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Abstract: The carbon emissions of sectors and households enabled by primary inputs have practical
significance in reality. Considering the mutual effect between the industrial sector and the household,
this paper firstly constructed an environmentally extended semi-closed Ghosh input–output model
with an endogenized household sector to analyze the relationship between carbon emissions and
the Chinese economy from the supply-side perspective. The structural decomposition analysis and
the hypothetical extraction method were remodified to identify the supply-side driving effects of
the changes in carbon emissions and investigate the net carbon linkage. The results show that the
electricity, gas, and water supply sector was the key sector with the highest carbon emission intensity
enabled by primary inputs. The household sector had an above 93% indirect effect of the enabled
intensity, with its enabled intensity dropping significantly by more than 55% from 2007 to 2017. The
operating surplus and mixed income caused 3214.67 Gt (34.17%) of the enabled emissions in 2017.
The supply-side economic activity, measured by the value added per capita, was the main factor
of the carbon emission growth, mainly attributed to the development of the manufacturing sector
and the electricity, gas, and water supply sector. The emission intensity and allocation structure
both brought a decrease in carbon emissions. The electricity, gas, and water supply sector and the
manufacturing sector were the major sources of the supply-induced cross-sectoral input emissions,
while the commercial and service sector and the household sector were the top source of supply-
induced cross-sectoral output emissions. This paper sheds light on the policies of the carbon emission
abatement and the adjustment of the allocation structure from the perspective of supply.

Keywords: semi-closed Ghosh input–output model; supply-side perspective; structural decomposition;
hypothetical extraction method; net carbon linkages

1. Introduction

The sharp growth of the Chinese economy has resulted in a dramatic increase in
carbon emissions and energy demand in the last decades [1,2]. As the largest carbon emitter
in the world, China has generated carbon emissions of 11.9 Gt, accounting for about 30% of
global emissions [3]. As the only country quickly recovering from the COVID-19 pandemic,
electricity demand in China increased by 10% in 2021. The 56% rise in electricity demand
in China required coal consumption [3,4], which makes it difficult to promote the progress
of United Nations’ Sustainable Development Goal (SDG) 7, i.e., affordable and clean energy.
The greenhouse gas generated by the household sector related to electricity and heating
energy accounts for more than 30% of that by all sectors [5]. Carbon emissions related
to the household sector in China reached about 443.1 Mt in 2017, ranking fifth out of the
forty-six sectors as a major source of carbon emissions. Moreover, the share of direct carbon
emissions generated by the household sector experienced a sharp increase of more than 50%
from 2007 to 2017, showing the great potential of household carbon emission growth in the
future [6]. It indicates that China has a huge challenge to achieve SDG 13, i.e., climate action
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from the perspectives of industrial sectors and the household sector [7]. Hence, the interest
in carbon mitigation policies targets inter-sectoral activities and household consumption.

The input–output (IO) framework has been used to investigate a wide variety of
environmental issues associated with inter-sectoral activities based on the methodological
extension of Leontief [8], such as water flows, energy consumption, and carbon emis-
sions [9–11]. Lenzen et al. (2013) adopted a multi-region input–output table to evaluate
virtual water flows embodied in international trade [9]. Voigt et al. (2014) analyzed the
trends and drivers of energy intensities in 40 economies based on the IO model and the
Logarithmic Mean Divisia Index Decomposition [10]. Mi et al. (2016) employed the IO
model to calculate the production-based and consumption-based carbon emissions for
thirteen Chinese cities and explored the carbon emissions embodied in inter-regional
trade [11]. In the classic Leontief IO theory, the output is driven by the final demand (e.g.,
household consumption expenditure, government consumption expenditure, gross capital
formation, and exports). Household consumption has a one-way effect on the intermediate
transaction among the industries in the conventional open IO model [12], which only
affects environmental issues as an exogenous factor. In fact, there are the mutual effects,
rather than a one-way effect, between the industrial sector and the household sector. The
intermediate transactions associated with the higher economic output could stimulate
household consumption via growth in household income. The household sector acts as the
main actor of final energy consumption, and the rise in household consumption leads to
a significant increase in energy consumption and carbon emissions [13]. Carbon emissions
directly generated by the household sector are from the direct combustion of fossil fuels for
household activities (e.g., cooking, clothing, and housing) [14], which could be influenced
by household income [15]. Growing household income resulted in the enormous increase
in energy consumption of the household sector over the last two decades, directly leading
to a huge rise in carbon emissions [16]. In addition, indirect emissions of the household are
embedded in intermediate transactions [14], indicating that the production sectors generate
carbon emissions driven by household consumption.

Based on the understanding of mutual effects, the semi-closed IO model can be con-
structed by moving household consumption and income into intermediate use, which
treats the household as an endogenous factor. The semi-closed IO model with an endo-
genized household has been extended to investigate the environmental issues, such as
seawater desalination, carbon emissions, and waste flows. Zou and Liu (2016) applied
the semi-closed IO model to carry out an analysis of the economic effects of seawater
desalination in China [17]. Liao et al. (2017) integrated the semi-closed IO model with the
modified hypothetical extraction method to quantify the net carbon linkages of sectors and
households in Beijing [18]. He et al. (2018) adopted the closed IO model to analyze the
effect of the household sector on Australian waste flows [19].

