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Abstract: With the participation of wind power in grid frequency modulation, the fatigue load of
the wind turbine increases accordingly. A new control method that considers both fatigue load and
output power of wind turbine (WT) is proposed in this paper. A linear active disturbance rejection
control (LADRC) is designed and applied for the pitch angle in the wind turbine load reduction
control. The particle swarm optimization (PSO) algorithm is used to optimize the parameters of the
wind turbine controller, and the total variation of the wind turbine shaft torque and tower bending
moment is added to construct a new objective function to further reduce the fatigue load of the wind
turbine. The design-optimized controller is validated on a 5 MW wind turbine in SimWindFarm. The
simulation results show that the LADRC controller can accurately track the reference power of the
wind turbine, reduce the pitch angle fluctuation of the wind turbine, reduce the fatigue load of the
wind turbine, and improve the service life of the wind turbine.

Keywords: wind turbine; fatigue load; pitch angle; linear active disturbance rejection control(LADRC);
particle swarm optimization (PSO); total variation

1. Introduction

The wind power industry is developing rapidly, bringing a lot of clean energy to
the power system, but it has also affected the security and economy of the power grid.
The wind turbine is connected to the grid through power electronic converters, which
isolate the generator from the grid and do not have the same frequency response capability
as the synchronous generator [1,2]. With a large number of wind turbines participating
in the grid connection, problems such as wind abandonment and power grid frequency
fluctuations have been caused, affecting the security and economy of the grid. In this case,
many countries with better and faster wind power development hope that wind turbines
will improve their better ability to participate in frequency regulation [3,4]. However, when
the wind turbine has the frequency modulation capability to participate in power grid
frequency regulation, the output power of the wind turbine needs to change frequently
according to the change of the grid frequency, thereby increasing the fatigue load of the
wind turbine [5,6]. Fatigue loads of wind turbines have rarely been considered in past
frequency-modulation methods [7–9]. Therefore, a control method that considers both the
wind turbine output power and the fatigue load should be studied.

At present, there are generally three main wind turbine frequency-modulation tech-
nologies: virtual inertia, droop control, and load-reduction control. Ref. [10] first proposed
the concept of virtual inertia control. Virtual inertia enables wind turbines to release the
kinetic energy stored in rotating blades within 10 s to regulate the grid frequencies. An
improved virtual inertia control strategy for wind turbines based on multi-objective MPC is
proposed, taking electromagnetic torque as the optimization target, which can compensate
for the virtual inertia better than the traditional inertia control, but the stability of the
algorithm still needs to be studied [11]. In [12,13], a method of adding a single-loop inertial
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response to the speed control system was proposed to change the wind turbine response
frequency. In [14], a method was proposed to improve the system stability by introducing
a damping control link in the traditional droop control loop. Although these two control
strategies can track the output power well, they cannot reduce the fatigue load of the
wind turbine.

