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Abstract: Molybdenum disulfide (MoS2) has attracted great attention from researchers because of
its large band gap, good mechanical toughness and stable physical properties; it has become the
ideal material for the next-generation optoelectronic devices. However, the large Schottky barrier
height (ΦB) and contact resistance are obstacles hampering the fabrication of high-power MoS2

transistors. The electronic transport characteristics of MoS2 transistors with two different contact
structures are investigated in detail, including a copper (Cu) metal–MoS2 channel and copper (Cu)
metal–TiO2-MoS2 channel. Contact optimization is conducted by adjusting the thickness of the TiO2

interlayer between the metal and MoS2. The metal-interlayer-semiconductor (MIS) structure with a
1.5 nm thick TiO2 layer has a smaller Schottky barrier of 22 meV. The results provide insights into the
engineering of MIS contacts and interfaces to improve transistor characteristics.

Keywords: MoS2; TiO2; Schottky barrier; contact resistance

1. Introduction

Two-dimensional (2D) layered materials have special properties, such as atomic-level
thickness and a lack of dangling bonds on the surface. Therefore, nanodevices based on
two-dimensional materials possess excellent electrical properties, such as high electron
mobility and high on-off ratios. Hence, two-dimensional materials show unique application
prospects in electronic devices [1–7]. Among the various 2D materials, graphene exhibits
extraordinary linear dispersion for charge carriers and possesses other unique physical
properties due to the ultra-thin atomic layer thickness [8,9]. The conduction and valence
bands of graphene are symmetrical about the Dirac point and its energy bandgap is almost
zero; this makes it difficult for graphene-based field effect transistors (FETs) to show the
on-off state in devices.

Molybdenum disulfide is a typical multi-layer transition metal chalcogenide, which is
composed of sulfur–molybdenum atoms bound by covalent bonds and stacked vertically in
layers. The layers interact with each other through weak van der Waals forces. Compared
with graphene, molybdenum disulfide is a widely used 2D material with a bandgap of
1.8 eV for the monolayer structure and 1.2 eV for the bulk materials [10,11]. The bandgap
of molybdenum sulfide increases with a decreasing number of layers, and the FET based
on molybdenum disulfide may be more suitable for logic circuits. Theoretically, FETs based
on MoS2 have superior room-temperature carrier mobility (410 cm2 V−1 s−1) [12] and a
high on/off ratio (>108) [13]. However, MoS2 FETs with these excellent characteristics
have yet to be realized by experiments. One key factor affecting the low carrier mobility
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is the metal–MoS2 contact and interface. Fermi level pinning leads to a large barrier
height at the metal–MoS2 contact, consequently increasing the contact resistance (Rc) at the
interface [14]. Metal electrodes with different work functions have been used to improve
the contact; however, when molybdenum disulfide is in contact with the metal electrode,
the pinning effect of the Fermi surface changes the effects and the contact metal is very
weak. Various ways to reduce the contact resistance of MoS2 FETs have been reported. For
example, H. Du et al. constructed MoS2–graphene heterojunction FETs using single/bi-
layer graphene as contact electrodes to improve the contact interface [15]. Compared to
the bilayer graphene electrode, the device has better electron transport properties and
higher mobility due to the better gate control capability of the single layer graphene.
However, it requires the use of complex transfer techniques and is not conducive to
large-scale production. Y. Du et al. prepared polyethyleneimine-doped MoS2 FETs with
reduced contact resistance and improved field-effect mobility [16]. Owing to the strong
electronic doping of polyethyleneimine molecules, the mobility increases from 20.4 to
32.7 cm2 V−1 s−1. The low-work-function metal (scandium) has also been used as the
contact metal to improve the contact in MoS2 FETs to obtain a higher carrier injection [17].
The device with a scandium contact has a small Schottky barrier height of 30 eV and high
mobility of 184 cm2 V−1 s−1. However, the poor cyclic stability of chemical doping plagues
the formation of stable contacts. Low-work-function metals are easily oxidized in air,
thereby limiting commercial adoption. Recently, inserting a Fermi level unpinning layer
between MoS2 and metal electrodes to construct a MIS structure was suggested to reduce
ΦB. For example, an ultrathin interlayer, such as Ta2O5 or h-BN, was proposed to reduce ΦB
and Rc [18,19]. Y. Kim et al. fabricated Ti-TiO2 interlayer–MoS2 channel FETs by the atomic
layer deposition of 2.7 nm TiO2 to reduce the noise amplitude and contact resistance [20].
Although efforts have been made to eliminate Fermi level pinning, there have been few
studies on the relationship between Fermi level unpinning and device performance.