Most previous research on inter-industrial analysis is based on the Leontief demand-
driven IO model, allocating the gross output to final demands. However, most policy-
makers focus on the economic structure or sectoral environmental performance from the
perspective of value added rather than final demand [20]. It is necessary to adopt the
supply-side IO model to investigate the inter-industrial transaction enabled by various pri-
mary inputs, which is called the Ghosh IO model. The basic assumption of the supply-side
IO model is that the output allocations in an economic system are stable [21]. When there
is an exogenous change in the value added, the allocation coefficients remain stable [22].
In contrast to the Leontief inverse, the Ghosh inverse can be interpreted as the allocation
structure, measuring the dependence of a particular sector on other sectors as a buyer of its
output [20,23]. The Ghosh IO model has been applied to measure resource consumption
and pollutant generation, including air pollutants, mercury emissions, and carbon emis-
sions [24–26]. Xie et al. (2018) adopted the Ghosh IO model to decompose the factors of air
pollutants in China [24]. Zhang et al. (2018) calculated the enabled and embodied mercury
emissions in China, using income-based accounting and consumption-based accounting,
respectively [25]. Sajid et al. (2019) investigated the sectoral carbon linkages in Turkey
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from the demand and supply side [26]. The semi-closed IO model tends to be applied to
investigate demand-related carbon emissions, which reveals the inter-sectoral transaction
of the sectors and the household driven by various final demands. Much less attention has
been given to the supply-side carbon emissions with the household sector endogenized
into the intermediate transaction.

Structural decomposition analysis (SDA) can investigate a wide range of technological
effects and final demand effects in the IO model [27]. As the SDA technique can identify
the direct effect on carbon emissions as well as the indirect effect through the interac-
tions among sectors, many scholars adopted SDA based on the IO model to quantify the
contributions of several socioeconomic factors to changes in carbon emissions from the
demand-driven perspective [28,29]. Su et al. (2017) carried out the first comprehensive
analysis of Singapore’s carbon emissions by the IO model and the SDA technique and
found that the emission growth was mainly driven by exports [28]. Pu et al. (2020) de-
composed China’s embodied carbon emissions based on SDA and found that the total
trade volume was the primary driver of emission growth [29]. On the other hand, the
supply-side SDA of production-related carbon emissions have been conducted. Based
on the Ghosh IO model, the supply-side SDA has been adopted to decompose several
environmental indicators. Su and Ang (2015) used the multiplicative SDA to identify the
supply-side driving effects of changes in the aggregate carbon intensity of China [30]. Xie
et al. (2018) adopted the additive SDA to decompose the changes in air pollutant emissions
into the supply-side contributions of economic activities, economic structures, allocation
structures, and emission intensity [24]. Compared with the multiplicative decomposition
form, the additive decomposition form is usually applied to decompose the change in the
absolute indicator [30]. Moreover, there are huge differences between the demand-side
SDA results and the supply-side SDA results. Zhang (2010) found that the contribution
of the supply-side economic structure to increases in carbon emissions was much larger
than the contribution of the demand-side economic structure in 1992–2002 calculated by
Peters et al. (2007) [20,31]. Zhang et al. (2018) discovered that the primary input structure
in the supply-side SDA had greater effects on the mercury emission growth than the final
demand structure in the demand-side SDA from 1997 to 2012 [25].

There are two approaches to investigate the inter-sectoral linkages in the IO analysis,
the conventional multiplier and the hypothetical extraction method (HEM). The backward
linkage based on the Leontief IO model and the forward linkage based on the Ghosh model
are the main multipliers to assess the significance of one particular sector to the whole
economic system, which have been extended to the environmental issues. For example,
He et al. (2019) identified the manufacturing sector with the largest energy consumption
reduction potential based on the analysis of backward and forward linkage [32]. However,
the conventional multiplier, not weighed by production or demand, fails to reflect the
production structure; it integrates the self-consumption into the backward and forward
linkages [33]. The modified HEM linkage analysis decomposes the total carbon emissions
into four demand-side linkage effects, including internal effect (IE), mixed effect (ME), net
backward linkage (NBL), and net forward linkage (FBL), which are helpful to describe
the flows of carbon emissions in the economic system [34]. Later on, Sajid and Gonzalez
(2021) developed the theoretical basis and empirical evaluation method of linkage analysis
purely based on the Ghosh IO model, which is named as the supply-side modified HEM
(SMHEM); they applied SMHEM to investigate the carbon emission linkage in China, India,
and the USA [35].

To date, the effect of the household sector on carbon emissions has been given little
attention due to limitations in the method and data, especially from the supply-side per-
spective. As the popular open IO model may underestimate the contribution of households’
carbon emissions by completely neglecting the mutual effect between the industrial sector
and the household sector, it is meaningful to develop a supply-side framework to analyze
the relationship between carbon emissions and the Chinese economy by combining the
semi-closed IO model with the Ghosh IO model. It is conducive to systematically under-
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stand the drivers and linkages of the sectoral carbon emissions associated with the primary
resource, which could intuitively shed light on the carbon emission abatement and the
allocation structure shift.

