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Abstract: This paper deals with voltage control in a buck DC-DC converter. In fact, dynamic
mathematical equations describing the principle behavior of the above system have been derived.
Due to the nonlinearity of the established model, a nonlinear control algorithm is adopted. It is based
on the sliding mode control approach. To highlight the performance of the latter, a comparative
study with four control algorithms is carried out. The validity of the model and the performance of
the conceived algorithms are verified in simulation. Both the system and the algorithm controls are
implemented in the Matlab/Simulink environment. Extensive results under different operational
conditions are presented and discussed.

Keywords: buck DC-DC converter; parameter variation; Matlab/Simulink environment; sliding
mode control

1. Introduction

Energy production is one of the most important development priorities. On the
one hand, it has been observed that the world’s electrical energy consumption is rapidly
increasing [1–9]. On the other hand, energy production uses fossil fuels [10–13] such as oil,
coal, and natural gas. They are all burnt and used as energy sources for production. The
use of fossil fuels can help to offset the energy demand. However, there is too much carbon
dioxide (CO2) in the atmosphere, which can lead to big problems both for people and the
earth. This forces humans to seek out alternative energy sources that may be capable of
saving both people and the planet.

Many alternative sources are suggested. Among these sources, renewable energy is
the most commonly used one. Nowadays, photovoltaic solar energy [14–16] and wind
energy have become the most used alternative energy sources. The operating power of
both the photovoltaic generator and the wind energy sources depends on metrological
conditions such as temperature, irradiation, wind speed, etc. [17–21]. The optimal use of
the produced energy can be assumed only if the produced wind and photovoltaic sources’
maximum power are extracted and tracked for any change in the metrological conditions.
Tools to track these specific points are required [22–27].

Most of the proposed power point tracking algorithms are based on varying the
generator characteristics in such a way as to be adapted to the latter of the load. The
generator characteristic changes are assumed by using a DC-DC converter and a maximum
power point tracking (MPPT) algorithm [28–30]. Different DC-DC converters are used as
buck converters, boost converters, buck–boost converters, etc. [31–34]. The boost and buck
converters are the most commonly used. The buck DC-DC converter is used especially in
DC link control, as the DC voltage of the photovoltaic/wind conversion system output
depends on the metrological conditions. DC-DC converters are naturally classified as
nonlinear systems due to their commuting properties. They are the most commonly used
circuits in power electronics, especially in DC link voltage stabilization.
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In general, the DC link voltage must be fixed at a desired value despite input voltage
and load variations [35]. To regulate the DC voltage magnitude, and obtain a constant
and stable output voltage and fast response, many types of controllers are used [27], such
as fuzzy logic, PI controllers, PID controllers, sliding mode control, etc. Conventional
controllers are in general conceived by using small signal state equations obtained at a
specific operation point. The conceived control algorithm remains efficient only around the
specified operating point. To avoid the drawbacks of conventional controllers, nonlinear
control approaches are investigated and used in the control voltage loop of the buck DC-DC
converter. Among these nonlinear control algorithms, the sliding mode approach is the
most used. Different sliding mode algorithms, both for continuous and discrete times,
are proposed in the literature [36–43]. In [36], a cascade loop control is proposed. The
voltage control loop is based on a classical PID controller, and the current loop control
is based on zero order sliding mode control over a continuous time. The validity of the
conceived algorithm is confirmed under different working conditions, including target
voltage variation, load variation and input voltage variations. In [37], a sliding mode
controlled pole is conceived both in voltage and current control loops. An integral switching
surface is used here. Simulation results are given under target voltage variation and load
variation. The fractional order sliding mode is also used in the literature [38]. Different
sliding mode approaches for discrete time are used. In fact, in [39], discrete time sliding
mode control is investigated for the output voltage control. The performance of the used
algorithm is tested only for a fixed target output voltage. Discrete time fast terminal sliding
mode control with mismatched disturbance is conceived for DC-DC buck converters, and
the control strategy is investigated in [40]. The validity of the proposed algorithm, both in
simulation and experimentation, is assessed under both load variations and fluctuations
in the input voltage. A discrete repetitive adaptive sliding mode control for the DC-DC
buck converter under only variable target output voltage perturbed with a Gaussian noise
is conceived in [41]. Simulation results under fixed target voltage and load variations are
given. An Adaptive Global Sliding Mode Controller based on the Lyapunov approach is
designed for perturbed DC-DC buck converters [42]. In this work, the external disturbances
and dynamic uncertainties are modeled with a sinusoidal function. In [43,44], to cope with
the chattering problem, a high-order sliding mode control of the DC-DC buck converter is
conceived. Practical results under target output voltage variation are presented. In most of
the mentioned studies, the performance of the conceived algorithms is validated against
external disturbances as input voltage and load variations. The internal disturbances in
terms of DC-DC buck converter parameter variations are omitted. Thus, in this paper, we
are interested in the performance of the first-order sliding mode in DC-DC buck output
voltage control with both external and internal disturbances. Besides this, to highlight the
good performance of the investigated control algorithm, a comparison study with four
control algorithms is carried out.

