from the transportation industry are one of the main factors
contributing to the escalation of these problems. With the continuous maturity of technol-
ogy and the policy support of various governments, the number of electric vehicles (EVs)
has been increasing rapidly in recent years [3] because of EVs’ low carbon and environ-
mental friendliness characteristics. Meanwhile, global decarbonization has boosted the
rapid development of electric vehicles (EVs). In the past few decades, quantities of EVs
charging stations have been built to meet EV owners’ increasing demand. Nevertheless,
some significant adverse effects may be brought to the existing power systems because
of the high penetration of EVs, which include unstable voltage and frequency, massive
harmonic injection, power losses and the instability of the power system [4]. With the
widespread use of EVs, the large-scale implementation of peer-to-peer energy transactions
is promoted, and the safe operation of the power grid is also affected [5]. Therefore, for the
efficiency and safety of distribution grid operation with EV charging stations, it is essential
to develop a useful and accurate forecasting model for EV charging load, which is not
merely vital for the economic and optimal operation of the distribution network, but also
the further development of the EVs [6].
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1.2. Motivation

With the increasing number of EVs and EV charging stations, some significant adverse
effects may be brought to the existing power systems because of the high penetration of
EVs, and the uncertainty and difficulty of load forecasting of electric vehicle charging
stations are also increasing. In order to solve the problem that less attention is paid to the
impact of uncertainty on load forecasting in the current load forecasting research of electric
vehicle charging stations, this paper will develop a novel method that combines Bayesian
theory and the LSTM network to explore the impact of uncertainty on load forecasting for
an EV charging station.

1.3. Related Work

In the literature, load forecasting has been widely and extensively studied for EV
charging stations. Owing to the lack of actual charging data, many scholars have paid
particular attention to building mathematical models to forecast charging load in the past
decades, including the state-of-charge (SOC) model [7], energy consumption model [8] and
so on. Ref. [7] calculated the probabilistic day-ahead charging load of the workplace, which
proposed a combined methodology based on state-of-charge (SOC). Ref. [8] employed a
mathematical consumption modeling to predict the load demand of PHEVs. An inverse
load flow technology and a regional charging time-shift method are explored to predict
daytime and midnight energy transfer, respectively. In [9], a systematic method was
explored to predict the additional loads in the mid-and-long period generated by EV
charging, including probabilistic models which describe the EV charging profiles and
predictive models to forecast EV ownership in the future. Although the studies above
have contributed much to exploring useful methods to forecast EVs charging load, the
performance and accuracy are unsatisfactory. Meanwhile, the Monte Carlo method has
attracted much attention because of its great performance. In [10,11], the Monte Carlo
method was employed to calculate EVs charging load. A Monte Carlo-based simulation
in [11] was employed to forecast the EV energy consumption, which was uncontrolled.
Ref. [10] proposed a forecasting model considering the impact of various vehicles, which
predicted and analyzed the number of EVs and used Monte Carlo to compute the charging
load of EVs. In [11], a novel model Monte Carlo-based simulation was proposed to predict
EV charging load demand. In [12], an optimal parameter forecasting method was proposed
to forecast the charging demand of EVs, which effectively reduce forecasting errors of EVs.
Although these studies have contributed much to solving the charging load forecasting,
these methods fail to receive satisfactory forecasting accuracy because many factors could
influence the model performance, including the EV owner behaviors, traffic flow and
weather conditions. These mathematical models established in the above studies are
complicated, and the process of calculation is difficult.