In this paper, we analyze the drivers and linkages of carbon emissions of the industrial
sectors and the household sector in the Chinese economy by firstly constructing an en-
vironmentally extended semi-closed Ghosh input–output model, which can reflect the
mutual effects between the industrial sector and the household sector and the effect of
primary inputs on carbon emissions. The key factors of changes in production-related
carbon emissions are identified by adopting the remodified supply-side SDA. This paper
also decomposes the production-related carbon emissions into several kinds of net carbon
linkages induced by primary inputs, which could help to reduce carbon emissions by the
adjustment and reconstruction of the allocation structure. The contributions of this paper
include: (a) constructing a sufficiently innovative model, an environmentally extended
semi-closed Ghosh input–output model, by integrating the semi-closed IO model with the
Ghosh IO model; and (b) remodifying the existing supply-side SDA and the supply-side
modified hypothetical extraction method (SMHEM) for investigating the driving force and
net carbon linkage of sectors and the household.

The rest of the paper is structured as follows: Section 2 explains the methodology
used in this paper, as well as the data sources and processing; Section 3 presents the
accounting results, the contribution of driving forces, and net carbon linkages of the sectors
and the household, as well as discusses the main findings; and Section 4 lists the important
conclusions and outlines the policy implications.

2. Methodology
2.1. Semi-Closed Ghosh Input–Output Model

In the traditional open IO model, the final demand is totally exogenous, as shown in
Equation (1).

X = Zi + F = AX + F = (I − A)−1F = LF (1)

where X = [xi]n×1 is the total output vector; Z = [zij]n×n is the intermediate use matrix;

F = [ fi]n×1 is final demand vector; A = [aij]n×n is the input coefficients matrix, aij =
zij
xj

;

i =


1
1
...
1

 is the identity column vector; I is the identity matrix; and L = [lij]n×n = (I − A)−1

is known as the Leontief inverse matrix.
In the semi-closed IO model, the household is treated as an endogenous sector by

moving the household final consumption and income into intermediate use. According
to the construction of the semi-closed IO model by Miller and Blair (2009) [21], the new
system with n + 1 sectors can be expressed as shown in Equations (2) and (3).[

X
xn+1

]
=

[
A hC
hR 0

][
X

xn+1

]
+

[
g
0

]
(2)

or
X∗ = A∗X∗ + F∗ (3)

where xn+1 =
n
∑

j=1
wj represents the output of the household sector; W =

[
wj
]

1×n is

defined as the row vector of the labor compensation of employees, representing the house-

hold income; hC =

a1,n+1
...

an,n+1


n×1

is the column vector of household consumption coeffi-

cients, ai,n+1 = ci/xn+1; C = [ci]n×1 is defined as the column vector of household final
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consumption; hR = [an+1,1, · · · , an+1,n]1×n is the row vector of labor input coefficients;
an+1,j = wi/xj. g is the rest of the exogenous final demand without household final con-

sumption; and X∗ =
[

X
xn+1

]
, A∗ =

[
A hC
hR 0

]
, and F∗ =

[
g
0

]
. Table 1 shows the framework

of the semi-closed IO model.

Table 1. Framework of the semi-closed IO model.
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S1 
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Compensation 
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Household W  

Value added Other value added V*  
Income tax and saving of household  t  

Gross input X*  

The solutions of Equations (2) and (3) are given by 

1

1 1 0
C

n R

X I A h g
x h

−

+

− −     
=     −    

 (4)

or 

( ) 1* * * * *X I A F L F
−

= − =  (5)

where 
( )

1
1* *

1
C

R

I A h
L I A

h

−
− − − 

= − =  −   is the Leontief inverse matrix in the semi-closed IO 
model. 

In the Ghosh IO model, the gross output is determined by the value added [36], as 
shown in Equation (6). 

( ) ( )1 1* * * * * '
,

' 1
C

R

I B h
X V I B G I B

h
− − − − 

= − = − =  − 
 (6)

The solutions of Equations (2) and (3) are given by[
X

xn+1

]
=

[
I − A −hC
−hR 1

]−1[g
0

]
(4)

or
X∗ = (I − A∗)−1F∗ = L∗F∗ (5)

where L∗ = (I − A∗)−1 =

[
I − A −hC
−hR 1

]−1

is the Leontief inverse matrix in the semi-

closed IO model.
In the Ghosh IO model, the gross output is determined by the value added [36], as

shown in Equation (6).