The paper is organized as follows. Section 2 presents the modeling of the buck DC-DC
converter feeding a resistive load. Section 3 describes the sliding mode controller principle
and its application in buck DC-DC converter output voltage control. Section 4 presents
the internal model controller. The fuzzy logic controller is given in Section 5. Section 6
illustrates the obtained results in simulation, both for internal and external disturbances.
Section 5 concludes the work and presents some suggested prospects.

2. Modelling of DC-DC Buck Converter Mathematical

The synoptic scheme of the DC-DC buck converter is depicted in Figure 1. It con-
sists of an on and off controlled semiconductor (Transistor IGBT, T), a natural commuted
semiconductor (Diode, D), a smoothing current system (inductor, L), and a smoothing
voltage system (capacitor, C). It is powered by a direct current voltage source and feeds a
resistive load.
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Figure 1. Synoptic scheme of the DC-DC buck converter.

2.1. Bilinear Switching Model of DC-DC Buck Converter

The working principle is based on two alternative phenomena: charging and discharg-
ing, based on the control signal state, Sc. When considering the continuous conduction
mode and the control signal state levels, two modes are to be considered [45–53].

Mode 1:
For the ON mode in which Sc = 1, the transistor T is closed and the diode D is open.

Based on Kirchhoff’s current and voltage laws, we can write:
dil
dt = Vdc

L −
Vload

L

dVload
dt = il

C −
iload

C

(1)

Mode2:
Sc = 0, the transistor T becomes open and the diode D begins closed. The state

equations describing the inductor current and the output voltage dynamics are given in (2).
dil
dt = −Vload

L

dVload
dt = il

C −
iload

C

(2)

The combination of the two sub models leads to the general buck DC-DC converter
model, as illustrated in (3). 

dil
dt = Sc

Vdc
L −

Vload
L

dVload
dt = il

C −
iload

C

(3)

For a resistive load, (3) begins
dil
dt = Sc

Vdc
L −

Vload
L

dVload
dt = il

C −
Vload
RC

(4)

2.2. Averaged Dynamic Model of DC-DC Buck Converter

By using the state-space averaging method [46], Equation (4) can be written as illus-
trated with Equation (5).
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
d〈il〉Ts

dt = 〈Sc〉Ts

〈Vdc〉Ts
L − 〈Vload〉Ts

L

d〈Vload〉Ts
dt =

〈il〉Ts
C −

〈Vload〉Ts
RC

(5)

where 〈il〉Ts
, 〈Vload〉Ts

, 〈Sc〉Ts
and 〈Vdc〉Ts

are the averaged values of inductor current, output
voltage, control signal, and input voltage, respectively, in a switching period Ts .

This can be put into the more compact form of an uncertain nonlinear system, as
indicated by (6).

.
X = f (X) + g(X)α (6)

The nonlinear equations f (X) and g(X), and averaged state vector X, are defined
as follows:

g(X) =

(Vdc
L
0

)
(7)

f (X) =

(
0 −Vload

L
il
C −Vload

RC

)
(8)

X =
[
〈il〉Ts

〈Vload〉Ts

]T
(9)

Here, α is the duty cycle.