In this work, we systematically study the above issues by modulating the thicknesses
(0, 1, 1.5 and 2.2 nm) of the TiO2 interfacial layer. The barrier height and contact resistance
of different TiO2 intercalation thicknesses are studied in detail. After inserting a 1.5 nm
thick TiO2 layer into the meta–MoS2 interface, the MIS structure shows a reduced ΦB of
22 meV and an Rc of 4 kΩ·µm. The electron mobility is also derived for different TiO2
intercalation thicknesses. The mobility is closely related to the contact interface between
the metal and MoS2, and the intrinsic mobility is easily masked by the Schottky barrier at
the contact interface. As a result of the improved interface, the MoS2–TiO2 FET shows the
highest field-effect mobility of 58 cm2 V−1 s−1. The barrier height and contact resistance
can be controlled by the TiO2 thickness; thus, this provides insights into the design of
MIS FETs.

2. Experimental Samples and Analysis Techniques

Device Fabrication and Measurements: The multilayer MoS2 flakes were exfoliated onto
the SiO2/Si substrate (300 nm thick SiO2). Ti layers with various thicknesses of 0.2–1 nm
were deposited on the MoS2 surface by electron beam evaporation; and vaporizing the
low melting point metal for re-oxidation, thus avoiding damage of the surface of the
materials. The devices were dried in an oven for two days. As shown in Figure 1, the TiO2
layers after oxidation were analyzed by atomic force microscopy (AFM); moreover, the
TiO2 thicknesses were determined to be 1, 1.5, 1.8, 2.2 and 2.5 nm. Methyl methacrylate
(MMA) and polymethyl methacrylate (PMMA) were spin-coated on the substrate; electron
beam lithography (JEOL 6510 with NPGS) was used to define the source/drain patterns.
The source and drain electrodes (15/50 nm thick Cu/Au film) were formed by thermal
vaporizer deposition. Acetone was used in the lift-off process to form the electrodes.
Electrical characterization was conducted on the Lake Shore TTPX Probe Station and
Agilent 4155C Semiconductor Parameter Analyzer in vacuum.
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Figure 1. (a–e) AFM images of the TiO2 interlayers with different thicknesses on the SiO2 substrate.
The thicknesses of Ti are 0.2, 0.4, 0.6, 0.8 and 1 nm; these correspond to thicknesses of TiO2 of 1, 1.5,
1.8, 2.2 and 2.5 nm, respectively. The scale bar is 2 µm.

Characterization: The TiO2 thickness was determined by AFM (Bruker Multimode
8) and the XPS spectra were acquired on the Thermo Fisher ESCALAB 250Xi system
(Thermo Fisher Scientific, Waltham, MA, USA) with an Al Kα X-ray source. The MoS2
flakes were analyzed by Raman scattering (RENISHAW Invia) with a 532 nm laser under
ambient conditions.