X∗ = V∗(I − B∗)−1, G∗ = (I − B∗)−1 =

[
I − B −hC

′

−hR
′ 1

]
(6)

where V∗ is the row vector of value added, representing the primary input and B =
[
bij
]

n×n is
the direct-output coefficient matrix, bij = zij/xi. The direct-output coefficients are frequently
called allocation coefficients, which represent the allocations of the gross output of sector i among

sector j that purchase inter-sectoral inputs from sector i [21]; hC
′ =

b1,n+1
...

bn,n+1


n×1

is the column

vector of household consumption coefficients, bi,n+1 = ci/xi; hR
′ = [bn+1,1, · · · , bn+1,n]1×n

is the row vector of labor input coefficients, bn+1,j = wi/xn+1; and G∗ = (I − B∗)−1 is
the Ghosh inverse matrix [37], called the output inverse in contrast to the input inverse
(the Leontief inverse) [21]. The Ghosh inverse can be explained as the allocation struc-
ture [20,24,38].

The direct emission intensity is the ratio of the amount of carbon emissions to the
gross output, as shown in Equation (7).

ε = [ei/xi]n×1 (7)
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where ε is the column vector of the direct carbon emission intensity; ei is the direct carbon
emission generated in sector i; and xi is the gross output of sector i.

By multiplying the gross output vector X∗ with the diagonal matrix of direct carbon
emission intensity ε̂, the environmentally extended semi-closed Ghosh input–output model
is shown in Equation (8).

E = V∗G∗ ε̂ (8)

where E is the row vector of the total supply-induced carbon emissions, and G∗ ε̂ is the
total carbon emission effect on the gross output throughout the supply chains from the
perspective of primary input.

As the Ghosh IO model can describe the embodiments of primary inputs in down-
stream sales, Equation (8) can be extended as:

E = pwNG∗ ε̂ (9)

where p is the scalar of the population; w is the scalar of the per capita primary input volume,
representing the per capita gross national income calculated by the income approach rather
than the expenditure approach used in the Leontief IO model; and N is the row vector
of the primary input structure or the supply-side economic structure, whose elements
represent the share of value added of a particular sector in the gross national income.

2.2. Supply-Side Structural Decomposition Analysis

Based on the semi-closed Ghosh input–output model, SDA in the additive decompo-
sition form was modified to decompose the carbon emission changes into five elements
contributions, including emission intensity (∆Eε), allocation structure (∆EN), population
size (∆Ep), supply-side economic activity (∆Ew), and supply-side economic structure (∆EN),
as shown in Equation (10).

∆E = E1 − E0 = p1w1N1G1
∗ ε̂1 − p0w0N0G0

∗ ε̂0
= ∆Eε + ∆EG + ∆Ep + ∆Ew + ∆EN

(10)

SDA may have n! kinds of decomposition results when there are n factors, resulting
in the non-uniqueness problem. Details of the sensitivity analysis of the non-uniqueness
problem are shown in Appendix B. Therefore, the two polar method was adopted by taking
the average of all possible first-order decomposition results [39], as shown in Equation (11).

∆E =
1
2
(p0w0N0G0

∗ + p1w1N1G1
∗)(ε̂1 − ε̂0)

+
1
2
(p0w0N0 ε̂1 + p1w1N1 ε̂0)(G1

∗ − G0
∗)

+
1
4
(p1 − p0)(w0N0 + w1N1)(G0

∗ ε̂0 + G1
∗ ε̂1)

+
1
4
(w1 − w0)(p1N0 + p0N1)(G0

∗ ε̂0 + G1
∗ ε̂1)

+
1
4
(p0w0 + p1w1)(N1 − N0)(G0

∗ ε̂0 + G1
∗ ε̂1)

(11)

2.3. Supply-Induced Net Carbon Linkage Analysis

HEM is widely used to investigate inter-sectoral linkages. The modified hypothetical
extraction method developed by Duarte et al. (2002) presents the demand-side sectoral
linkages [34]. Later on, the supply-side modified hypothetical extraction method (SMHEM)
was developed based on the Ghosh IO model to estimate purely supply-side net carbon
linkages [35]. According to HEM, a particular sector is taken out of the economic system to
analyze the importance of the target sector through the change in the gross output. Based
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on the Ghosh IO model, the economic system is divided into two sectors, as shown in
Equation (12).[

E∗s
E∗−s

]
=

([
B∗s,s B∗s,−s

B∗−s,s B∗−s,−s

][
x∗s

x∗−s

]
+

[
v∗s

v∗−s

])[
ε̂s 0
0 ε̂−s

]
=

[
v∗s

v∗−s

][
G∗s,s G∗s,−s

G∗−s,s G∗−s,−s

][
ε̂s 0
0 ε̂−s

]
(12)

where the subscripts s and −s are used to represent the target sector and all other remain-
ing sectors.

Based on the semi-closed Ghosh input–output model, SMHEM is modified to decom-
pose the supply-side net carbon linkages into four types: (1) supply-induced cross-sectoral
input emissions (SCIE), the carbon emissions generated in the target sector induced by
the supply capacity (primary inputs) of upstream suppliers; (2) supply-induced cross-
sectoral output emissions (SCOE), the carbon emissions generated in the upstream sectors
induced by the supply capacity (primary inputs) of the target sector; (3) supply-induced
intra-sectoral output emissions (SIOE), the carbon emissions related to internal transactions
of the target sector; (4) supply-induced mixed emissions (SME), the carbon emissions in the
supply originally purchased by the target sector from other sectors and then resold to other
sectors after processing.