Load reduction control mainly includes pitch angle control and rotor speed control,
which have a great influence on power tracking and fatigue load. Ref. [15] proposes a
robust adaptive controller that can be applied in pitch and torque control, suitable for
wind turbines of various sizes, that suppresses parameter uncertainty and has satisfactory
tracking characteristics for rotor angular velocity. A fractional PID control method for wind
turbine pitch angle was proposed in [16]. Two additional parameters, fractional integral and
derivative gain, were introduced to improve the control effect. However, the controller has
high requirements for the controlled precision of the wind power system and is not suitable
for the current wind turbine. Ref. [17] proposes a novel fuzzy proportional–integral (PI)
control, which is divided into four regions to design control methods that can reduce the
fatigue load of wind turbines to a certain extent, but there are still difficulties in the design in
practical application. Ref. [18] designs an H∞ controller, whose performance is only verified
in a linear model, and its effect in a nonlinear model is not mentioned, so its applicability
is relatively simple [19,20]: a combined pitch angle and disturbance rejection control; the
wind speed was estimated by disturbance observer, and the pitch angle was determined
by the variation between the wind speed and rotor speed. However, the performance of
the controller will also decrease with the deviation of the operating point. In [21,22], a
pitch angle and overspeed controller that cooperates with droop control is proposed, and
the controller operates by determining the suboptimal power overspeed control strategy
based on the wind speed measurement of the loading tracking curve within the wind speed
range. However, these studies only consider the wind turbine frequency response but
ignore the fatigue load of the wind turbine. Ref. [23] obtained the corresponding fatigue
loads by calculating the state of the wind turbine under different power values and wind
speeds and realized power scheduling by optimizing these fatigue loads. It is proposed
that the fatigue of related structures can be described by torque fluctuations, such as the
change in the torque of the main shaft of the wind turbine, to describe the damage to the
transmission system [24]. Studies have shown that the structural fatigue load of wind
turbines is indeed related to the fluctuation of torque, but the relationship between the
two is not completely linear [25]. In [26], the fatigue load of each unit in the wind turbine
is calculated by introducing the damage fatigue load, but the calculation is complex, and
it is difficult to optimize in practical applications. The design of these controllers cannot
immediately meet the existing increasing practical wind turbine frequency-modulation
requirements, so it is necessary to design a controller that can achieve better performance
while being able to be applied in the actual situation.

In this paper, a linear active disturbance rejection controller is proposed, which can
replace the PID controller and has better control performance [27]. LADRC is a simple and
practical new disturbance rejection control technology. At present, LADRC has been applied
to a variety of practical industrial systems and has achieved good control effects [28]. For
better control performance, the PSO is used for parameter optimization and tuning, and
the total variation of wind turbine fatigue load is introduced into the original optimization
objective function. The work is organized as follows: Section 2 describes the modeling of
wind turbines. Section 3 introduces the linear active disturbance rejection technique and
the PSO optimization algorithm based on the wind turbine fatigue load. In Section 4, the
influence of the total variational weight on the final optimization results is analyzed, and
the optimized controller is verified in an actual wind turbine. Section 5 summarizes the
results of the paper.



Energies 2022, 15, 6178 3 of 15

2. Wind Turbine Modeling

At present, a doubly fed induction generator (DFIG) is widely used in wind farms due
to its wide speed range and high wind energy conversion rate. The wind turbine model is
established with reference to the National Renewable Energy Laboratory (NREL) 5 MW
model [29].

2.1. Wind Turbine Model

The wind energy captured by the wind turbine can be expressed as:

Pm = 0.5ρπR2v3Cp (1)

Tm =
pm

wr
(2)

where ρ is the air density; R is the length of wind turbine blade; v is the current wind
speed; Cp is the wind energy utilization coefficient, representing wind turbine’s ability to
capture power from the wind energy; Tm is the torque on the mechanical side; and wr is
wind turbine rotor speed. According to Bates formula, the maximum utilization rate of
wind energy cannot exceed 0.593, and the classical calculation formula is given in [30]:

Cp = 0.5176
(

116
1

λ1
− 0.4β − 5

)
e−

21
λ1 + 0.0068λ (3)

1
λ1

=
1

λ + 0.08β
− 0.035

β3 + 1
(4)

λ =
wrR

v
(5)

The wind turbine drive system consists of transmission parts and rotating parts. In
order to better simulate the transmission shaft, this paper adopts the two-mass model as
the transmission system [31]. The drive system model can be expressed as:

Jm
.

wr = Tm − Ts

Ts = Kspψ + Kvi
.
ψ

Je
.

we =
Ts

Ngear
− Te

(6)

where
.
ψ = wr − we

Ngear
. In model (6), Te is the torque on the generator side, and Ts is the

torque on the intermediate shaft. Fluctuations in Ts are considered to characterize the
fatigue of the wind turbine drivetrain.