2.3. Small Signal Dynamic Model of DC-DC Buck Converter

The small signal DC-DC buck converter model is obtained by linearizing the averaged
model around an operating point. Thus, the input control and the output signals’ expres-
sions are to be represented by the sum of their quiescent values and a small alternative
current (AC) variation. So, we can write,

〈il〉Ts
= Il + ĩl (10)

〈Vload〉Ts
= Uload + Ṽload (11)

〈Vdc〉Ts
= Udc + Ṽdc (12)

〈Sc〉Ts
= αe + α̃ (13)

where Il , Uload, Udc and αe are the inductor current, the load voltage, the input voltage, and
the duty cycle at the operating point, respectively.

Replacing 〈il〉Ts
, 〈Vdc〉Ts

, 〈Vload〉Ts
and 〈Sc〉Ts

with their expressions, Equation (5) begins
d(Il+ĩl)

dt = (αe + α̃)
(Udc+Ṽdc)

L − (Uload+Ṽload)
L

d(Uload+Ṽload)
dt =

(Il+ĩl)
C − (Uload+Ṽload)

RC

(14)

By separating steady state terms and small-signal terms, we obtain

dĩ
dt +

dIl
dt =

αeUdc
L
− Uload

L︸ ︷︷ ︸
DC term

+
αṼdc

L
+

α̃Udc
L
− Ṽload

L︸ ︷︷ ︸
1st order AC term

+
α̃Ṽdc

L︸ ︷︷ ︸
2nd order AC term

dṼload
dt + dUload

dt =
Il
C
− Uload

RC︸ ︷︷ ︸
DC term

+
ĩl
C
− Ṽload

RC︸ ︷︷ ︸
1st order AC term

(15)



Energies 2022, 15, 6128 5 of 21

In the system of Equation (15), the DC terms contain the DC terms only, the first-order
AC term contains a product of a DC term with an AC term, and the second order AC term
contains a product between two AC terms.

The second-order AC terms are much smaller in magnitude than the firs- order AC
terms. Therefore, the second small AC quantity is neglected. Moreover, Udc, Il and Uload
are constant DC terms. As a result, the sum of the DC term and its derivative are zero.
Consequently, only the linear term remains, and the small signal dynamic DC-DC buck
converter is defined with (16). 

dĩl
dt = α̃Udc

L −
Ṽload

L

dṼload
dt = ĩl

C −
Ṽload
RC

(16)

2.4. Comparative Study

To assess the performance of the used mathematical model of the DC-DC buck con-
verter, the three developed models are implemented in Matlab/Simulink platform and
compared to one that was established using the predefined electronic components in mat-
lab/Simulink packages. The parameters of the used DC-DC buck converter are grouped
in Table 1.

Table 1. DC-DC buck converter parameters.

Parameter Value

Input voltage (v) 400

Capacitor (µF) 5

Inductor (mH) 20

Switching frequency (Khz) 10

Resistive load (Ω) 10

In order to assess the validity of the established models, various operating points
are considered. The most significant simulation results are displayed and commented on.
Figure 2a shows the evolution of the duty cycle used as a control signal for the averaged
and small-signal models. The switching signal obtained at the pulse width modulation bloc,
as a control signal for the bilinear switching model and established using the predefined
electronic components, is depicted in Figure 2b. Output voltage waveforms are given
in Figure 2c. Both dynamic and steady-state working modes are considered. As shown
in Figure 2c, output voltage ripples are omitted both for the small signal model and the
averaged model, and appear for the switching model, as established using the predefined
electronic components in the matlab/Simulink packages. The accuracy of the established
model is proven as the modeling error is a few percentage points lower at high duty
cycle values, and increases at low duty cycle values, according to the losses in the used
power semi-conductors in the DC-DC buck (Figure 2d). Consequently, to cope with the
nonlinearities and modeling error, a robust nonlinear control law is to be used. This allows
us to use the sliding model approach for DC-DC buck converter control.