In recent years, machine learning techniques have revealed perfect performance in
short-term load forecasting [13–16] because of its black model. For example, a load forecast-
ing model in the short term for EV charging stations was proposed in [17], where particle
swarm optimization (PSO) was applied for optimizing the parameters of the support vector
machine (SVM), and great performance was achieved. Ref. [18] developed a support vector
regression (SVR)-based algorithm for charging load forecasting. Ref. [19] proposed a novel
forecasting method for different charging scenarios, which used the Q-learning technique
and obtained great performance in load forecasting for the plug-in hybrid EV charging.
The authors explored some single machine learning methods with different datasets to
compare the performance of different machine learning models. Ref. [20] employed four
different machine learning technologies to forecast the EVs charging load based on two
different datasets. In order to obtain better performance in load forecasting, ensemble
learning combines multiple machine learning models and has received much attention.
For instance, Ref. [21] proposed an ensemble learning method to forecast the EVs charging
station load, which combined three fundamental learners, including the artificial neu-
ral network, recurrent neural network (RNN) and LSTM. In [22], four machine learning
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models were combined to predict EV charging load for different geographic regions, includ-
ing gradient boosted regression trees, quantile regression forests and quantile regression
neural networks.

Beyond the above studies mainly based on classical methodology or machine learning
technology, deep learning, one of the advanced technologies, has performed very well
in a series of fields and received widespread attention in recent years. In [23], a load
forecasting method for EV charging combining Extreme Gradient Boosting (XGBoost) and
LSTM was proposed, and the data of a charging station was used to check the calculation
example. Ref. [24] divided EV charging modes into three types and established three
categories of a day-by-day load forecasting model to predict load for an EV charging
station. Ref. [25] predicted the EV charging station loads by employing four featured deep
learning approaches and comparing their performance. Ref. [26] employed a combined
load forecasting methodology considering the elastic charging and discharging of EVs,
which used a deep neural network (DNN) and time series method to forecast the load data.
Ref. [27] employed LSTM to forecast EV charging station load and used an imputation
method to handle missing EV charging data to improve accuracy. Ref. [28] proposed a novel
method to forecast EV charging load, which combined CNN and a novel queuing model.

Although existing studies have successfully demonstrated the superior performance
of deep learning on prediction tasks, most studies are actually based on deterministic
models and lack the ability to capture uncertainty.

1.4. Contribution and Organization of the Paper

Bayesian deep learning (BDL), a novel probabilistic deep learning model, has been
more and more prevalent in recommender systems [29], natural language processing [30],
computer vision [31], autonomous driving [32] and health care [33–36]. In this paper, a
novel load forecasting framework for EV charging stations is proposed on the strength of
BDL, which aims at capturing uncertainty and great forecast performance. We experiment
with using actual operation data collected on the Caltech campus. Compared with other
deep learning methods, the proposed method performs better. In general, the major
contributions of this paper are as the following:

(1) A novel load forecasting methodology is proposed to capture uncertainties in
forecasting for EV charging stations, combining Bayesian probability theory and the LSTM
neural network framework. The proposed model shows great performance not only for
handling time series but also for capturing uncertainty.

(2) To capture uncertainty in forecasting, place a prior distribution upon the network
weights and bias parameters of LSTMs and then apply variational inference to infer a
posterior distribution over the given data. The results of Pinball and Winkler validate the
ability of the model to capture uncertainty.

(3) The proposed methodology is compared with a series of popular benchmark
methods by using Caltech’s public EV charging dataset. Numerical results are presented,
which demonstrate the superiority and effectiveness of the proposed method. Compared
with other methods, the proposed model’s deterministic and probabilistic forecasting
results are significantly improved.

The following of this paper is arranged as below. Section 2 identifies the main chal-
lenges of EVs station load forecasting. Section 3 describes the BDL network and variational
inference. Section 4 describes the proposed load forecasting framework for EV charg-
ing stations. Section 5 performs comprehensive digital experiments to prove the superb
performance of the proposed model. Section 6 arrives at the conclusions.

2. Primary Challenges

The wide employment of EVs and its stochastic nature lead to failure in increasing the
predictability of the charging station load significantly. In this part, the primary challenges
existing in the process of forecasting are summarized as follows:
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(1) Extensive stochastic uncertainty: For the EV charging stations load, uncertainty
includes the load uncertainty and EV uncertainty. In this paper, stochastic uncertainty is
employed to denote the uncertainty within the charging station load injected from various
sources such as climate change, the behavior of EV owners, and the initial state-of-charge
(SOC) of the EV battery. During the last years, although many probabilistic prediction
methods have been developed to capture these abundant uncertainties, in the EV load or
EV charging station load, the majority of the existing means can merely offer the prediction
interval, which fails to provide detailed information about the prediction distribution of
each single time step.