Considering that the electromagnetic transient process of generators is usually mea-
sured in milliseconds, the corresponding mathematical model is relatively simple and
can be accurately described by the first-order inertial model. The output power can be
expressed by: {

Te + τe
.
Te = Tre f

e
Pe = µweTe

(7)

where τe is the inertia time of generator, Tre f
e is the setpoint of generator torque, and µ is

the generator efficiency.
The fatigue load of the wind turbine can be expressed by the mechanical torque Ts and

the tower bending moment Mt [32], where the tower-bending moment can be expressed as:{
Mt = H · Ft
Ft = 0.5ρπR2v2Ct

(8)
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Here, H is tower height, Ft is the thrust force, Ct is thrust coefficient, and is related to
pitch angle β and blade tip speed ratio λ, which can be obtained by looking up the lookup
table shown in Figure 1.
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Figure 1. Ct based on lookup table.

Based on [33,34], it is generally considered that the fluctuation of the main shaft torque
Ts and the tower bending moment Mt is used to calculate the fatigue load of the wind
turbine. In order to better see the change of fatigue load in the operation of wind turbine,
the block diagram of fatigue load calculation is shown in Figure 2, where B = ρπR2v2.
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2.2. Load-Reduction Control

Load-reduction control includes pitch angle control and rotor speed control, which is
applicable in all wind speed conditions. It has the advantages of strong regulation ability
and wide regulation range and is widely used in wind turbine models, but it is limited by
mechanical characteristics: the wind turbine response speed becomes slow and frequent
transformation will greatly reduce the operating life of the wind turbine. When operating
at low wind speeds, the frequency modulation can only be completed by the rotor speed
control. When running at high wind speed, a coordinated control strategy of rotor speed
and pitch angle needs to be used for frequency modulation.

The control block diagram of common wind turbine pitch angle control is shown in
Figure 3, where wm is the setpoint of the wind turbine speed, wr is the actual speed of
generator, βre f is the setpoint of the pitch angle, and β is the actual pitch angle.
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3. Design and Optimization of LADRC
3.1. Active Disturbance Rejection Technology

Active disturbance rejection control does not need to know the specific and detailed
model of the controlled plant and the external disturbances, so it can be assumed that the
controlled plant is:

y(n)(t) = b0u(t) + f (9)

where n and b0 are the two parameters related to the controlled plant, representing the
(relative) order and high-frequency gain of the controlled plant, respectively; f is the
combination of unknown disturbance inside the system and external disturbance, called
total disturbance.

The basic idea of active disturbance rejection control (ADRC) is to estimate the un-
known total disturbances by using an extended state observer. Let

z1 = y, z2 =
.
y, · · · , zn = y(n−1), zn+1 = f (10)

If f is differentiable, let
.
f = h, then (9) can be expressed as:{ .

z = Aez + Beu + Eeh
y = Cez

(11)

where z =
[
z1 z1 · · · zn zn+1

]T ,

Ae =


0
0
...
0
0

1
0
...
0
0

0
1
...
0
0

· · ·
· · ·
. . .
· · ·
· · ·

0
0
...
1
0


(n+1)×(n+1)

Be =
[
0 0 · · · b0 0

]T
(n+1)×1,

Ee =
[
0 0 · · · 0 0

]T
(n+1)×1,

Ce =
[
1 0 0 · · · 0

]
1×(n+1).

A full-order observer can be designed for the system:{ .
ẑ = Ae ẑ + Beu + Lo(y − ŷ)
ŷ = Ce ẑ

(12)



Energies 2022, 15, 6178 6 of 15

where the observer gain $ L_o $ is

Lo =
[
β1 β · · · βn βn+1

]T (13)

In the case that the total disturbance f is bounded, with Ae − LoCe asymptotically
stable, ẑ1(t), · · · , ẑn(t) will approach the output y(t) and its derivatives, and ẑn+1(t) will
approach f. This shows that the disturbance estimation can be used in control so that the
disturbance can be suppressed faster.