Energies 2022, 15, 6128 6 of 21

Energies 2022, 15, x FOR PEER REVIEW 7 of 22 
 

 

 
(a) 

 
(b) 

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Time (s)


 e (

t)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time (s)

S c (
t)

1.94 1.95 1.96 1.97
0

0.5

1

Energies 2022, 15, x FOR PEER REVIEW 7 of 22 
 

 

 
(a) 

 
(b) 

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Time (s)


 e (

t)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time (s)

S c (
t)

1.94 1.95 1.96 1.97
0

0.5

1

Figure 2. Cont.



Energies 2022, 15, 6128 7 of 21

Energies 2022, 15, x FOR PEER REVIEW 8 of 22 
 

 

 
(c) 

 
(d) 

Figure 2. Comparative study simulation results: (a) duty cycle, (b) control signal, (c) output voltages 

of DC-DC buck converter models and (d) model modeling error. 

0 1 2 3 4 5
0

50

100

150

200

250

300

Time (s)

V
lo

ad
 (

v
)

 

 

0.604 0.605
38

40

 

 

0.520.540.560.58
0

20

40

 

 

4.5 4.55
160

180

200

 

 

4.6 4.7 4.8

198

200

 

 

Computed averaged output voltage value

Output votage of bilinear switching model

Output votage of small signal model

Output votage of averaged model

Output votage of electronic components based model

B

C

D

A

0 1 2 3 4 5

-2

-1.5

-1

-0.5

0

0.5

1

Time (s)

M
o

d
el

li
n

g
 e

rr
o

r 
(%

)

 

 

1.5 1.55 1.6 1.65

-0.3
-0.2

-0.1
0

0.1

4.5 4.52 4.54 4.56 4.58 4.6 4.62

-0.06
-0.04
-0.02

0

Bilinear switching model modelling error

Averaged model modelling error

Small signal model modelling error

Figure 2. Comparative study simulation results: (a) duty cycle, (b) control signal, (c) output voltages
of DC-DC buck converter models and (d) model modeling error.



Energies 2022, 15, 6128 8 of 21

3. Sliding Mode Control Approach for Buck Converter Voltage Control

Control of nonlinear systems using a sliding mode approach was conceived in 1992 by
Vadim Ulkin [54] in order to solve the conventional controller’s problems. Typical sliding-
mode control operates in the form of these two modes. The first is named the “approaching
mode”. When this mode is reached, the convergence of the system state to a predefined
manifold called the sliding mode surface in finite time is assumed. The second, designed
with sliding mode, follows the sliding surface and returns to the origin. Many approaches
to sliding mode control have been conceived. The equivalent control approach [54–59] is
the most commonly used. Let us denote with S the sliding mode function. In this case, the
output’s voltage is controlled. A linear sliding mode surface is adopted. It is defined for
the first sliding mode control as follows:

S = C1e +
.
e (17)

Here e is the output voltage error and
.
e is its derivative value.

The output voltage error is defined by (13).

e = Vloadre f −Vload (18)

.
e = − 1

C

[
il −

Vload
R

]
(19)

Substituting e and
.
e with their expressions, the sliding mode surface becomes:

S = − 1
C

il +

(
1

RC
− C1

)
Vload + C1Vloadre f (20)

Its derivative is defined by (21).

.
S =

(
1− C1RC

RC2

)
il −

(
L− R2C− C1RCL

R2C2L

)
Vload −

αVdc
LC

(21)

The equivalent control αeq is deduced from the following equality.
.
S = 0 (22)

It is defined as:

αeq =

(
L− C1RCL

RCVdc

)
il −

(
L− R2C− C1RCL

R2CVdc

)
Vload (23)

Since the duty cycle must be in
[
0 1

]
, the real control signal is given by (24).