3. Results and Discussion

Figure 2a displays the schematic of the MoS2 FETs with a TiO2 layer between the
metal electrode and MoS2 contact. Figure 3a shows the Ti 2p XPS spectra of TiO2 with
different thicknesses. The peaks at 458.5 eV and 464.2 eV are consistent with Ti 2p1/2 and
Ti 2p3/2, respectively; with the latter being associated with Ti4+ [21]. When the thickness
of Ti is 3 nm, the sample is not fully oxidized and the peak shows an obvious left shift;
this means that part of Ti4+ is reduced to a low-valence Tix+ species [22]. Therefore, it
is important to vaporize a suitable metal thickness to obtain a high-quality interfacial
layer. The Raman spectra do not change significantly after coverage with a TiO2 layer
(Figure 2b), indicating marginal lattice damage during deposition of the low melting point
metal. Figure 2c,d show the band diagrams of the MS and MIS structures based on the
multilayer MoS2 FETs. According to the metal-induced gap state theory [23,24], when
the metal is in contact with the semiconductor, the metal electron wave function decays
exponentially into the semiconductor bandgap; this results in a high interface state density
at the metal–semiconductor interface, which drives the intrinsic Fermi level to move toward
the electroneutral region (Figure 2c). Inserting an ultrathin interfacial layer at the metal–
semiconductor interface can prevent penetration of the metal electron wavefunction into
the semiconductor; thus, this results in fewer interstitial states and unpinning the surface
(Figure 2d). Another mechanism is dipole formation at the interlayer–semiconductor
interface to reduce ΦB [25,26].
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Figure 2. (a) Fabrication schematic of the MoS2 FETs with a TiO2 interlayer; (b) Raman scattering
spectra of the multilayer MoS2 without and with the TiO2 layer; (c,d) band diagrams of the MS
structure and MIS structure.
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Figure 3. (a) Ti 2p spectra of TiO2 with different thicknesses; (b) SEM image and schematic dia-
gram of the back-gated Cu-TiO2-MoS2 FETs with various TiO2 thicknesses (0, 1, 1.5 and 2.2 nm)
(scale bar = 5 µm); (c) transfer characteristics of the devices for various TiO2 thicknesses with L being
3 µm and Vds being 1 V; (d) output characteristics of the Cu-TiO2-MoS2 FETs.
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The scanning electron microscopy (SEM) image and schematic diagram of the devices
with different TiO2 interlayer thicknesses of 0, 1, 1.5 and 2.2 nm are exhibited in Figure 3b.
Figure 3c shows the transfer characteristic curves of the device with various TiO2 thick-
nesses. The data are acquired at a source-drain voltage (Vds) of 1 V. Figure 3c shows that the
source-drain current is largely dependent on the TiO2 interlayer thickness and the device
with the 1.5 nm TiO2 interlayer shows the optimal characteristics. The increase in the drain
current is mainly attributed to the reduced Schottky barrier and contact resistance. When
the TiO2 interlayer thickness is 2.2 nm, a larger tunneling resistance is obtained; in addition,
the source-drain current is reduced. The field-effect mobility µ can be estimated from the
transfer curve by the following relationship:

µ = gm
1

Cox

L
W

1
Vds

(1)

where Cox is the gate capacitance, L = 3 µm is the length, W is the channel width and
gm = dIds/dVgs is the transconductance. As the gate voltage increases, the transconduc-
tance increases to a maximum value and then saturates. The extracted field-effect mobility
values for the four TiO2 thicknesses (0, 1, 1.5 and 2.2 nm) are 27, 44, 58 and 11 cm2 V−1 s−1,
respectively. The mobility of the device increases gradually after insertion of the TiO2
interface layer. When the thickness of the TiO2 interface layer is increased to 2.2 nm, the
properties of the device begin to degrade. In particular, the mobility of the device with
a 1.5 nm thick TiO2 interlayer increases by more than double compared to that before
deposition of TiO2. Figure 3d shows the output characteristic curves of the device with
1.5 nm TiO2 thickness at different gate voltages (Vgs) ranging from −60 to 100 V. The
device exhibits large current output and good cycling stability, further confirming that the
insertion of the TiO2 interface layer improves the contact behavior. The results show that
the TiO2 interlayer can improve the contact between the metal electrode and molybdenum
disulfide. This may be because the intercalation of TiO2 avoids bonding between sulfur
in molybdenum disulfide and the electrode metal; thus, this reduces the interface state
and improves the contact compared to the evaporation of the metal electrode. To further
elucidate the reasons for the improvement, Rc and ΦB are measured. The introduction of
an interfacial layer at the contact reduces ΦB and increases the tunneling resistance. A thick
interfacial layer results in a large tunneling resistance, but a small current flow through the
device. Therefore, it is important to deposit an appropriate interfacial layer thickness to
attain the best performance.