Take the following control law:

u(t) =
k1(r(t)− ẑ1(t)) + · · ·+ kn

(
r(n−1)(t)− ẑn(t)

)
b0

− ẑn+1(t)
b0

= Ko(r̂(t)− ẑ(t)) (14)

where r̂(t) is the generalized reference signal, which consists of the reference signal and
its derivatives:

r̂(t) =
[
r(t)

.
r(t) · · · r(n−1)(t) 0

]T
(15)

The state feedback gain Ko is defined as:

Ko =
[
k1 k2 · · · kn 1

]
/b0 (16)

The structure of LADRC is shown in Figure 4.
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For first-order LADRC controller, the parameters that need to be adjusted are β1, β2,
k1, b0. It has a simple structure, and with carefully chosen parameters, it can suppress all
unknown disturbances f quickly.

3.2. Optimization of Controller Parameters

This paper discusses the reduction in fatigue loads in wind turbines by using LADRC
for pitch angle control. For comparison, PI controllers are also designed using the same in-
dex as LADRC. Considering the wind turbine power tracking, fatigue load, and uncertainty
in the model, we use the PSO algorithm to optimize the controller performance.

The particle swarm optimization (PSO) technique was proposed by Kennedy and
Eberhart [35] in 1995. PSO has several advantages; for instance, the algorithm is stochastic
global optimization, parallel optimization, and the algorithm itself is simple and stable,
with memory and evolution, and few parameters need to be adjusted. The algorithm is
currently not only used in scientific retrieval but also suitable for practical engineering
applications. PSO starts with a random solution and iterates to find the optimal solution.
In addition, it can also evaluate the quality of the solution based on the fitness of the
objective function.
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Suppose a dimension space consists of a population of particles. The position of the
i-th particle in the n-dimensional space is xi =

[
xi1 , xi2 , · · · , xin

]T . The particle speed is

vi =
[
vi1 , vi2 , · · · , vin

]T, the optimal position of the individual particle is pi =
[
pi1 , pi2 , · · · , pin

]T ,

and the globally optimal position in the entire particle swarm is pg =
[
pg1 , pg2 , · · · pgn

]T . In
the process of algorithm iteration, the velocity and position of particles can be described as:{

Vk+1
id = wVk

id + c1r1

(
Pk

id − Xk
id

)
+ c2r2

(
Pk

gd − Xk
id

)
Xk+1

id = Xk
id + Vk+1

id

(17)

w is the inertial weight; d = 1, 2, · · · ; k is the number of algorithm iterations; c1 and c2 are
the acceleration factors; and both r1 and r2 are random numbers ranging [0, 1].

The particle velocity update represented by Equation (17) is divided into three parts:
the first part is the speed of the particle at the previous moment; the second part is the
distance between the current position of the particle and the current optimal position of the
particle; the last part is the distance between the current position of the particle and the
globally optimal position of the particle. The algorithm flow is as follows:

1. Initialize the random position and velocity of each particle in the particle swarm
within the specified interval.

2. Calculate the fitness function of each particle to determine this globally optimal solution.
3. Update the position and velocity of the particle according to the current globally

optimal solution and the historical globally optimal solution.
4. Determine whether the set maximum number of iterations is reached and whether

the minimum limit is met. If satisfied, end the iteration; otherwise, repeat steps 2–4.

The block diagram of the PSO optimization algorithm for wind turbine fatigue load is
shown in Figure 5.

The involvement of wind turbines in frequency modulation will cause frequent
changes in the pitch angle, which increases the fatigue load of the WT. The fatigue load is
related to the fluctuations of Ts and Mt. It can simply be considered that the smaller their
fluctuations, the smaller the fatigue loads. That is to say, the smaller the integral of ∆T2

s
and ∆M2

t , the smaller the fatigue load. Therefore, the objective function of fatigue load and
power output can usually be simply described as:

Fatigue Load = ∆T2
s + α ∆M2

t (18)

CF =
∫ (

α1

(
∆T2

s + α ∆M2
t

)
+ (1 − α1) ∆P2

out

)
dt (19)

where α is the weight of the two main fatigue loads (α = 0.01 in this paper); α1 is the weight
of the objective function, which determines the trade-off of the fatigue load and the power
tracking (α1 = 0.4 in the paper).

