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Abstract: In this present investigation, emittance and performance attributes of a diesel engine using
micro-algae spirulina blended biodiesel mixtures of various concentrations (20%, 35%, 50%, 65%, 80%,
and 100%) were evaluated. An optimization model was also developed using an Artificial Neural
Network (ANN) to characterize the experimental parameters. Experimental findings demonstrated
significant improvement in brake specific fuel consumption (BSFC) using varied blends. Furthermore,
brake thermal efficiency (BTE) is decreased gradually for biodiesel blends as compared to diesel.
Micro-algae spirulina blends have shown lower concentrations of NOX and HC while increasing
CO2 relative to pure diesel. To develop the model, three sets of optimizers, namely, adam, nadam,
and adagrad, along with activation functions, such as sigmoid, softmax, and relu, were selected. The
results revealed that sigmoid activation function with adam learning optimizer by using 32 hidden
layer neurons has given the least value of mean squared error (MSE). Hence, the ANN approach
was proven to be capable of predicting engine attributes with a least mean squared error of 0.00013,
0.00060, 0.00021, 0.00011, and 0.00104 for NOX, HC, CO2, brake thermal efficiency, and brake specific
fuel consumption, respectively. The Artificial Neural Network approach is capable of predicting CI
engine attributes with accuracy and ease of investigation.

Keywords: Artificial Neural Network; biofuels; CI engine; micro-algae spirulina

1. Introduction

Diesel engines are the predominant source of power generation that are extensively
employed in automotive, defense, maritime, mining, etc., industries due to their superior
fuel efficiency and sturdy character. Considering our currently existing stockpiles of fossil
fuels and the increasing pace of their use, they will be completely depleted. As a result,
the breadth and potential of alternative energy sources are substantial. Bio-fuels [1–3] are
gaining popularity around the world as a viable adjunct to standard fuel. Even though
biofuels have lower efficiency as opposed to diesel, they are widely favored due to reduced
emissions. Bio-fuels can indeed be utilized in engines by mingling them with diesel in a
particular ratio without requiring substantial alterations in engine hardware. Its fuel rating
and thermo-physical attributes are akin to diesel with high oxygen (O2) concentration [4].
Bio-fuels extracted from micro and macro-algae [5], non-edible [6], and edible [7] feed-
stocks are regarded as third, second, and first-generation biofuels, respectively. Regardless
of the requirement for empirical investigation, to gain a comprehensive insight into engine
characteristics when utilizing bio-fuels, lately, there’s been an upsurge in employing var-
ious methodologies to simulate engine behavior. These approaches reduce expense and
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processing time, alongside minimizing the dependency on the requirement for empirical
investigation [8,9]. ANN [10] is one such approach. ANN is regarded as a cost-effective [11]
and efficient solution for resolving a broad range of automotive challenges [12,13].

Alcohol-bio-diesel combinations were utilized to evaluate diesel engine attributes.
Datta et al. [14] observed that for the alcohol-bio-diesel mixture, NOX reduced and en-
hanced efficiency. NOX was reported to be significantly higher in a TCCI engine powered
using an alternative fuel derived from soybean and castor oil; however, soybean emitted
more NOX as opposed to castor oil [15]. Chlorella protothecoides were examined, and
recommendations for identifying Chlorella protothecoides as feasible fuel resources for CI
engines were indeed considered [16]. Pongamia piñata-based bio-diesel has been reported
to have improved HC and CO concentrations than canola bio-diesel [17,18]. A premixed
charged CI-DI engine utilizing cottonseed bio-diesel generated enhanced BTE, and emis-
sions such as NOX, CO, and HC were slightly reduced [19]. The CI engine attributes
running on the B20 combination of Thumba bio-diesel were investigated. When opposed
to baseline fuel (diesel), B20 blends had shown improved performance in terms of BTE, but
NOX elevated [20]. Satputaley et al. [21] tested the influence of Chlorella Protothecoides
(CP100) bio-diesel on the CI engine. When contrasted to conventional fuel, the CP100 sig-
nificantly decreases CO by 4.2%, EGT by 6.1%, and brake power by 7.0%. It was apparent
that bio-fuel derived using micro-algae increases BSFC whilst reducing emissions [22]. For
reducing the number of expenditures, search time, and experimental trials non-linear and
linear algorithms, namely, RSM, factorial design, ANN, and genetic algorithms, are utilized
to assess engine behavior [23]. In comparison to the RSM model, ANN has the most reliable
estimations and a high correlation between observed and predicted outcomes, making it
an excellent learning strategy [24]. A significant advancement in the numerical evaluation
of CI engine attributes is advanced modeling using ANN [25]. The results obtained for
Ricinuscommunis seed bio-diesel were anticipated using an ANN framework [26]. Or-
ange peel oil-diesel blends were explored as an alternative to conventional diesel in CI
engines [27]. For blend proportion of 70% diesel and 30% orange peel oil, BSEC decreased
by 19%, and BTE enhanced by 16.5% at peak load. By using the Quasi–Newton algorithm,
an ANN model was developed. The R2 values are 0.986 and 0.994 for BSEC and BTE,
respectively, for the ANN model. The viability of Karanja oil as a biodiesel feedstock was
examined [28]. Test fuel concentrations composed of 50%, 40%, 30%, 20%, 10%, and 0%
by volume. Findings demonstrated that as the proportion of biodiesel enhances, so does
the BSFC. Furthermore, with a rise in blend concentration HC and CO drops considerably.
Numerical validation was carried out by Neurosolution software. Five sets of inputs were
selected for network training. They concluded that the test and model outcomes were
highly correlated. The correlation coefficient was in the acceptable range of 0.98–0.99
for all parameters. As demonstrated by Bahri et al. [29], the ANN model can indeed
be applied as a real technique for engine operations, which predicted combustion noise
levels considerably lower than 0.5 percent deviation. The efficacy of honing oil-derived
bio-diesel was explored by Channapattana et al. [30] at varying percentages (20 to 100) in a
CI-DI engine. They performed ANN simulation to evaluate the experimental outcomes.
Thermal efficiency, carbon monoxide, exhaust gas temperature, hydrocarbons, specific
fuel consumption, nitrogen oxide, and smoke were used as output elements. Algorithms
trainscg, traingdx, trainrp, and trainlm were used to update the parameters (training). They
observed that 28 neurons in the hidden layer yield the highest r and least mean squared
error for the trainlm algorithm.