SCIE = V−sG−s,s ε̂sµs (13)

SCOE = VsGs,−s ε̂−sµ−s (14)

SIOE = VsGs,s ε̂sµs (15)

SME = Vs

[
Gs,s − (I − Bs,s)

−1
]
ε̂sµs (16)

where u =


1
1
...
1

 is the identity vector.

2.4. Date Source

This paper used the input–output tables of 2007, 2012, and 2017 in China, published by
the National Bureau of Statistics of China (NBSC) [40]. Direct sectoral carbon emissions in
China were derived from the China Emission Accounts and Datasets (CEADs) [41–43]. As
the sectors in IO tables and the carbon emission inventory are inconsistent, the sectors were
unified into twenty-nine sectors, which were further aggregated into eight sector blocks:
agriculture (Ag); mining (Mi); manufacturing (Ma); electricity, gas, and water services
(EGW); construction (Co); transport, postal, and warehousing (TPW); commercial and
service (CS); and household (Ho). The details regarding the sector aggregation are shown
in Appendix A, Table A1. The double deflation method was adopted to transform all the
IO tables into the 2007 constant price [44]. Price indices were compiled from the China
Statistical Yearbook [45]. Moreover, population data were compiled from the China Statistical
Yearbook [45].

3. Results and Discussions
3.1. Direct and Indirect Effects of Enabled Carbon Emissions

Figure 1 shows the sectoral carbon emission intensity and carbon emissions enabled
by primary inputs in China. The bar chart shows the direct and indirect effects of the
carbon emission intensity in eight sectors in 2007, 2012, and 2017. The pie chart illustrates
the percentages of the carbon emissions enabled by four kinds of value added in 2017.
The electricity, gas, and water supply sector had the largest enabled carbon emission
intensity, at above 0.1 Mt/CNY. It indicates that the electricity, gas, and water supply
sector generated more than 0.1 Mt carbon emissions with one CNY of primary inputs.
This relatively high value of enabled carbon emission intensity was partly attributed to
the largest direct emission intensity (direct effects) of more than 0.06 Mt/CNY. Coal-fired
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power is the major source of electricity and heating in China, which consumes coal to
generate about two thirds of national electricity as of 2016 [46,47]. Therefore, the electricity,
gas, and water supply sector became the major direct emission generator of the economic
system. The emission intensity, as a ratio of direct emissions to the GDP, is an important
indicator to reduce carbon emissions while preventing economic loss. Therefore, great
importance should be attached to direct intensity reduction in the key industries, which
is helpful to realize the decoupling of China’s economic growth from carbon emissions.
Moreover, the high enabled intensity of the electricity, gas, and water supply sector is partly
because most sectors are highly dependent on primary production, such as electricity, gas,
and steam, which also had the greatest indirect effects of enabled carbon emissions. It
indicates that the electricity, gas, and water supply sector generated huge carbon emissions
enabled by its intermediate inputs from the downstream sectors.
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After the electricity, gas, and water supply sector, the mining sector had comparatively
high enabled intensity. As the mining sites are located in remote regions of China without
the power grid, cleaner energy should be encouraged, including solar power, wind power,
and biomass power. To manage the indirect carbon effects of the mining sector, the joint
production of mining, refining, and metal production could improve efficiency of energy
use and promote innovation of the technology and knowledge through the production
chains. In addition, the household sector also had high enabled intensity, second only to
the electricity, gas, and water supply sector and the mining sector.

Comparing direct and indirect effects of enabled carbon emission intensity, many
sectors had more than 90% indirect effects out of the enabled carbon emission intensity,
including the agriculture sector, the mining sector, the commercial and service sector, and
the household sector. The mining sector had a comparatively high value of indirect effect,
which was even larger than the indirect effect in the electricity, gas, and water supply
sector in 2012 and 2017. The household sector had the third largest indirect effect of
carbon emission intensity. Moreover, the household sector had more than 93% indirect
effects out of its enabled intensities. It indicated that these sectors had huge demand for
emission-intensive products as well as supplied their products as intermediate inputs
to the other emission-intensive sectors downstream throughout the production chains.
For the importance of indirect emission intensity enabled by primary inputs, the direct
intensity of target sectors’ trading partners should be paid attention to. To be specific,
carbon trading and taxation under the active government guidance may encourage the
inter-sectoral cooperation of all the stakeholders and then reduce synergistic emissions.

Figure 1 also shows the trends in sectoral-enabled carbon emission intensity from 2007
to 2017. The enabled intensities of eight sectors all experienced a decrease. The household
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sector experienced a sharp decline in enabled intensity by more than 55% from 2007 to
2017. The carbon emission effects on the gross output via the supply chains with one CNY
of primary inputs became weaker over the study period, indicating that the decoupling
relationship between economic growth and carbon emissions has been developed.