α(t) =


1 si α(t) > 1

αeq + Msign(S) 0 ≤ α(t) ≤ 1

0 α(t) < 0

(24)

4. Internal Model Control Approach for Buck Converter Voltage Control

The general block diagram of the internal model control (IMC) loop is given in Figure 3.
G(s) is the real system’s open loop transfer function, Gi(s) is the system model’s open loop
transfer function, and Q(s) is the IMC controller’s transfer function [60].
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Referring to Figure 3, we can write

Vload = G(s)[1 + Q(s)(G(s)− Gi(s))]
−1Q(s)Vloadre f (25)

When the modeling system is perfect, we can write

Vload = G(s)Q(s)Vloadre f (26)

The closed loop is stable if and only if G(s) and Q(s) are stable. However, if G(s) is in
the non-minimum phase, G−1(s) is not stable. Besides this, if the G−1(s) numerator degree
is higher than the denominator degree, then G−1(s) cannot be implemented. Referring to
the H2 optimization leads to choosing Q(s) = G−1(s). To assume the feasibility condition, a
low-pass filter is added. The final expression of the IMC controller is given in (27).

Q(s) =
a

s + a
G−1(s) (27)

where a is the filter parameter.

5. Fuzzy Logic for Buck Converter Voltage Control

Fuzzy logic is a computational approach based on degrees of truth. It was first
discovered in the 1960s by Lotfi Zadeh [61]. Since the above approach does not require a
mathematical model, and is based on human decision-making, this approach can present
high efficiency. A mamdani-type fuzzy logic is used for the voltage control. In this fuzzy
logic controller (FLC), the voltage error ev(k) and the change in voltage error cev(k) are the
inputs of the fuzzy system, while the change in the duty cycle cα(k) is considered as the
output of this system.

The equations for ev(k) and cev(k) are as follows:

ev(k) = Vload(k)−Vloadre f (k) (28)

When the modeling system is perfect, we can write

cev(k) =
ev(k)− ev(k− 1)

Te
(29)

where Te is the sample time.
According to Figure 4, three essential steps are to be followed in the mamdani system’s

conception. At the fuzification step, the crisp variables ev(k), Cev(k) and Cα(k) are converted
to fuzzy sets using triangular membership functions, as can be seen in Figure 5a, b and c,
respectively. The linguistic variables GN, PN, Z, PP and GP indicate negative big, negative
small, zero, positive small and positive big. The number and the type of the membership
function used for the system variables are determined through a trial and error test. The
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obtained fuzzy output variables are then processed by an inference engine. A sum-prod
inference algorithm is adopted in this work. Based on the input membership functions
number, the number of rules is obtained. The if–then rules that map input to output are
conceived as indicated in Table 2. At the defuzzification step, the inference engine output
variable is converted into a crisp value. The centroid defuzzification algorithm is used in
this paper. The control signal to be applied in the real system is obtained using a recurrent
equation, as indicated in (30).

α(k) = α(k + 1) + ACα(k) (30)
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Table 2. Rule-based table of the fuzzy logic controller.

Cev(k)Cα(k) GN PN Z PP GP

ev(k)

GN GN GN PN PN Z
PN GN PN PN Z PP
Z GN Z PP GP

PP PN Z PP PP GP
GP Z PP PP GP GP

A is adjustable positive gain.

6. Simulation Results

To highlight the effectiveness and robustness of the proposed output voltage controller
for the DC-DC buck converter, the overall drive scheme illustrated in Figure 6 was imple-
mented in the Matlab/Simulink environment. Different scenarios were simulated in which
the conceived algorithm was evaluated in comparison with four control algorithms: PI, IP,
FLC, and IMC. Five scenarios, including abrupt target output voltage variation, triangular
target output voltage variation, abrupt input voltage variation, abrupt load variation, and
DC-DC buck converter parameter variation, are considered.