In order to further reduce the fatigue load of the wind turbine, considering the lim-
itation of the fluctuation of Ts and Mt, the total variation is introduced to the objective
function. The total variational is expressed as:

VT = ∑
(
α2
∣∣Tsn+1 − Tsn

∣∣+ ∣∣Mtn+1 − Mtn

∣∣) (20)

where α2 is the coefficient of variation of Ts and Mt. In the study, α2 = 5. So, the new
objective function can be expressed as:

minC = CF + α3VT (21)

where α3 is the coefficient of the objective function.
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4. Simulation Results and Discussions

The wind turbine used in the simulation part of this paper is designed with reference to
the full-scale wind turbine model (NREL 5 MW) in the SimWindFarm toolbox. This toolbox
was developed by Aalborg University and is capable of simulating the grid-connected
operation of wind turbines [36]. The specific parameters of the wind turbine are shown in
Table 1.

Table 1. Parameters for WT.

Parameter Name Value

ρ Air density 63 m
R Radius of blade 1.22 kg/m3

Jm Rotor inertia 3.5 × 107 kg · m2

Je Generator inertia 5.3 × 102 kg · m2

H Tower height 87.6 m2

ηg Gearbox ratio 97
τe Time inertia of generator 0.1

Pmax Rated power 5 MW
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4.1. Controller Parameters

During parameter optimization, the wind speeds are characteristic wind speeds gen-
erated by SimWindFarm [37]. The wind speed was set to 15 m/s average wind speed,
0.1 turbulence intensity, and the wind speed curve of 10 min, as shown in Figure 6. More-
over, wind turbines generate electricity at maximum power. For better control performance,
the PSO algorithm adopts the objective function of different parameters α3 to optimize
the controller, where the value of α3 ranges from 0 to 2000. Considering the randomness
of the results of the PSO algorithm, after each change of the objective function, the con-
troller parameters are optimized five times, and the optimal parameters of the controller
are obtained by minimizing the objective function. To prove that the obtained controller
parameters are optimal, the convergence curve of the PSO algorithm is shown in Figure 7.
The optimized results of different parameters are shown in Table 2; as α3 increases, the
cost function decreases. In addition, when α3 reaches 1500, CF decreases by 16.5% and
remains largely unchanged in the future because it is found that the fluctuation of the rotor
speed increases. Therefore, this paper adopts the objective function when the parameter is
α3 = 1500 for optimization analysis. The final optimized controller parameters are shown
in Table 3.
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Table 2. The cost function when α3 changes.

α3 CF Percentage/%

0 1.3534 × 1012 0
500 1.2866 × 1012 −4.94

1000 1.2204 × 1012 −9.83
1500 1.1303 × 1012 −16.5
2000 1.1078 × 1012 −18.2

Table 3. The optimal PI parameters and LADRC parameters for α3 = 0 , α3 = 1500.

Controller Kp KI k1 b0 β1 β2

PI −0.2143 −0.0918
LADRC for α3 = 0 −47.81 179.75 5187.73 333.37

LADRC for α3 = 1500 −18.81 261.75 823.17 139.84

4.2. Analysis Results and Discussion

In order to further verify the effectiveness of the optimized controller, tests are carried
out under different operating conditions of the wind turbine. The simulation time of
this case is 900 s. In order to prove the superiority of the controller, the experimental
part adopts a complex wind speed model, including a basic wind speed of 14 m/s, a
gust with an amplitude of 1, a step wind with an amplitude of 1, and a random wind
with an amplitude of 2. As shown in Figure 8, a 300 s simulation is carried out for the
three common modes in wind turbine operation: delta mode, rate constraint mode, and
absolute production constraint mode. The active power results of wind turbines under three
different control strategies—proportional–integral controller (PI), Linear Active Disturbance
Rejection Controller (LADRC), and Linear Active Disturbance Rejection Controller with
Total Variation Optimization (LADRCTV)—are shown in Figure 9.
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In Figure 9, the delta mode is used from 0 to 300 s, at which time the wind turbine limits
the power to 50% of the maximum output power. From 300 to 600 s, the rate constraint
method is adopted, and the power increases slowly with a slope of 0.5 MW/min. During
the 600~900 s period, the absolute production limit mode is adopted; at this time, the wind
turbine is allowed to operate with a maximum output power of 5 MW. The simulation
results show that in the face of complex wind speed conditions, the three control strategies
can realize the active power-tracking control of the above modes.