There is exhaustive information available on the attributes (emissions and perfor-
mance) of bio-fuel fueled CI engines from the second and first-generation feed-stock. The
current research arose from several prior investigations that revealed a lack of research on
spirulina micro-algae bio-diesel (third generation). Furthermore, the design and implemen-
tation of the ANN are currently limited for evaluating engine characteristics, necessitating
additional research. This investigation is split into two phases. Firstly, this study explores
the impact of spirulina bio-diesel amalgams of SB100, SB80, SB65, SB50, SB35, SB20, and
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SB0 on emissions (NOX, UHC, and CO2) and performance (BTE and BSFC) attributes of
the CI engine (explained in Sections 2 and 4). Secondly, to build an ANN model able to
accurately forecast the behavior of a CI engine (explained in Sections 3 and 4). The code
for ANN was written in Python with Keras framework and Tensor flow as back-end. The
impact of ANN factors such as training algorithm, types of the transfer function, epochs,
and the number of neurons on the accuracy of the prediction of the model is assessed.

2. Materials and Methods
Fuel Properties and Test Rig

In this investigation, diesel and bio-diesel derived from spirulina micro-algae were
used and were evaluated as a CI engine fuel substitution, which was obtained from
Planet Industries Pvt Ltd., New Delhi, India. For assessing the fuel attributes (kinematic
viscosity, flash point, calorific value, and density), diesel fuel (SB0: 100% diesel) was
employed as a baseline. SB100 (100% spirulina), SB80 (80% spirulina + 20% diesel), SB65
(65% spirulina + 35% diesel), SB50 (50% spirulina + 50% diesel), SB35 (35% spirulina + 65% diesel),
SB20 (20% spirulina + 80% diesel), and SB0 (100% diesel) are taken at volume basis as test
fuels. The attributes (physico-chemical) of the fuel selected in this analysis are presented
in Table 1. The evaluated fuel attributes were tested as per ASTM (American Society
for Testing and Materials) standards and proven to be a viable replacement for use in
diesel engines.

Table 1. Physico-chemical attributes of test fuels.

Test
Fuel

Density (kg/m3)
at 15 ◦C

Flash Point
(◦C)

Calorific
Value (MJ/kg)

Viscosity
(mm2/s)

Spirulina (SB100) 860 130 41 5.22
SB 80 854.8 118.3 41.29 4.63
SB 65 849.1 108.5 41.46 4.37
SB 50 843.4 100.7 41.63 3.92
SB 35 840.9 95.3 41.97 3.56
SB 20 835.7 86.5 42.6 3.19

Diesel (SB0) 830 70 43 3

The analysis was conducted on a CI 4-stroke, water-cooled 1-cylinder engine, to
evaluate how spirulina bio-diesel blends impact the emissions and performance attributes.
Table 2 summarizes the technical specifications of the experimental engine employed.
The experimental engine is depicted in schematic form in Figure 1. Throughout the
experiment, injection timing and injection pressure were held constant. The load on
the engine varied from 0 to 10 kg keeping the speed of the engine at a constant value at
1500 rpm. The test rig incorporated a multi-gas analyzer (MN-05, manufactured by Mars
Technologies, for measuring emissions), fuel control valve, fuel tank (bio-diesel and diesel),
eddy current dynamometer, air filter, air box, and rotameter. Throughout the process of
the experimentation:

• The engine’s fuel system, cooling, and lubrication have all been inspected for proper operation;
• To achieve steady operating circumstances, the engine is started and operated in

no-load for 25 min using baseline fuel (diesel);
• Data were taken within a few minutes of attaining steady operating circumstances;
• All relevant data were carefully obtained manually. The tests were executed for varied

loads (0, 2, 4, 6, 8, and 10 kg) using SB100, SB80, SB65, SB50, SB35, SB20, and SB0 fuels,
emissions, and performance attributes were written down;

• NOX, and HC were recorded in ppm whereas CO2 was in percentages;
• Each experiment was undertaken three times, and the mean value was noted. Table 3

shows the uncertainty measurements of the obtained outcomes.
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Table 2. Test rig technical specifications.

Engine Specifications

Maker Kirloskar, TV1
Indicator used type Cylinder pressure
Dynamometer type Eddy current

Cooling type Water
Number of Cylinders One

Compression ratio 17.5
Stroke type Four

Connecting rod length 234 mm
Engine power 5.2 kW
Cylinder bore 87.5 mm
Stroke length 110 mm

Maximum speed 1500 rpm
Nozzle opening pressure 180 bar

Table 3. Uncertainty measurements.

Measurements Instrument Uncertainty

CO2 Gas analyzer ±1.0%
NOx Gas analyzer ±5 ppm
UHC Gas analyzer ±0.5 ppm
rpm Speed indicator ±2%
Load Dynamometer ±0.5%

Fuel consumption Fuel Burette ±1%
BTE ±1.5%

Power ±1%
BSFC ±1.5%
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Figure 1. Schematic form of the engine test rig.

3. Artificial Neural Network (ANN)
Preprocessing, and Modeling of ANN

A computational or mathematical framework that resembles the functionalities of a
human neuronal system is referred to as an artificial neural network (ANN) [31–33]. ANNs
are computational tools that allow doing operations such as memorizing, determining,
inferring, and learning. Neurons are the fundamental building blocks of an ANN. By
providing a specific proportion of data set (input-output), they can keep updating network
architecture based on the data which flows via the structure throughout the training
phase [34]. Owing to its nonlinear attributes, ANN can be effectively used in processes to
confront tasks with complicated mathematical relationships [35,36].
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The data acquired during stable experimental trials was used to create an ANN
model. Figure 2 illustrates the suggested ANN strategy for forecasting the CI engine
attributes (emissions and performance) using spirulina blends (SB100, SB80, SB65, SB50,
SB35, SB20, and SB0). The effectiveness of an ANN is determined by the information it is
provided with, therefore scaling input and output information is crucial. The MinMaxScaler
(Equation (1)) preprocessing technique [37] was used to normalize the output and input
variables. Normalization helps in to equally distribute the importance of input and output
data, otherwise, input and output variables with large values become dominant according
to fewer values during ANN training.