(2) Uncertainty in the model: Model uncertainty includes the uncertainty of model
structure and model parameters. Apart from stochastic uncertainty, model uncertainty
is also very vital for the task of EV charging load forecasting. Among an abundance of
potential model parameters and structures, it is vital to understand the extent to which the
selected combinations can accurately predict the EV charging station load under different
conditions, such as climate, the behavior of EV owners and traffic flow.

Because of the above challenges, investigating and developing a deep learning model to
address extensive uncertainty in the load is crucial. Thus, this paper selects the BDL model to
predict EV charging station load because of its perfect performance in handling uncertainty.

3. Methodology

EV charging station load forecasting is a challenging problem because of numerous
uncertainties mentioned in Section 2. To address this challenge, a novel short-term load
forecasting framework for the EV charging station is introduced in this section, shown in
Figure 1. The proposed framework includes two stages: (1) the data preprocessing stage;
(2) the forecasting stage.

Energies 2022, 15, x FOR PEER REVIEW 5 of 16 
 

 

 
Figure 1. Overall framework of the method. 

(1) Data preprocessing stage: Given the EV charging load dataset, compile a temporal 
series of power consumption and construct a group of potentially related predictors. 

(2) Forecasting stage: Bayesian deep learning model for load forecasting is built and 
trained using the temporal series of power consumption. This procedure is iterated until 
the model performance is stable. Charging load forecasting is performed on the test da-
taset, and the forecasting performance is assessed through the evaluation criteria. 

The proposed framework is described in the following subsections. 

3.1. Bayesian Deep Learning Model 
LSTM network, an especial RNN architecture, has proved to have great performance 

in many fields in the literature, such as load forecasting [37]. Firstly, we describe the struc-
ture of LSTM cell, shown in Figure 2, so we can introduce the fundamental architecture of 
the proposed BDL network. LSTM cell consists of the following parts, including the inter-
nal hidden state th , it controls the information flow by an independent hidden memory 
cell tc  and three types of gating cells during the whole learning process. A group of five 
vectors in d  are employed to represent the states of the LSTM units at each time step 
t , including the forget gate tf , the input gate ti , the output gate to , the memory cell tc
, and the hidden state th . d  denotes the amount of the LSTM cells. The computation 
functions of LSTM [28] are: 

Figure 1. Overall framework of the method.



Energies 2022, 15, 6195 5 of 15

(1) Data preprocessing stage: Given the EV charging load dataset, compile a temporal
series of power consumption and construct a group of potentially related predictors.

(2) Forecasting stage: Bayesian deep learning model for load forecasting is built and
trained using the temporal series of power consumption. This procedure is iterated until
the model performance is stable. Charging load forecasting is performed on the test dataset,
and the forecasting performance is assessed through the evaluation criteria.

The proposed framework is described in the following subsections.

3.1. Bayesian Deep Learning Model

LSTM network, an especial RNN architecture, has proved to have great performance in
many fields in the literature, such as load forecasting [37]. Firstly, we describe the structure
of LSTM cell, shown in Figure 2, so we can introduce the fundamental architecture of the
proposed BDL network. LSTM cell consists of the following parts, including the internal
hidden state ht, it controls the information flow by an independent hidden memory cell ct
and three types of gating cells during the whole learning process. A group of five vectors in
Rd are employed to represent the states of the LSTM units at each time step t, including the
forget gate ft, the input gate it, the output gate ot, the memory cell ct, and the hidden state
ht. d denotes the amount of the LSTM cells. The computation functions of LSTM [28] are:

c̃t
ot
it
ft

 =


tanh

σ
σ
σ

(W
[

xt
ht−1

]
+ b
)