6.1. Sliding Mode Parameter Choice

The performance of the conceived sliding mode controller depends on the discontinu-
ous term coefficient. A simulation study was carried out to determine the best choice of
this factor. Figure 7 shows the obtained results. It should be noted that high sliding mode
parameters lead to reduced response times both for the system and the controller outputs
as shown in the zones 1 to 4. On the other hand, it increases the magnitude of oscillation
both in the controller and the system responses, which may lead to disrupting the system.
Thus, in this work, the considered parameters are chosen in such a way that a compromise
between rapidity and stability is achieved.
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6.2. Controller’s Behavior under Abrupt Target Output Voltage Variations

In this case, the aim is to test the tracking behavior of the proposed sliding mode
controller against abrupt target output voltage variations. All five algorithms are imple-
mented and simulated in the same test conditions. In fact, the load resistor, the input
voltage, and the DC-DC buck converter parameters are all maintained at their nominal
values. The target output voltage is first fixed at 150 v. At t = 0.03 s, it changes to 350 v
and decreases to 250 v at t = 0.07 s. The five obtained output voltages and control signals
are respectively reported in Figure 8a,b. Comparative performances are extracted and
summarized in Table 3.

Energies 2022, 15, x FOR PEER REVIEW 16 of 22 
 

 

 
(a) 

 
(b) 

Figure 8. Target output voltage variation: (a) evolution of the control voltage and (b) evolution of 

the output voltages. 

6.3. Controller’s Behavior under Triangular Target Output Voltage Variations 

In order to access the dynamic response of the proposed control algorithm, the target 

output is rapidly changed as a triangular signal is chosen for the five control algorithms. 

The obtained results are obtained as recorded in Figure 9. Comparative performances in 

this case are extracted and grouped in Table 3. 

 
(a) 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

5

10

Time (s)

V
o

lt
a

g
e 

co
n

tr
o

l 
(v

)

 

 

IP PI Fuzzy logic IMC SMC

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

100

200

300

400

500

Time (s)

O
u

tp
u

t 
v

o
lt

a
g

e 
(v

)

 

 

IP PI Fuzzy logic IMC SMC V
loadref

 

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

1

2

3

4

Time (s)

C
on

tr
ol

 v
ol

ta
ge

 (v
)

 

 

IP PI Fuzzy logic IMC SMC

Figure 8. Target output voltage variation: (a) evolution of the control voltage and (b) evolution of the
output voltages.
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Table 3. Comparative study between the five algorithms.

Control Algorithms

Operating Modes Values Parameters PI IP FLC IMC SMC

Abrupt target
output variation

150 v

Response time (ms) 9.58 2.62 1.5 2.8 0.91

Tracking error (%) 0.013 0.016 0.13 0.12 0.003

Overshoot (%) ∼=0 0.266 3.26 ∼=0 1.6

350 v

Response time (ms) 8.5 2.6 2.5 2.8 2.6

Tracking error (%) 2.8 × 10−3 2.9 × 10−4 1.2 × 10−3 1.4 × 10−3 7.1 × 10−5

Overshoot (%) 4.48 0.17 1.17 0.014 0.002

250 v

Response time (ms) 1.4 7.8 9.2 2.1 0.7

Tracking error (%) 0.33 0.01 0.04 0.02 0.001

Voltage loss (%) ∼=0 0.11 0.44 ∼=0 0.8

Triangular target
output variation 20 × 103 v/s Tracking error (v) 71.5 15 77 20 −14.5