XPre−processing =
X − Xmin

Xmax − Xmin
(1)

where Xmin and Xmax is the minimum and the maximum value of the parameters. X is the
value of the parameter to be normalized. The data set normalized in the 0 to 1 range. The
data set was chosen at random in the proportions of 20%, 60%, and 20%, for model testing,
training, and validation, respectively. Python was used to build an ANN model, utilizing
the Keras framework and Tensor flow [38] as the back-end. The ANN network constructed
in Python is assessed for several scenarios when varying the training (activation) functions,
optimizer, epochs, and the number of network neurons in the hidden layer. Here, output
variables comprise HC and NOX in (ppm), CO2 and BTE in (%), and BSFC in terms of
(kg/kWh). BP (brake power) in (kW), Load in (kg), and test fuels are considered input
variables. Figure 3 displays a schematic representation of the proposed ANN architecture,
modeled for forecasting CI engine attributes. An optimizer is an algorithm that modifies
the attributes of the neural network, such as weights and learning rate, to reduce the
losses. The various optimizer evaluated are Adam (a stochastic gradient descent technique
based on an adaptive estimate of second and first-order moments), Nadam (optimizer with
Nesterov momentum), and Adagrad (optimizer with specific learning rates). The varied
transfer or activation functions analyzed are Softmax (output vector are in range (0, 1)),
Relu (returns 0 and maximum value), and Sigmoid (returns values between 0 and 1). The
activation function determines the output of a neural network model.

The number of network neurons in the hidden layer varied from 8 to 32 with an
interval of 8 neurons (i.e., 8, 16, 24, and 32). Throughout the ANN analysis, the single
hidden layer was considered, and the number of epochs varied from 200 to 500 with an
interval of 100 epochs (i.e., 200, 300, 400, and 500). To generate the associated outputs, the
trained ANN network was simulated for all inputs. The r (Correlation Coefficient) and
MSE (Mean Squared Error) are regarded as network evaluation metrics. To evaluate the
direction and strength of the relationship among variables, the r was used. The positive
(upwards) and negative (downwards) signs indicate the direction of the relationship. Values
ranging from 0.7 to 1.0, 0.3 to 0.7, and 0 to 0.3 are considered to have, respectively, strong,
moderate, and weak correlations [39]. The network with the least validation error (loss) is
recommended. The best line fit is indicated by a value that is closer to 0. ANN network
analysis comprises the following:

• Defining input and output parameters;
• Preprocessing of data (output and input);
• Defining optimizer, transfer function, number of neurons in the hidden layer, and

number of epochs;
• Step 1: Adam optimizer with sigmoid transfer function was chosen and evaluated for

a varied number of neurons in hidden layers and epochs. By keeping adam optimizer
and sigmoid transfer function constant, for each neuron in the hidden layer, four
iterations were executed;

• Step 2: Tabulation and plotting of corresponding data (Training MSE and r, Validation
MSE and r of output variables);

• Step 1 and Step 2 were repeated for the Nadam optimizer with a Softmax transfer
function and Adagrad optimizer with the Relu transfer function;
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• The following equations were used to assess MSE, r [40], and softmax:

MSE =
1
n

n

∑
i=1

(Ti − Oi) (2)

r =

√√√√1 −
(

∑n
i=1(Ti − Oi)

2

∑n
i=1 Oi

2

)
(3)

σ(Zi) =
ezi

∑k
j=1 ezj

(4)

Energies 2022, 15, 6158 6 of 20 
 

 

The varied transfer or activation functions analyzed are Softmax (output vector are in 

range (0, 1)), Relu (returns 0 and maximum value), and Sigmoid (returns values between 

0 and 1). The activation function determines the output of a neural network model. 

 

Figure 2. Suggested ANN model strategy. 

The number of network neurons in the hidden layer varied from 8 to 32 with an in-

terval of 8 neurons (i.e., 8, 16, 24, and 32). Throughout the ANN analysis, the single hidden 

layer was considered, and the number of epochs varied from 200 to 500 with an interval 

of 100 epochs (i.e., 200, 300, 400, and 500). To generate the associated outputs, the trained 

ANN network was simulated for all inputs. The r (Correlation Coefficient) and MSE 

(Mean Squared Error) are regarded as network evaluation metrics. To evaluate the direc-

tion and strength of the relationship among variables, the r was used. The positive (up-

wards) and negative (downwards) signs indicate the direction of the relationship. Values 

ranging from 0.7 to 1.0, 0.3 to 0.7, and 0 to 0.3 are considered to have, respectively, strong, 

moderate, and weak correlations [39]. The network with the least validation error (loss) is 

recommended. The best line fit is indicated by a value that is closer to 0. ANN network 

analysis comprises the following: 

• Defining input and output parameters; 

• Preprocessing of data (output and input); 

• Defining optimizer, transfer function, number of neurons in the hidden layer, and 

number of epochs; 

• Step 1: Adam optimizer with sigmoid transfer function was chosen and evaluated for 

a varied number of neurons in hidden layers and epochs. By keeping adam optimizer 

and sigmoid transfer function constant, for each neuron in the hidden layer, four it-

erations were executed; 

• Step 2: Tabulation and plotting of corresponding data (Training MSE and r, Valida-

tion MSE and r of output variables); 

Figure 2. Suggested ANN model strategy.