(1)

ct = c̃t · it + ct−1 · ft (2)

ht = ot · tanh(ct) (3)

in which xt ∈ Rm is the present input, σ denotes the logistic sigmoid function, W ∈ R4h×(d+m)

and b ∈ R4h represent weights and bias of LSTM, respectively. The forget gate will
selectively delete unnecessary information from the memory cell, the input gate will add
fresh information into the cell, and the output gate will expose the interior memory state.
The memory cell ct could handle long-period dependencies in the sequences better by
updating, deleting, and forgetting interior information selectively via these three types of
gates. Because of the serial nature of the onefold LSTM layer, we can employ a random
number of LSTM layers to construct a deep neural network. Unlike the common LSTM, the
LSTM network combined with Bayesian theory (LSTM-BDL) replaces the weights and bias
by actual number with a group of random variables, as shown in Figure 3.

In general terms, a prior distribution, such as N (0, I), is employed to denote W.
Nevertheless, BNN’s prior distributions ought to denote the prior belief concerning the
neural network parameters distribution, including weights and bias, that are difficult to
be determined due to the unclear physical meaning of these parameters. According to
References [32,38,39], one of the most effective solutions is employing standard parametric
distributions when prior belief is difficult to determine. As a result, the prior distribution is
denoted as the standard normal distribution p(W) ∼ N (0, 1).

When the suitable prior was determined, the likelihood of the model p(Ytrain|hW(Xtrain))
is defined as a normal distribution N (hW(Xtrain), σ2) which has a steady noise level σ,
where hW(Xtrain) denotes the target of LSTM about Xtrain and model parameters W. Based
on Bayes’ theorem, the model parameter’s posterior distribution is acquired as

p(W|Xtrain, Ytrain) =
p(Ytrain|Xtrain, W) · p(W)

p(Ytrain|Xtrain)
(4)

Based on p(W|Xtrain, Ytrain) , we could predict the new output ŷ that is defined as a
random variable when setting a new input point x̂, and can be formulated as below:

p(ŷ|x̂, Xtrain, Ytrain) =
∫

p(ŷ|x̂, W)p(W|Xtrain, Ytrain)dW (5)
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Nevertheless, it is difficult to calculate the true posterior, especially for complex models.
Therefore, different inference techniques are proposed to approximate posterior, including
variational inference (VI) and Markov chain Monte Carlo (MCMC). The introduction of the
VI-based method is below.

It is effective for VI to calculate various learning and inference problems in BDL,
which has been demonstrated. The advantage of VI is that it transforms calculating
posterior into approximating intractable distributions in machine learning. Calculating
p(W|Xtrain, Ytrain) is the main difficulty of BDL, especially when network structures are
complex and data is multidimensional. To overcome this difficulty, approximating the
posterior distribution via a variational distribution becomes VI’s key idea, which is a
probability distribution assessing for further inference easily. Two procedures will generally
be taken to implement. First, we choose an approximative variational distribution qτ(W)
as the variational distribution family, which is parameterized by τ. In the second place, we
minimize the Kullback–Leibler (KL) divergence between qτ(W) and p(W|Xtrain, Ytrain) in
regard to τ, then find an optimal variational distribution. Here, the definition of the KL
divergence between these two distributions is

KL(qτ(W)||p(W|Xtrain, Ytrain))

=
∫

qτ(W) log qτ(W)
p(W|Xtrain ,Ytrain)

dW
(6)

Nevertheless, analytically solving the optimization problem is intractable. As a result,
the target is transformed into maximizing Evidence Lower Bound (ELBO). In [32], a detailed
mathematical derivation of VI is given.

3.2. Framework of Model
3.2.1. Data Pre-Processing Unit

We compile a temporal series of power consumption and a group of potentially related
predictors from the dataset.