The pie chart in Figure 1 shows the shares of the carbon emissions enabled by
four kinds of value added in 2017. Based on the semi-closed Ghosh IO model with an en-
dogenized household sector, household income was treated as the intermediate input.
Therefore, the primary inputs include taxes less subsides on products, depreciation of fixed
assets, operating surplus and mixed income, and income tax and savings of households.
The national enabled carbon emissions were mainly caused by the operating surplus and
mixed income in 2017, resulting in 3214.67 Gt (34.17%) of enabled carbon emissions in
China. As operating surplus and mixed income represents the capital income [21], it in-
dicated that capital had the most important role in carbon emissions in China from the
value-added perspective.

3.2. Decomposition of Production-Related Carbon Emission Changes

Table 2 shows the driving effects of five socioeconomic factors on the changes in
production-related carbon emissions in two periods of 2007–2012 and 2012–2017, includ-
ing emission intensity (∆Eε), allocation structure (∆EG), population size (∆Ep), economic
activity (∆Ew), and economic structure (∆EN).

Table 2. SDA results of changes in national production-related carbon emissions (Mt).

Period ∆Eε ∆EG ∆Ep ∆Ew ∆EN ∆E

2007–2012 −2199.36 −481.71 201.59 5505.51 −491.78 2534.25
2012–2017 −1702.65 −1497.41 250.54 3596.20 −319.07 327.62

Over the study period, emission intensity, allocation structure, and economic structure
contributed to the reduction in production-related carbon emissions, while economic
activity and population size resulted in carbon emission increase. In the first period from
2007 to 2012, economic activity (GDP per capita) caused the carbon emissions to increase by
84.10%, while population size had limited effects on carbon emission growth, at only 3.08%.
Emission intensity had the largest contribution to production-related carbon emission
reductions, resulting in a decrease of 33.60% in carbon emissions. By contrast, the driving
effects of allocation structure and economic structure were much smaller, causing the
carbon emissions to reduce by 7.36% and 7.51%, respectively. The combined contributions
of economic activity and population size to carbon emissions were much higher than those
of the remaining factors, increasing the carbon emissions by 38.71% in total. During the
later period from 2012 to 2015, the impact of emission intensity became much weaker
than that in the first period, reducing carbon emissions by 18.75%. Conversely, allocation
structure offset more carbon emissions by about 16.49%. Moreover, economic activity, as the
largest contributor to emission growth, brought only a 39.60% increase in carbon emissions.
Therefore, production-related carbon emissions experienced a slight increase of 3.61% from
2012 to 2017. By contrast, the growth of production-related carbon emissions slowed down
during the two stages.

The direct carbon emission intensity, as an important indicator of the cleaner pro-
duction level, is always associated with the technological progress and specific sectoral
technology characteristics [48]. As is shown in Figure 1, the direct emission intensity of all
sectors experienced a decrease from 2007 to 2017, indicating a drop in carbon emissions
per unit of the output. This is partly because advanced technology of energy saving and
emission reduction has been promoted, and partly due to the elimination of backward
capacity [49]. Therefore, the improved energy consumption efficiency as well as capacity
utilization rate brought the reduction in carbon emissions. Moreover, emission intensity
showed a smaller contribution to offset carbon emissions, indicating that the efficiency
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advantage has been lost [50]. This can be attributed to the slow-down trend of decline
in sectoral emission intensity, especially the agriculture sector, the electricity, gas, and
water supply sector, and the mining sector. The direct intensity of the agriculture sector
even showed a slight increase from 2012 to 2017. The carbon emission abatement in the
agriculture sector is not only a technical problem but also a socioeconomic issue [51]. As
the population size in China is stable, the gross output value in the agriculture sector
experienced a slight increase of 26.63% from 2012 to 2017, much smaller than the growth
rate of 77.47% from 2007 to 2012 [45]. In the context of industrialization, the energy con-
sumption increased with the wide use of the agricultural machinery [52]. With active
support and guidance from the government, farmers should also be encouraged to raise
low-carbon awareness. On the other hand, the carbon sink function of crops is helpful to
mitigate climate change [53]. This result could shed light on carbon emission abatement
throughout its life cycle, such as improving land-use efficiency, optimizing fertilization,
and transforming straw into biomass energy.

As another component of the embodied intensity, allocation structure shows contin-
uous improvement, with much stronger negative effects on carbon emissions during the
later five-year period. Considering the communication of producers and markets, great
attention should be given to allocation structure in macroeconomic control [38]. Economic
structure, representing the shares of sectoral primary input in the GDP, also brought emis-
sion reduction in the study, which was different from the economic structure effect based
on the Leontief IO model [20].

Figure 2 shows the contributions of five socioeconomic factors on the changes in
production-related carbon emissions in eight sectors in two periods of 2007–2012 and
2012–2017.
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Emission intensity brought the decrease in sectoral carbon emissions. It had the
strongest driving effects in the manufacturing sector and the electricity, gas, and water
supply sector, which both showed comparative strong direct effects of enabled carbon
emission intensity. The reduction in carbon emissions associated with emission intensity
in the manufacturing sector decreased, while that in the electricity, gas, and water supply
sector increased. This could be explained by the decreased rates of emission intensity,
as emission intensity of the electricity, gas, and water supply sector experienced a sharp
decline from 2007 to 2017. Due to China’s efforts during the “12th Five-Year Plan” period
(2011–2014), production capacity, including 1.55 million tons of steel, more than 600 million
tons of cement, and 32.66 million tons of paper, has been eliminated, which brought the
decline of direct carbon emissions in energy-intensive industries [54].
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Allocation structure was another factor with negative effects on carbon emissions in
most sectors, and it had the largest contributions to reductions in carbon emissions in the
manufacturing sector and the electricity, gas, and water supply sector from 2012 to 2017. It
indicates that the value-added structure was beneficial for reductions in carbon emissions
in emission-intensive sectors.