Energies 2022, 15, 6158 7 of 19

Energies 2022, 15, 6158 7 of 20 
 

 

• Step 1 and Step 2 were repeated for the Nadam optimizer with a Softmax transfer 

function and Adagrad optimizer with the Relu transfer function; 

• The following equations were used to assess MSE, r [40], and softmax: 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑇𝑖 − 𝑂𝑖)

𝑛

𝑖=1

 (2) 

𝑟 = √1 − (
∑ (𝑇𝑖 − 𝑂𝑖)

2𝑛
𝑖=1

∑ 𝑂𝑖
2𝑛

𝑖=1

) (3) 

𝜎(𝑍𝑖) =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗
𝑘
𝑗=1

 (4) 

 

Figure 3. Proposed ANN model configuration. 

4. Results and Discussion 

4.1. Impact of Brake Specific Fuel Consumption 

The fuel heating value has a direct impact on the BSFC. For complete combustion, 

fuel heating value is perhaps the foremost important factor [41]. The amount of energy 

required to deliver one unit of power is referred to as BSFC. The BSFC is the amount of 

fuel that an engine must burn every hour to create one kilowatt of energy. The variation 

of BSFC (kg/kWh) for SB100, SB80, SB65, SB50, SB35, SB20, and SB0 fuels with varying 

loads is depicted in Figure 4. An upsurge in BSFC was observed for spirulina bio-diesel 

blends owing to its reduced brake torques induced by the lower energy content of bio-

diesel. As shown in Figure 4, as the load enhances, the BSFC for all test fuels declines, 

owing to increase burning efficiency. The graph depicts that the BSFC for diesel is the 

lowest. As the proportion of spirulina in baseline fuel (diesel) enhances, BSFC increases. 

Preceding research reveals an identical behavior to the result [42]. The surge in BSFC was 

observed to be 4.75% for SB 20 in contrast with SB 0 (diesel) at full load. BSFC (kg/kWh) 

was noticed to be 0.6212, 0.5732, 0.52117, 0.4488, 0.4122, 0.3782, and 0.36104 for SB100, 

SB80, SB65, SB50, SB35, SB20, and SB0, respectively, at full load. 

Figure 3. Proposed ANN model configuration.

4. Results and Discussion
4.1. Impact of Brake Specific Fuel Consumption

The fuel heating value has a direct impact on the BSFC. For complete combustion,
fuel heating value is perhaps the foremost important factor [41]. The amount of energy
required to deliver one unit of power is referred to as BSFC. The BSFC is the amount of
fuel that an engine must burn every hour to create one kilowatt of energy. The variation
of BSFC (kg/kWh) for SB100, SB80, SB65, SB50, SB35, SB20, and SB0 fuels with varying
loads is depicted in Figure 4. An upsurge in BSFC was observed for spirulina bio-diesel
blends owing to its reduced brake torques induced by the lower energy content of biodiesel.
As shown in Figure 4, as the load enhances, the BSFC for all test fuels declines, owing to
increase burning efficiency. The graph depicts that the BSFC for diesel is the lowest. As
the proportion of spirulina in baseline fuel (diesel) enhances, BSFC increases. Preceding
research reveals an identical behavior to the result [42]. The surge in BSFC was observed to
be 4.75% for SB 20 in contrast with SB 0 (diesel) at full load. BSFC (kg/kWh) was noticed to
be 0.6212, 0.5732, 0.52117, 0.4488, 0.4122, 0.3782, and 0.36104 for SB100, SB80, SB65, SB50,
SB35, SB20, and SB0, respectively, at full load.
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4.2. Impact of Brake Thermal Efficiency

As depicted in Figure 5, the variation of BTE (%) for SB100, SB80, SB65, SB50, SB35,
SB20, and SB0 fuels with varying loads. It is the ratio of brake power to the calorific value
and mass of the fuels consumed. As seen in Figure 5, BTE gradually reduced with an
upsurge in spirulina bio-diesel concentration in baseline fuel and improved with enhanced
engine load. Owing to the lower calorific value, a surge in the BSFC of test fuels leads to
reduced BTE [4]. For the majority of engine loads, the BTE and BSFC for SB0 (diesel) was
noticed to be higher and lowered in contrast to spirulina blends. An equivalent pattern in
other investigators’ conclusions [43,44]. BTE dwindled by 3.61% for SB 20 contrasted with
SB 0 (diesel) at full load. The minimum BTE is 19.16% which is obtained at SB100.
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4.3. Impact of Carbon Dioxide (CO2) Emissions

The stringent environmental guidelines are minimizing greenhouse gas emissions
from many fields of automotive fuels. CO2 (%) concentrations play a pivotal influence
in the formation of ozone. CO2 effluents from the exhaust are affected by a variety of
parameters, particularly engine speed, O2 concentration in the fuel, compression ratio,
viscosity, and combustion process within the cylinder [15]. CO2 pollutants are emitted
when carbon constituents are burned precisely and entirely [27]. CO2 is emitted as a result
of complete combustion. Figure 6 illustrates the CO2 concentrations (%) for SB100, SB80,
SB65, SB50, SB35, SB20, and SB0 fuels with varied loads. It is apparent from the graph
there’s an upsurge in the CO2 concentrations when utilizing higher spirulina bio-diesel
compositions. CO2 concentrations were noticed to be significantly higher in spirulina
bio-diesel mixtures as opposed to SB0, due to the higher amount of oxygen concentration
in the biodiesel. Prior investigations reveal similar findings [41]. The CO2 concentration in
the SB20 improved by 2.83% in comparison to SB0 at full load. The maximum value of CO2
was observed at SB100 (increased by 19.52%) compared with diesel.
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4.4. Impact of Unburnt Hydrocarbons