(1) Compilation of temporal series

A temporal series is defined as a group of observations representing a particular time,
and the time difference is equal for all observations between two consecutive observa-
tions [40]. We extract the temporal series power consumption from the dataset with an
observation per hour. We calculate the load consumed during one hour in a charging
session according to the charging start and end time and the load used in each charging
session. Then according to the sequence of sampling time, the charging load is sorted into
the temporal series.

(2) Preparation of predictors.

There are two main types of ectogenous predictors in the forecasting models, including
weather predictors and calendar predictors.

Weather conditions, such as temperature and humidity, can influence EV mileage. In
order to handle possible intrinsic connections between EV charging patterns and weather,
historical weather data for the area are included. Because the chosen charging station is
located on the California Institute of Technology campus, the weather data for Pasadena,
Caltech’s location, is chosen as the weather predictor.

As a type of input in load forecasting, calendar predictors are typical. The author
considers calendar predictors as important factors in [22], because of close connection with
the social behavior of the EV users. For instance, EV users’ social behavior may change
during holidays or weekdays, even during different periods of the day. In this paper,
0 represents a working day, and 1 denotes a nonworking day.
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3.2.2. Forecasting Unit

A novel BDL method is proposed in the Forecasting Unit, which is the basic core of the
entire model. As shown in Section 3, Bayesian probability theory and the LSTM network
are combined in LSTM-BDL to catch uncertainty in the forecasting process.

For the prepared load dataset, the proposed LSTM-BDL network is trained on the
strength of the constructed features XTrain and the target labels YTrain. The network param-
eters are built using a standard normal distribution as the prior, including the network’s
weights and bias, when the LSTM-BDL network is initialized. When finishing the training
step, applying the test dataset XTest to the trained model, the final outputs are the predicted
EV charging station load.

4. Basic Setup of Experiments
4.1. Data Sources

The ACN-Data [41] is a dataset collected from EV charging sessions in the workplace,
which Caltech has provided to the researchers for studying EV charging. The dataset
contains more than 30,000 charging sessions collected from two workplace charging sites
in California, located on the Caltech campus and Jet Propulsion Laboratory. In this paper,
we use charging data collected from the charging site located on the Caltech campus as our
experimental data. The adaptive charging network (ACN) on the Caltech campus has 54 EV
supply equipment along with a 50 kW DC fast charger, which is open to the public and often
used by non-drivers. The dataset has collected detailed information about each charging
session in the ACN framework. Each charging session contains detailed information,
such as “connectionTime”, “doneChargingTime”, “disconnectTime”, “kWhDelivered”,
“sessionID”, “stationID” and so on. Table 1 introduces the corresponding data fields of
the dataset.

Table 1. Part of data fields in ACN-Data.

Field Description

connectionTime Time when the user plugs in.
doneChargingTime Time of the last non-zero charging rate.

disconnectTime Time when the user unplugs.
kWhDelivered Measured Energy Delivered.

sessionID Unique identifier for the session.
stationID Unique identifier of the EV Supply Equipment.

This article applies the charging load data from 26 April 2018 to 29 February 2020 to
train and test the model.

4.2. Experimental Setup

To evaluate the proposed forecasting model’s superior performance, a series of ad-
vanced regression methods are used for comparison, which have been applied extensively
and proven in the literature to have great performance. More specifically, point forecasting
techniques, including multiple linear regression (MLR) and LSTM, SVR and probabilistic
model, and quantile regression (QR), are applied to test forecasting performance compared
with LSTM-BDL. All the tested models were carried out using Python with scikit-learn [42],
Tensorflow [43] and Edward2 [44]. All algorithms were run on a laptop with the Windows
11 operating system, AMD Ryzen 7 5800 H CPU, 16 GB DDR4 RAM, and Nvidia GeForce
RTX 3060 graphics processing unit.

4.3. Evaluation Criteria

The root mean square error (RMSE), the mean absolute error (MAE) and the R2 score
(R2) are applied to assess the forecasting performance of the examined methods, which
are typical evaluation criteria. Given the actual load of the EV charging station Ltest and
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the predicted load of the EV charging station L̂test, the definition of the above-mentioned
metrics is formulated as below.