As shown in Figure 10, under more complex wind speed conditions, after adopting
the LADRC control strategy, the rotor speed fluctuation range of the wind turbine is
wide, there is a small range of fluctuations, and the pitch angle fluctuation is significantly
reduced. On this basis, the LADRC control effect after adding total variable optimization
is more obvious, and the pitch angle fluctuation is smaller, which effectively reduces the
frequent large-scale fluctuation of the wind turbine pitch angle. Therefore, the simulation
results of the shaft torque and tower bending moment in Figure 11 show that the designed
LADRC controller has a more obvious suppression effect on the fluctuation of these two
parameters. In the case of large-scale fluctuations in wind speed, the shaft torque fluctuates
slightly, but after reaching a steady state, it has a good tracking performance, as shown
in Figure 11a. As for the tower-bending moment, as shown in Figure 11b, the LADRC
controller considering the total variation has less fluctuation in the tower-bending moment
under various working conditions, which effectively reduces the tower-bending moment.
Finally, as shown in Figure 12, the two main factors affecting the fatigue load of the wind
turbine are comprehensively considered. During the continuous operation of the wind
turbine, the fatigue load of the wind turbine increases with time, and the fatigue load of the
wind turbine using the LADRC controller increases slowly. The overall fatigue load of the
wind turbine with the LADRC controller is reduced by 6%, and the final fatigue load of the
LADRC controller with the total variation is also smaller than the other controllers, which
is 3% lower than that of the LADRC controller. This shows that the LADRC controller
designed under complex wind speed conditions has a good control effect on tracking the
output power of the wind turbine and reducing the fatigue load of the wind turbine.
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Figure 12. Fatigue load of wind turbine.

In the selection of α3, it should be noted that with the continuous increase in its value,
the fluctuation degree of the shaft torque will increase, which will increase the fatigue
load of the wind turbine in a disguised form. Therefore, when facing different objects, it is
necessary to further adjust the selection of α3 to achieve the optimal effect.

5. Conclusions

Aiming at the active power control of wind turbines, this paper proposes a linear
active disturbance rejection control and its optimization method considering the total
variation of wind turbine shaft torque and tower-bending moment to reduce fatigue load.
By designing a linear active disturbance rejection controller, the wind turbine can achieve
power reference tracking while reducing the influence of the wind turbine fatigue load.
A PSO algorithm considering the fatigue load and the total variation of the wind turbine
shaft torque and tower-bending moment is established, which can improve the control
effect. For the weight parameter selection problem in the objective function, under the
same conditions, the optimal weight of the objective function is obtained through multiple
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simulation optimizations. The controller parameters optimized multiple times further
improve the optimization effect. When is 1500, the wind turbine’s CF were reduced by
16.8%. A case study under complex wind speed conditions shows that the proposed control
and optimization method can significantly reduce the pitch angle fluctuation and reduce
the fatigue load of the wind turbine. Additionally, the fatigue load of the LADRC controller
is reduced by 6%, and LADRCTV is a further 3% lower than that while achieving excellent
power tracking performance. The proposed control strategy and optimization method can
be applied to reduce the fatigue load of wind turbines with frequent fluctuations. The
increase in will increase the shaft torque of the wind turbine to a certain extent. Therefore,
when facing different objects, it is necessary to further discuss the value to ensure the best
control performance.
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