HC concentrations (ppm) for SB100, SB80, SB65, SB50, SB35, SB20, and SB0 fuels
with varying loads are depicted in Figure 7. Since there is insufficient O2 for complete
combustion, HC formed as a result of incomplete oxidation [45]. The concentration of
HC is influenced by fuel-spray attributes, fuel properties, and operating conditions of
an engine. As may be seen from the plot, due to the increased O2 moiety available in
spirulina bio-diesel, which aids to complete combustion, HC emissions for the spirulina
blends (SB100, SB80, SB65, SB50, SB35, and SB20) were lower relative to SB0 (diesel). As
the spirulina bio-diesel proportion in a mixture enhanced, HC declined. As a consequence,
the engine fueled with spirulina bio-diesel (SB100) emitted the least amount of HC when
contrasted to SB80, SB65, SB50, SB35, SB20, and SB0. Another aspect that contributed to the
reduction in HC was the higher CN of spirulina bio-diesel compared to diesel, which leads
to a shorter ignition delay. The findings acquired corresponded to those presented by [44].
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4.5. Impact of Nitrogen Oxides (NOX) Emissions

NOx remains a significant key engine exhaust byproduct that must be minimized.
Pollutant formation is heavily influenced by fuel distribution and how it varies with time
due to mixing. The distribution of fuel in the cylinder is often irregular in CI engines.
Mixture homogeneity, O2 concentrations, combustion temperature, and pressure, CN,
ignition delay, flame temperature, fuel attributes, and injection timing are factors that
influence NOx emissions [22]. NOX occurs in an irregular high-temperature zone and
forms a rate upsurge in areas near stoichiometry. As a consequence, NOX is mainly
influenced by fuel O2 concentration and the temperature of combustion [21]. Change of
NOX concentrations (ppm) for SB100, SB80, SB65, SB50, SB35, SB20, and SB0 fuels with
varying loads is represented in Figure 8. It is apparent from the graph there’s a downturn
in the NOx concentrations when utilizing higher spirulina bio-diesel compositions. NOX
concentrations were noticed to be significantly higher in baseline fuel (SB0) as opposed to
spirulina bio-diesel mixtures (SB100, SB80, SB65, SB50, SB35, and SB20). Similar findings
were acquired by [11,46]. When contrasted to SB0 (diesel), NOX emissions for SB100 and
SB20 are 15.65% and 3.82% lower at full load, respectively.
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4.6. Analysis of ANN

For various optimizers and activation functions, ANN network training was per-
formed for varied epochs and numbers of neurons, and the outcomes obtained were
summarized in Table 4. Contrasted to other training optimizers and activation functions,
Adam optimizer with sigmoid activation function for hidden layer exhibits the best r and
least validation mean squared error. The optimum configuration of the network is shown in
Table 5. Figures 9 and 10 illustrate the change of r value and MSE loss of optimum network
configuration for training and validation data of output variables, with the number of
epochs. From Figure 9 it was observed that with the increase in the number of epochs
the correlation coefficient of output variables (NOX, HC, CO2, BTE, and BSFC) tends to
be 1, indicating a strong correlation. With the increase in the number of epochs, the MSE
loss decreases as seen in Figure 10. The train and validation loss of output variables were
almost identical. The number of neurons required for MSE to be least is observed to be 32
in this study. All output variables are significantly connected with input variables, as per
the trend of the r. The optimum network prediction for test cases is recorded and presented,
together with the associated experimentally obtained results as in Figure 11. The r and
MSE values of CI engine attributes are found to be 0.99928, 0.99588, 0.99848, 0.99949, and
0.99322, and 0.00013, 0.00060, 0.00021, 0.00011, and 0.00104 for NOX, HC, CO2, BTE, and
BSFC, respectively, as observed in Figure 11.
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Table 4. r and MSE values of output responses.

Optimizer Transfer
Function

Number
of Epochs

Number of
Neurons in

Hidden Layer
Attributes

Train.
MSE Val. MSE Over All MSE Loss

Train. r: Val. r:
Loss Loss Train. Val.

Adam Sigmoid 200 8

BSFC 0.0086 0.01232

0.00269 0.00497

0.9423 0.84607
BTE 0.00083 0.00097 0.99596 0.99203
CO2 0.00108 0.00246 0.99206 0.97945
HC 0.00234 0.00873 0.98389 0.95286

NOX 0.00058 0.00037 0.99681 0.99729

Adam Sigmoid 300 8

BSFC 0.00511 0.02273

0.00148 0.00618

0.96878 0.72042
BTE 0.00044 0.00069 0.99788 0.99457
CO2 0.00052 0.00075 0.99618 0.99546
HC 0.00105 0.00621 0.99283 0.97256

NOX 0.00029 0.0005 0.99842 0.99606

Adam Sigmoid 400 8

BSFC 0.02134 0.03784

0.0056 0.01073

0.85104 0.50068
BTE 0.00055 0.00131 0.99735 0.99386
CO2 0.00126 0.00104 0.99072 0.99369
HC 0.00425 0.0126 0.97048 0.9483

NOX 0.00061 0.00089 0.99661 0.99751

Adam Sigmoid 500 8

BSFC 0.00206 0.01015

0.00072 0.003

0.98637 0.92099
BTE 0.0002 0.00031 0.99905 0.99839
CO2 0.00027 0.00054 0.99802 0.99177
HC 0.00058 0.00289 0.99599 0.98256

NOX 0.00051 0.0011 0.99718 0.9964

Adam Sigmoid 200 16

BSFC 0.02611 0.04097

0.00594 0.00998

0.81547 0.36112
BTE 0.00021 0.00032 0.99899 0.9968
CO2 0.0005 0.00088 0.99631 0.99342
HC 0.00209 0.00742 0.98568 0.96278

NOX 0.00082 0.00033 0.99549 0.99999

Adam Sigmoid 300 16

BSFC 0.01394 0.02282

0.00358 0.00702

0.90453 0.69879
BTE 0.00029 0.00048 0.9986 0.99582
CO2 0.00063 0.00116 0.99539 0.99342
HC 0.00254 0.01016 0.98245 0.95267

NOX 0.0005 0.00047 0.99725 0.99615

Adam Sigmoid 400 16

BSFC 0.00579 0.02621

0.00195 0.00817

0.96209 0.67509
BTE 0.00039 0.00035 0.9981 0.99693
CO2 0.00117 0.00226 0.99139 0.99753
HC 0.00213 0.01133 0.98532 0.95155