The RMSE measures the errors between the real and the forecasting values, which can
be formulated as below:

RMSE =

√√√√√ T
∑

t=1
(Ltest

t − L̂test
t )

2

T
(7)

where Ltest is the real load value and L̂test is the predictive load value at time step t.
In order to take measures of the absolute difference between the real and the forecasting

EV charging station load, the MAE and the MAPE are calculated in W and percent %
separately and are denoted as below:

MAE =
1
T

T

∑
t=1

∣∣Ltest
t − L̂test

t
∣∣ (8)

R2 = 1−

T
∑

t=1
(L̂test

t − Ltest
t )

2

T
∑

t=1
(Ltest

t − Ltest
t )

2
(9)

where Ltest
t is the average value of the Ltest, at time step t.

Pinball and Winkler are typical evaluation metrics to evaluate the performance of
the probabilistic forecasting methods. Pinball could evaluate the reliability and sharpness
of the model, and Winkler could indicate the coverage and interval width. Pinball and
Winkler are denoted as below:

Pinball =

{
q(Ltest

t − L̂test
t,q ) Ltest

t ≥ L̂test
t,q

(1− q)(L̂test
t,q − Ltest

t ) Ltest
t < L̂test

t,q
(10)

Winkler =


δ +

2(Mt−Ltest
t )

α Ltest
t > Mt

δ +
2(mt−Ltest

t )
α Ltest

t < mt
δ mt ≤ Ltest

t ≤ Mt

(11)

where L̂test
t,q represents the predictive load at the qth quantile, at time step t, Mt and mt

denote the upper and lower prediction interval bounds, respectively. It is notable that
q = 0.5 for Pinball and α = 0.1 for Winkler in this case.

5. Results and Discussion

In this section, we apply the test dataset to predict the charging load for 480 time steps
in the future to compare the predictive performance between the proposed LSTM-BDL
network and other advanced forecasting methods, including the point and probabilistic
forecasting results. Notably, the 50th percentile values for QR and LSTM-BDL models are
applied to evaluate their deterministic forecasting results.

In Figure 4, the predictive results of the RMSE, the MAE and the R2 score in kWh are
shown. For three evaluation metrics, a lower value of RMSE and MAE corresponds to the
better performance of the forecasting model, and a higher value of R2 score represents the
better performance of the forecasting model. The results in Figure 4 show that the proposed
LSTM-BDL takes the lead in the predictive performance, as shown by the approximately
39.3%, 42.4% lower RMSE, MAE and 17.9% higher R2 score when we made a comparison
with the benchmark method of support vector regression. Moreover, the performance of
the LSTM-BDL also takes the lead when compared with the probability forecasting method,
quantile regression, with approximately 32.2%, 40.2% and 16.0% improvements in the
three evaluation metrics. The value of RMSE, MAE and R2 score shows that capturing
uncertainty in load forecasting for an EV charging station is significant. Due to the ability
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of the proposed model to capture uncertainty, its predictive performance is the best among
all methods.
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Figure 4. Forecasting results for different methods.

Additionally, Figure 5 shows the predictive outcomes of the 10 test days achieved
through the LSTM-BDL model and QR model. It is notable that the blue line expresses the
real charging load during the tested time, the predictive load of QR is represented by the
red line and the predictive load of LSTM-BDL is represented by the green line. Figure 5
shows that QR cannot forecast the peak demand well, and some unexpected results are less
than zero. It should be emphasized that the proposed LSTM-BDL model can well forecast
the charging loads during peak periods which is a key factor for the safe operation of an EV
charging station. In other words, the result reveals the ability of the proposed LSTM-BDL
model to catch uncertainty is better than the QR method.
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Figure 5. Probabilistic EV charging station load forecasting result.