Contact resistance, an important performance indicator for transistors, is measured by
the transmission line method (TLM). The contact resistances of the samples with various
TiO2 thicknesses are shown in Figure 4. The gate voltage can adjust the carrier concen-
tration of the molybdenum sulfide channel, thereby changing the contact resistance. Vg-t
corresponds to the gate voltage minus threshold voltage. The device with the 1.5 nm
TiO2 interlayer shows the minimum contact resistance of 4 kΩ·µm, which is smaller than
the 8.2 kΩ·µm of that without the TiO2 interlayer. As the thickness of TiO2 is increased
to 2.5 nm, Rc increases to 46 kΩ·µm and the large tunneling resistance results in poor
performance. To further analyze the mechanism of Rc reduction, ΦB is measured to study
the influence of different interlayer thicknesses. The Schottky barrier height is derived by
the following formula [27,28]:

Ids = A∗
2dT3/2 exp

(
qΦB
kBT

)[
1 − exp

(
− qVds

kBT

)]
(2)

In this Equation (2), Ids is the current, A* is the Richardson’s constant, T is the tempera-
ture, q is the electronic charge, kB is the Boltzmann constant and Vds is the drain to source
voltage. The effective barrier height here is different from that of the metal–semiconductor
structures due to the insertion of the interfacial layer. Because insulators are not considered
in expression (2) used to determine the barrier height, the effective barrier height given here
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represents the whole electronic behavior. When the gate bias is lower than the flat band
voltage (Vfb), the device works in the thermionic emission state. The contribution of the tun-
neling current becomes significant when at a high gate bias (Vgs > Vfb) [29,30]. The slopes
of these lines provide the effective Schottky barrier height, as shown in Figure 5a–f. ΦB at a
flat band voltage for the device without the TiO2 layer is 168 meV (Figure 5a). Compared to
ΦB without the TiO2 layer, ΦB of the device with the lowest Rc is 22 meV for a 1.5 nm TiO2
interfacial layer (Figure 5c). It is important that ΦB associated with Rc can be controlled by
the thicknesses of the TiO2 layer. These results show that the metal–semiconductor contact
interface is severely affected by Fermi level pinning; however, it is not greatly affected by
the metal work function.
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The MIS structures include two types of resistance: Schottky barrier resistance (RSB)
and tunneling resistance (RT). Without an interlayer, a large ΦB causes a large RSB, which



Energies 2022, 15, 6169 7 of 8

is the main part of the entire contact resistance. By inserting a TiO2 layer to reduce ΦB,
RSB decreases accordingly. When the interfacial layer exceeds the optimal thickness, RT
dominates the contact resistance; thus, this increases the overall contact resistance. By
optimizing the thickness of the interfacial layer, a trade-off between RSB and RT can be
obtained. The FETs with the 1.5 nm TiO2 layer have the minimum contact resistance, lowest
Schottky barrier height and optimal properties consistent with Figure 3c. The TiO2 interface
layer has two functions: first, it obtains a reduced Schottky barrier and contact resistance in
the source-drain contact area; and second, it acts as a dielectric shield and increases charge
density at the TiO2–MoS2 interface. At the same time, the moisture and oxygen in the air
are isolated; moreover, the stability of the device is improved. Using TiO2 as an interfacial
layer results in the lowest ΦB because of the small conduction band offset between MoS2
and TiO2, which is more conducive to carrier injection.

4. Conclusions

The N-type MoS2 field-effect device with good contact is fabricated by using TiO2 as
the interlayer between MoS2 and the metal electrode. By evaporating a low melting point
metal and then, performing re-oxidation, damage is avoided in the materials; in addition,
the stability of the equipment is ensured. The effect of the interlayer thickness on the device
characteristics is investigated systematically. The thickness of the interfacial layer plays a
crucial role in the device properties. The device with a 1.5 nm thick TiO2 as the interfacial
layer shows a small ΦB of 22 meV and a low Rc of 4 kΩ·µm. The results provide important
clues to contact engineering and how to improve 2D semiconductor devices. The MIS
structure is also effective in solving the contact problems and presents a potential solution
for contacts in devices based on 2D materials.
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