NOX 0.00025 0.00069 0.99863 0.99628

Adam Sigmoid 500 16

BSFC 0.00137 0.00984

0.00046 0.00267

0.99099 0.89962
BTE 0.00011 0.00033 0.99948 0.99653
CO2 0.00023 0.00038 0.99832 0.99328
HC 0.00048 0.0027 0.99674 0.97969

NOX 0.00011 0.00012 0.9994 0.99903

Adam Sigmoid 200 24

BSFC 0.03194 0.05353

0.00714 0.01254

0.77304 0.08641
BTE 0.00022 0.00049 0.99896 0.99558
CO2 0.00067 0.00147 0.99509 0.98629
HC 0.00249 0.00706 0.98305 0.95967

NOX 0.00036 0.00015 0.998 0.99933

Adam Sigmoid 300 24

BSFC 0.00782 0.02142

0.00226 0.00686

0.94742 0.71643
BTE 0.00042 0.00056 0.99795 0.99473
CO2 0.00052 0.00097 0.99617 0.99459
HC 0.00237 0.01127 0.98368 0.94964

NOX 0.00015 0.0001 0.99917 0.99921

Adam Sigmoid 400 24

BSFC 0.00769 0.02733

0.00256 0.00892

0.94828 0.65893
BTE 0.00068 0.00063 0.99672 0.99615
CO2 0.0009 0.00213 0.99339 0.99789
HC 0.0033 0.01386 0.97723 0.94008

NOX 0.00025 0.00066 0.99861 0.99674

Adam Sigmoid 500 24

BSFC 0.00088 0.0038

0.00042 0.00181

0.99424 0.96032
BTE 0.00006 0.00018 0.99972 0.99862
CO2 0.00028 0.00036 0.99793 0.98916
HC 0.00072 0.00426 0.99505 0.97595

NOX 0.00016 0.00016 0.99914 0.99889

Adam Sigmoid 200 32

BSFC 0.03306 0.05259

0.00744 0.01273

0.76369 0.15619
BTE 0.00053 0.00067 0.99745 0.99462
CO2 0.00101 0.00242 0.99256 0.99565
HC 0.00209 0.00781 0.98557 0.96626

NOX 0.00049 0.00014 0.99731 0.99905

Adam Sigmoid 300 32

BSFC 0.02158 0.03714

0.00513 0.01025

0.85291 0.4619
BTE 0.0003 0.00029 0.99854 0.99711
CO2 0.00056 0.00101 0.99586 0.99513
HC 0.00298 0.01263 0.97943 0.94433

NOX 0.00025 0.00015 0.9986 0.99883
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Table 4. Cont.

Optimizer Transfer
Function

Number
of Epochs

Number of
Neurons in

Hidden Layer
Attributes

Train.
MSE Val. MSE Over All MSE Loss

Train. r: Val. r:
Loss Loss Train. Val.

Adam Sigmoid 400 32

BSFC 0.00073 0.00674

0.0004 0.0023

0.99539 0.94095
BTE 0.0001 0.0002 0.99952 0.99793
CO2 0.00025 0.00054 0.99814 0.99364
HC 0.00068 0.00385 0.99535 0.98254

NOX 0.00023 0.00016 0.99875 0.99969

Adam Sigmoid 500 32

BSFC 0.00075 0.00331

0.00039 0.00175

0.99512 0.96477
BTE 0.00007 0.0002 0.99967 0.99846
CO2 0.00019 0.00049 0.99863 0.99203
HC 0.00081 0.00488 0.99446 0.97394

NOX 0.00013 0.00017 0.99927 0.99866

Nadam Softmax 200 8

BSFC 0.01359 0.03844

0.00554 0.01206

0.9478 0.52292
BTE 0.00093 0.00102 0.99723 0.99672
CO2 0.00868 0.0042 0.99145 0.98368
HC 0.00271 0.01411 0.98899 0.9545

NOX 0.00177 0.00252 0.9975 0.98849

Nadam Softmax 300 8

BSFC 0.00442 0.01707

0.00976 0.0251

0.97099 0.79434
BTE 0.00479 0.01118 0.99775 0.99096
CO2 0.01485 0.02879 0.9933 0.98269
HC 0.0187 0.05233 0.98798 0.96139

NOX 0.00606 0.01615 0.99674 0.98703

Nadam Softmax 400 8

BSFC 0.0062 0.0397

0.00397 0.01413

0.9828 0.55435
BTE 0.00335 0.00346 0.99921 0.99803
CO2 0.00323 0.00713 0.99516 0.97772
HC 0.00344 0.01474 0.99471 0.97046

NOX 0.00361 0.00562 0.99876 0.99592

Nadam Softmax 500 8

BSFC 0.00416 0.00941

0.00443 0.00993

0.98428 0.90226
BTE 0.00477 0.0073 0.99848 0.98826
CO2 0.00307 0.00976 0.99305 0.97928
HC 0.005 0.01465 0.99305 0.9802

NOX 0.00518 0.00852 0.99833 0.99039

Nadam Softmax 200 16

BSFC 0.01921 0.02933

0.00899 0.01087

0.97023 0.73502
BTE 0.00771 0.00732 0.99708 0.99178
CO2 0.00153 0.0019 0.99556 0.99295
HC 0.00577 0.00747 0.98268 0.95034

NOX 0.01073 0.00834 0.99635 0.99307

Nadam Softmax 300 16

BSFC 0.00832 0.02024

0.00382 0.0109

0.98117 0.80768
BTE 0.00312 0.00662 0.99838 0.98905
CO2 0.00283 0.01035 0.99637 0.98672
HC 0.00178 0.00989 0.99175 0.9592

NOX 0.00306 0.00741 0.99856 0.99244

Nadam Softmax 400 16

BSFC 0.00781 0.01739

0.00426 0.00992

0.98681 0.87054
BTE 0.00452 0.00749 0.99889 0.99032
CO2 0.00148 0.00501 0.99797 0.98655
HC 0.00276 0.01272 0.99487 0.9662