Population growth contributed to a slight increase in sectoral carbon emissions. There
are two effects of population on carbon emissions. On the one hand, energy consumption
may increase with population growth, thus generating more carbon emissions. On the
other hand, technology development can be promoted, which can bring reduction in carbon
emissions [55].

Economic level was the greatest driving factor of increase in carbon emissions, and it
had the most contributions in the manufacturing sector and the electricity, gas, and water
supply sector.

The supply-side economic structure had unstable performance on changes in sectoral
carbon emissions. Its contributions to generating carbon emissions declined, even shifting
to reduce emissions in most sectors, except for the transport, postal, and warehousing
sector. From 2007 to 2012, economic structure brought a reduction in carbon emissions
in the transport, postal, and warehousing sector by 61.22 Mt. It had a positive effect on
carbon emissions in the transport, postal, and warehousing sector, increasing emissions
by 53.50 Mt. In this regard, economic structure from a value–added perspective should be
further adjusted and optimized.

3.3. Supply-Induced Net Carbon Linkages

As the allocation structure in China has a strong driving effect on carbon emissions,
the carbon emissions enabled by primary inputs were further decomposed into four kinds
of supply-side net carbon linkages: supply-induced cross-sectoral input emissions (SCIE),
supply-induced cross-sectoral output emissions (SCOE), supply-induced intra-sectoral
output emissions (SIOE), and supply-induced mixed emissions (SME), as shown in Figure 3.
Cross-sectoral carbon emissions, including supply-induced cross-sectoral input emissions
and supply-induced cross-sectoral output emissions, were the main components of net
carbon linkages enabled by primary inputs, indicating that huge emissions were generated
by inter-sectoral cooperation throughout the supply chains. Moreover, supply-induced
intra-sectoral output emissions were also responsible for high enabled emissions, and their
contribution to the total enabled emissions experienced an increase from 2007 to 2017
of 34.14%. This indicates that carbon emissions were generated in the closed circuits of
one particular sector block, a result of the low degree of industry convergence. This result
is also reported in studies focusing on the demand-side net carbon linkages, such as Liao
et al. (2017) for Beijing [18]. The supply-induced mixed emissions were comparatively
lower, indicating that they have less importance in carbon emission abatement.
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The top source of the supply-induced cross-sectoral input emissions in China was
the electricity, gas, and water supply sector, accounting for more than 40% of the total
supply-induced cross-sectoral input emissions. This is in line with the findings of the
study for China, India, and the USA [35]. It was mainly explained by the topmost direct
emission intensity of the electricity, gas, and water supply sector. The manufacturing
sector also generated huge supply-induced cross-sectoral input emissions, partly due to
the great direct effects of enabled emissions. Another main factor of the supply-induced
cross-sectoral input emissions was the primary inputs from other sectors, which enabled
the manufacturing sector to generate the supply-induced cross-sectoral input emissions.
Manufacturing industries are the core components of the economic activities in China [56],
which consume a large number of primary resources, such as electricity.

The commercial and service sector brought most of the supply-induced cross-sectoral
output emissions, mainly due to its comparatively higher value added. Due to the assump-
tion in the semi-closed IO model that the composition of employees has been moved into
the intermediate sectors, the value added includes net taxes on production, depreciation
of fixed assets, and operating surplus. In 2017, the value added of the commercial and
service sector accounted for more than 32% of the total value added, while the percentage
of its operating surplus to the total value was above 45%. As the economic development in
China has entered into the “new normal” phase (roughly from 2014), the industry structure
has oriented toward services and manufacturing with high value added. The tertiary
industry may have huge potential to stimulate carbon emissions and resource consump-
tion in energy-intensive sectors upstream throughout the supply chains. In addition, the
household sector had high supply-induced cross-sectoral output emissions in 2012 and
2017 due to the increasing level of income tax and savings. It is evident that the household
sector had small direct effects on enabled emissions, while its income tax and savings
enabled other sectors to generate carbon emissions. Zhang and Wang (2017) reviewed the
carbon abatement policies across the world and found that income level largely affects
the choice of policy [5]. Bai et al. (2021) attached importance to expanding consumption
and increasing household income, which could lead to economic growth, job creation,
and carbon abatement [57]. Therefore, subsidies to households, and meanwhile levying
a carbon tax, could stimulate household consumption as a significant component of the
complementary measures of carbon tax.

The manufacturing sector was the top source of the supply-induced intra-sectoral
output emissions, indicating that this sector generates high carbon emissions by using its
own primary inputs. This was mainly due to that there are complex production–demand
relationships among sub-sectors of the manufacturing sector. Most sectors consume the
primary products after the elementary manufacture [58]. While the allocation structure
brought a decrease in carbon emissions in the manufacturing sector, a high degree of
coordination among the sub-sectors should be advocated for.