Abrupt input
voltage variation

400 v

Settling time 1.92 9.58 13.4 2.8 1.3

Tracking error 0.025 0.04 0.1 0.175 5 × 10−5

Overshoot ∼=0 0.25 2 ∼=0 0.675

350 v

Stabilization time
(ms) 2.1 9.8 1.3 8 ∼=0

Tracking error (%) 2 × 10−4 0.001 ∼=0 0.1 ∼=0

Voltage loss (%) 2.25 6.65 8.3 3.55 0.001

300 v

Stabilization time
(ms) 18 22 23.8 10.9 ∼=0

Tracking error 0.04 0.01 ∼=0 0.1 ∼=0

Voltage loss (%) 3 8 9.75 4.25 ∼=0

Abrupt load
resistor variation

15 Ω

Settling time (ms) 2.4 3.24 13.6 3.7 0.89

Tracking error (%) 0.1 1.014 0.2 0.15 0.05

Overshoot (%) ∼=0 ∼=0 0.45 0.1 1.7

10 Ω

Stabilization time
(ms) 3.2 6.8 2 8.77 0.8

Tracking error (%) 0.15 0.12 0.13 0.05 5 × 10−5

Overshoot (%) 7.25 12.4 13.75 10.2 ∼=0

Voltage loss (%) 1.15 26.2 31.4 28.6 26.05

5 Ω

Settling time (ms) 2.4 9.98 11.5 2.19 1.5

Tracking error (%) 0.001 0.006 0.125 0.025 ∼=0

Overshoot (%) 7.1 12.15 13.15 10.45 ∼=0

Voltage loss (%) 46.7 48.35 48.6 46.8 46.45

Parameter
variations

Abrupt capacitor
variation

Stabilization time
(ms) - - 13.7 13.9 ∼=0

Tracking error (%) - - 0.1 0.15 ∼=0

Overshoot/Voltage
loss (%) - - 12.1 30 ∼=0
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Table 3. Cont.

Control Algorithms

Operating Modes Values Parameters PI IP FLC IMC SMC

Abrupt inductor
variation

Stabilization time
(ms) - - 0.11 0.12 ∼=0

Tracking error (%) - - 5 × 10−5 0.05 ∼=0

Overshoot/Voltage
loss (%) - - 0.25 0.23 5 × 10−4

Number of controller tuning parameters 02 02 03 01 01

6.3. Controller’s Behavior under Triangular Target Output Voltage Variations

In order to access the dynamic response of the proposed control algorithm, the target
output is rapidly changed as a triangular signal is chosen for the five control algorithms.
The obtained results are obtained as recorded in Figure 9. Comparative performances in
this case are extracted and grouped in Table 3.
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Figure 9. Triangular target output voltage variation: (a) evolution of the control voltage and
(b) evolution of the output voltages.

6.4. Controller’s Behavior under Input Voltage Variations

The DC input voltage variations for the five control algorithms are represented in
Figure 10. For this test case, the load resistor and the DC-DC buck converter parameters are
all maintained at their nominal values. The DC input voltage is fixed at 400 v, and decreased
to 350 v and 300 v at t = 0.05 s and t = 0.1 s, respectively. Comparative performances are
extracted as represented in Table 3.
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Figure 10. Input voltage variation: (a) evolution of the control voltage, (b) evolution of the control
voltage and (c) evolution of the control voltage.

6.5. Controller’s Behavior under Resistor Load Variations

In this test, the input DC voltage and the DC-DC buck converter are held constant at
their nominal values. The target output voltage is also fixed to a constant value. The load
variation trajectory is given in Figure 11a. The obtained responses of the five algorithms
are shown in Figure 11b,c. Table 3 gives the comparison performances in this case.
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Figure 11. Resistor load variation: (a) evolution of the control voltage and (b) evolution of target and
(c) actual output voltages.

6.6. Controller’s Behavior under DC-DC Buck Converter Parameter Variations

As is well known, the PI and IP controllers are sensitive to system parameter variations.
Thus, in this case, only the behavior of FLC, IMC, and the proposed SMC algorithms are
tested. The DC input voltage, the load resistor, and the target output voltage are all held
constant. Only the DC-DC buck converter parameter variations are considered in this case.
Figure 12a,b show the adopted trajectories for the DC-DC buck converter inductor and
capacitor, respectively. The obtained simulation results in this case are given in Figure 12c,d.
The comparison performances of the three control algorithms in this case are summarized
in Table 3.
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It can be easily noted from both the obtained simulation results for different cases and
the comparative study shown in Table 3 that the highest performance is achieved by the
conceived SMC control algorithm, compared to the others.

7. Conclusions

In this paper, a mathematical model of the buck DC-DC converter is established. A
robust control strategy is adopted for the output control voltage of the system. The validity
of the latter is demonstrated using the Matlab/Simulink environment. In a comparative
study with four control algorithms, PI, IP, FLC and IMC, the simulation results show that
the designed sliding mode controller has robust characteristics and a fast dynamic response
in the different studied cases.

Despite all these good performances, the chattering phenomenon remains the major
problem of the used sliding mode control algorithm. To avoid this issue, we intend to use
high-order sliding mode control for buck DC-DC converter control in future works.
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