NOX 0.00473 0.00698 0.99863 0.9951

Nadam Softmax 500 16

BSFC 0.00597 0.02053

0.00483 0.01243

0.99016 0.82648
BTE 0.00448 0.00594 0.9988 0.99357
CO2 0.0005 0.00287 0.99812 0.99373
HC 0.00732 0.02445 0.99471 0.96771

NOX 0.00586 0.00835 0.99867 0.99789

Nadam Softmax 200 24

BSFC 0.01214 0.02655

0.00376 0.00909

0.97054 0.6949
BTE 0.00192 0.00124 0.99701 0.99206
CO2 0.00039 0.00211 0.99769 0.99284
HC 0.00206 0.01429 0.99001 0.9524

NOX 0.00227 0.00125 0.99768 0.99433

Nadam Softmax 300 24

BSFC 0.014 0.02197

0.00441 0.00703

0.9814 0.74216
BTE 0.00324 0.00315 0.99825 0.99391
CO2 0.00099 0.00161 0.9974 0.99468
HC 0.00068 0.00622 0.9955 0.97638

NOX 0.00315 0.00222 0.9986 0.9958

Nadam Softmax 400 24

BSFC 0.01542 0.02914

0.00574 0.0119

0.98459 0.87196
BTE 0.00563 0.01167 0.99848 0.98877
CO2 0.00265 0.00547 0.99808 0.99796
HC 0.00092 0.00566 0.99589 0.97293

NOX 0.00407 0.00753 0.99894 0.99651

Nadam Softmax 500 24

BSFC 0.00164 0.022

0.00199 0.01008

0.99095 0.74711
BTE 0.00122 0.00303 0.99899 0.98921
CO2 0.00143 0.00448 0.99816 0.98602
HC 0.004 0.01606 0.99589 0.96192

NOX 0.00164 0.0048 0.99889 0.99327
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Table 4. Cont.

Optimizer Transfer
Function

Number
of Epochs

Number of
Neurons in

Hidden Layer
Attributes

Train.
MSE Val. MSE Over All MSE Loss

Train. r: Val. r:
Loss Loss Train. Val.

Nadam Softmax 200 32

BSFC 0.00444 0.03051

0.00521 0.01018

0.97672 0.63954
BTE 0.00687 0.00558 0.9984 0.99043
CO2 0.00717 0.00366 0.99636 0.9966
HC 0.00293 0.00784 0.98793 0.95762

NOX 0.00465 0.00331 0.99837 0.99522

Nadam Softmax 300 32

BSFC 0.00984 0.01614

0.00381 0.00557

0.98572 0.82234
BTE 0.00307 0.00288 0.99855 0.99331
CO2 0.0017 0.00134 0.99817 0.99279
HC 0.00119 0.00497 0.99353 0.97268

NOX 0.00325 0.0025 0.99903 0.99676

Nadam Softmax 400 32

BSFC 0.00392 0.01958

0.00346 0.01143

0.99077 0.83959
BTE 0.00306 0.00674 0.99899 0.98818
CO2 0.00483 0.01014 0.99864 0.99632
HC 0.00249 0.01499 0.99572 0.96501

NOX 0.003 0.0057 0.99913 0.99635

Nadam Softmax 500 32

BSFC 0.00151 0.01375

0.00196 0.00417

0.99354 0.83431
BTE 0.00145 0.00173 0.99911 0.99288
CO2 0.00087 0.00078 0.99875 0.99589
HC 0.00414 0.00351 0.99569 0.97439

NOX 0.00186 0.0011 0.99923 0.99805

Adagrad Relu 200 8

BSFC 0.06691 0.05035

0.02132 0.01774

0.34902 0.53797
BTE 0.01225 0.01094 0.9397 0.9522
CO2 0.01186 0.00866 0.90866 0.82812
HC 0.00848 0.01028 0.94016 0.91711

NOX 0.00708 0.00844 0.9632 0.95271

Adagrad Relu 300 8

BSFC 0.06728 0.04799

0.01579 0.01281

0.34207 0.28044
BTE 0.00411 0.00507 0.97995 0.99154
CO2 0.00103 0.00226 0.99268 0.96619
HC 0.00333 0.00631 0.97771 0.95808

NOX 0.00323 0.00242 0.98218 0.99713

Adagrad Relu 400 8

BSFC 0.0674 0.0447

0.01638 0.01107

0.34413 0.38635
BTE 0.00427 0.00457 0.97915 0.99054
CO2 0.00153 0.00131 0.98872 0.99051
HC 0.00789 0.00396 0.94452 0.97742

NOX 0.0008 0.00081 0.99559 0.99654

Adagrad Relu 500 8

BSFC 0.04943 0.06764

0.01335 0.01683

0.7185 −0.5345
BTE 0.00472 0.00384 0.97693 0.96884
CO2 0.00363 0.00422 0.97296 0.94953
HC 0.00785 0.00818 0.94478 0.94958

NOX 0.00111 0.00026 0.99387 0.99845

Adagrad Relu 200 16

BSFC 0.05379 0.05165

0.01385 0.01258

0.62853 0.06749
BTE 0.00437 0.00408 0.97882 0.98665
CO2 0.00301 0.00133 0.9777 0.99282
HC 0.00646 0.00518 0.95478 0.97201

NOX 0.00163 0.00066 0.99098 0.99832

Adagrad Relu 300 16

BSFC 0.061 0.07195

0.01474 0.01696

0.47368 −0.42298
BTE 0.00436 0.00455 0.9788 0.99563
CO2 0.00156 0.00372 0.98854 0.99239
HC 0.00526 0.00457 0.96387 0.97707