Additionally, we separately predict the charging load on working days and nonwork-
ing days to investigate the probabilistic forecasting performance across different types
of days. Figure 6 presents the average pinball loss values and the bar plots for QR and
LSTM-BDL. As shown, although the amount of relative improvement varies across working
days and nonworking days, the proposed model consistently outperforms QR.

Additionally, the overall probabilistic evaluation metric values of LSTM-BDL and QR
are listed in Figure 7 to prove the superior performance of the proposed model. The results
show that all probabilistic evaluation metrics of the proposed model are significantly better
than QR. It indicates that QR focuses only on the uncertainty in the charging load data and
performs poorly in forecasting.
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Additionally, we test the forecasting performance compared with different network
depths. Figure 8 presents the results of RMSE and MAE for applying the prepared dataset
when the layers increased from two to six. It indicates that the optimum performance
will be obtained when the proposed LSTM-BDL model has five layers. When increasing
the network depth from two to five, the RMSE and MAE results get smaller, and the
forecasting performance improves. It indicates that appropriately increasing the network
depth and parameters can significantly improve the forecasting performance. As the depth
of the network increases, it can lead to overfitting and performance loss due to increased
parameter redundancy and decreased data diversity. Table 2 lists the training time required
for different layers of LSTM-BDL. As the number of layers increases, the parameters that
need to be optimized for training continue to increase, so the required time also increases.
However, when the number of layers increases further, it does not obtain a better forecasting
performance and causes a time loss.

Table 2. Training time for different layers of LSTM-BDL.

Layer of LSTM-BDL CPU Time (s)

2 507.28
3 857.43
4 1392.57
5 1985.63
6 2284.89
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network depth.

Furthermore, to test the proposed model’s performance in practical use, we use a
sub-dataset of ACN-Data collected from JPL to verify the prediction effect of the proposed
model and compare it with QR. Table 3 lists the validation results. It can be seen from the
results that the evaluation indicators of the proposed model are better than QR, which
indicates the excellent performance of the model proposed in this paper.

Table 3. Forecasting results for LSTM-BDL and QR.

LSTM-BDL QR

RMSE 5.033 8.695
MAE 3.366 6.349

Pinball 2.851 6.782
Winkler 23.217 81.864
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6. Conclusions

The research for improving the precision of load forecasting for EV charging stations
is significant, which can not only provide guidance for power system economic dispatch
but also promote the development of EVs. This paper proposes a Bayesian deep learning
technique for load forecasting of electric vehicle charging stations with many uncertainties.
In the proposed method, the data preprocessing unit is mainly used to process the original
dataset, compile time series data and add necessary features to the forecast data. In the
forecasting unit, we combine Bayesian theory with the LSTM neural network, change the
LSTM parameters to the prior distribution, and use variational inference to approximate
the posterior distribution during prediction. The prediction results show that this Bayesian
deep learning technique can effectively solve the uncertainty problem in the load prediction
process of electric vehicle charging stations. Further, the superior performance of the
proposed method is demonstrated by comparison with a series of prediction methods.
From the point forecasting results, the proposed model is approximately 39.3%, 42.4% lower
RMSE, MAE and 17.9% higher than the benchmark method of support vector regression.
When compared with QR, the proposed model is 74.4%, 73.0% lower than Pinball and
Winkler. The excellent performance on different datasets shows that the proposed method
could be applied to load forecasting for EV charging stations in real life.

In the future, we will further optimize the proposed probabilistic forecasting method
and improve its prediction performance. Accurate load forecasting results of EV charging
stations will have guiding significance for implementing the orderly charging strategy
of electric vehicles. They also have important significance for optimizing the allocation
of distribution network resources, reducing the peak-to-valley difference in electricity
consumption. We will continue to apply the proposed model to more EV charging datasets
and forecast the load consumed from various types of charging piles, such as AC, DC or
higher power. Meanwhile, we will also try to apply the proposed method to more fields,
such as distributed grid load forecasting, wind power forecasting, and so on.
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