NOX 0.00152 0.00002 0.9916 0.99998

Adagrad Relu 400 16

BSFC 0.0637 0.07373

0.01518 0.01787

0.43457 −0.64301
BTE 0.00363 0.005 0.9823 0.98471
CO2 0.0022 0.00109 0.98386 0.97084
HC 0.00566 0.00888 0.96048 0.95955

NOX 0.00071 0.00063 0.99607 0.99884

Adagrad Relu 500 16

BSFC 0.05292 0.06428

0.01305 0.01739

0.60676 −0.14604
BTE 0.00513 0.00592 0.97486 0.98378
CO2 0.0013 0.00135 0.99043 0.95878
HC 0.00477 0.0149 0.96679 0.9272

NOX 0.00112 0.00047 0.9938 0.99859

Adagrad Relu 200 24

BSFC 0.05528 0.05445

0.01364 0.0157

0.61015 0.0156
BTE 0.0045 0.00675 0.97798 0.97732
CO2 0.00389 0.00289 0.97107 0.98276
HC 0.00385 0.01424 0.9733 0.93214

NOX 0.00066 0.00019 0.99638 0.99959

Adagrad Relu 300 24

BSFC 0.05563 0.06067

0.01326 0.01512

0.58647 −0.1716
BTE 0.00226 0.00185 0.98906 0.99573
CO2 0.00179 0.00324 0.98672 0.99923
HC 0.00455 0.00741 0.96848 0.94134

NOX 0.00208 0.00242 0.98866 0.99463
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Table 4. Cont.

Optimizer Transfer
Function

Number
of Epochs

Number of
Neurons in

Hidden Layer
Attributes

Train.
MSE Val. MSE Over All MSE Loss

Train. r: Val. r:
Loss Loss Train. Val.

Adagrad Relu 400 24

BSFC 0.06072 0.06219

0.01441 0.01609

0.49497 −0.26716
BTE 0.00503 0.00578 0.97541 0.99
CO2 0.00114 0.00186 0.99164 0.99895
HC 0.00428 0.00993 0.97035 0.93742

NOX 0.00087 0.0007 0.99521 0.99496

Adagrad Relu 500 24

BSFC 0.06106 0.06679

0.01449 0.01772

0.48641 −0.35244
BTE 0.00494 0.00498 0.97582 0.99074
CO2 0.00108 0.00164 0.99204 0.96514
HC 0.00453 0.01464 0.96851 0.92427

NOX 0.00086 0.00055 0.99523 0.99985

Adagrad Relu 200 32

BSFC 0.06148 0.05739

0.01474 0.01574

0.47624 0.29582
BTE 0.00523 0.00305 0.97444 0.99025
CO2 0.00117 0.00179 0.99162 0.98774
HC 0.00444 0.01543 0.96923 0.92201

NOX 0.00139 0.00103 0.9923 0.99568

Adagrad Relu 300 32

BSFC 0.05007 0.05915

0.01228 0.01494

0.67119 −0.03018
BTE 0.00273 0.00324 0.98679 0.99698
CO2 0.00171 0.00156 0.98739 0.98397
HC 0.00587 0.01003 0.95902 0.93103

NOX 0.00103 0.00072 0.99428 0.9994

Adagrad Relu 400 32

BSFC 0.05529 0.06235

0.01261 0.01504

0.57119 −0.21838
BTE 0.00184 0.00094 0.99107 0.99651
CO2 0.00147 0.00179 0.98914 0.97134
HC 0.00373 0.0097 0.97414 0.94638

NOX 0.00074 0.0004 0.99593 0.99942

Adagrad Relu 500 32

BSFC 0.03947 0.05622

0.01 0.01404

0.78943 −0.12114
BTE 0.0028 0.00401 0.98639 0.99593
CO2 0.00242 0.00167 0.98224 0.9964
HC 0.00407 0.00791 0.97173 0.9615

NOX 0.00123 0.0004 0.99319 0.99762
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Table 5. ANN model optimum configuration.

Output layer neurons 5
Hidden layer neurons 32
Input layer neurons 3
Normalized range 0 to 1
Transfer functions Sigmoid

Optimizer Adam
Evaluation metrics r and MSE
Number of epochs 500

Preprocessing MinMax Scaler

5. Main Findings

• SB100 depicted a significant reduction in NOX and thermal efficiency. Bio-diesel
derived from micro-algae spirulina, among one of the alternative energy sources
that can be utilized instead of diesel, has a significant prospective for lowering
NOX concentrations;

• As opposed to the spirulina blend SB0 has decreased specific fuel consumption;
• For prediction of CI Engine attributes ANN framework utilizing python with the

Tensor flow as backend and Keras framework was implemented;
• Optimizers such as adam, nadam, and adagrad were evaluated and adam was found

to be the optimum.

6. Conclusions

CI engine attributes and ANN model of a 17.5 compression ratio diesel engine fueled
with varied spirulina blends SB100, SB80, SB65, SB50, SB35, SB20, and SB0 were analyzed.
The preceding points are the conclusions from this study’s findings.

• The outcomes demonstrated a reduction in BTE, HC, and NOX concentrations when
micro-algae spirulina blends were applied; however, a rise inCO2 and BSFC was
observed relative to SB0;

• SB100 was found to be the minimum BTE as compared to other blends. SB100 has a
substantial impact on reducing NOX concentrations, but CO2 enhanced is correlative
to diesel (SB0);

• The proposed ANN was a three-layer one that utilized output variables (NOX, HC,
CO2, BTE, and BSFC) and input variables (load, test fuels, and BP);

• Adam optimizer with sigmoid transfer function was found to be best suited for training
the network. The optimum network configuration was composed of 32 neurons in a
hidden layer, and the best architecture of ANN was found to be 3-32-5;

• The overall network validation and training MSE loss was found to be 0.00175 and
0.00039, respectively. The experimental results and model outcomes are correlated
with each other and revealed that the ANN technique has given optimum results.
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Nomenclature

ANN Artificial Neural Network
BSFC Brake Specific Fuel Consumption
BTE Brake Thermal Efficiency
CN Cetane Number
CO Carbon-Monoxide
CO2 Carbon-Dioxide
DI Direct Injection
MSE Mean Squared Error
UHC Unburnt Hydro-Carbons
NOX Nitrogen Oxide
O2 Oxygen
Oi Output for ith trail case
ppm Parts per million
r Correlation Coefficient
TC Turbo Charged
Ti Target for ith trial case
Val Validation
Train Training
BP Brake power
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