4. Conclusions and Policy Implications

As production activities begin with primary resources, the reduction in carbon emis-
sions of industrial sectors and the household sector enabled by the value added is practically
meaningful to achieve China’s goals of carbon peak in 2030 and carbon neutrality in 2060.
Considering the mutual effects between the industrial sector and the household sector, the
semi-closed IO model was applied to investigate the carbon emissions, mainly based on the
demand-driven Leontief IO model. For the production-related carbon emissions, this paper
firstly integrated the semi-closed IO model with the Ghosh IO model to construct a new
environmentally extended semi-closed Ghosh input–output model, which was applied
to analyze the carbon emissions of the seven sectors and the household sector enabled
by primary inputs in China. This paper remodified the supply-side SDA and SMHEM
to quantitively analyze the driving force of the changes in the production-related carbon
emissions as well as the four kinds of net carbon linkages. The conclusions in this paper
are as follows.
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First, the electricity, gas, and water supply sector was the key sector of the carbon
emissions enabled by primary inputs. Most sectors generated huge indirect carbon emis-
sions downstream throughout the production chains. In particular, the household sector
had the great indirect effect, with its enabled intensity sharply decreasing. Among the four
categories of the primary inputs, the operating surplus and mixed income representing the
capital income made the largest contribution to the enabled emissions in 2017.

Second, the SDA results show that the emission intensity and allocation structure
brought a dramatic decrease in carbon emissions, especially in the electricity, gas, and
water supply sector. The population size and supply-side economic activity caused a rise in
carbon emissions. Supply-side economic structure, calculated by the sectoral share of value
added in GDP, contributed to the decrease in carbon emissions in most sectors, except for
the transport, postal, and warehousing sector.

Third, the supply-induced cross-sectoral emissions were the major source of the
production-related carbon emissions. At the sectoral level, the supply-induced cross-
sectoral input emissions were the primary source in the electricity, gas, and water supply
sector and the manufacturing sector, while the supply-induced cross-sectoral output emis-
sions were the key linkage in the commercial and service sector and the household sector.

According to the main conclusions in this paper, the policy implications are as follows:
(1) From the perspective of the whole production chain, when designing carbon trading
and taxation, more attention should be paid to the responsibilities of the downstream
and upstream sectors to improve the inter-sectoral cooperation and sharing of advanced
technology and knowledge, such as the joint production of mining, refining, and metal.
(2) As the emission intensity promoted the carbon emission abatement, the advanced
technology and the elimination of backward capacity in the energy-intensive industries
could have general value to realize the energy target in SDG 7 all over the world. For
example, agricultural machinery should be guided while encouraging farmers to raise
low-carbon awareness, which is significant in reconciling the food security related to SDG
2, i.e., zero hunger, with goals of carbon peak in 2030 and carbon neutrality in 2060. (3) As
the economic structure in China has been oriented toward services and manufacturing with
high value added during the “New Normal” phase, great importance should be attached
to the commercial and service sector, due to its great potential to stimulate carbon emission
generation in upstream sectors. According to the six climate-positive actions proposed
by the UN Secretary-General [59], the household sector, treated as an endogenous sector,
should be complemented with subsidies when levying carbon taxes, which could help to
realize economic growth, job creation, and carbon abatement at the same time.
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Appendix A

The details about the sector aggregation are shown in Appendix A, Table A1.

Table A1. Detailed aggregation for the sectoral classification.

Abbreviation Aggregated Sector Classification of Sub-Sector

Ag agriculture farming, forestry, animal husbandry, fishery, and
water conservancy

Mi mining
coal mining and dressing; petroleum and natural gas

extraction; metals mining and dressing; nonmetal
minerals mining and dressing

Ma manufacturing

production and processing of food and tobacco;
textile industry; apparel and leather products;

timber processing and furniture manufacturing;
papermaking, printing, and cultural articles;

petroleum processing and coking; chemical industry;
nonmetal mineral products; smelting and pressing of
metals; metal products; manufacture of machinery;
transportation equipment; electric equipment and

machinery; electronic and telecommunications
equipment; instruments, meters, cultural, and office

machinery; other manufacturing industry

EGW electricity, gas, and
water services

production and supply of electric power, steam and
hot water; production and supply of gas; production

and supply of tap water

Co construction construction

TPW transport, postal, and
warehousing

transportation, storage, post, and
telecommunication services

CS commercial and
service

wholesale, retail trade, and catering services;
other services

Ho household rural and urban household

Appendix B

The IO model does not include causalities for production or consumption [60]. Ac-
cording to the sensitivity analysis by Dietzenbacher and Los (1998) [61], we further carried
on the sensitivity analysis to demonstrate the remodified SDA method robustness, shown
in Appendix B.

Uncertainties of the results may come from the non-uniqueness problem of the decom-
position forms in the SDA. SDA may have n! kinds of decomposition results when there are
n factors, and there are 2n−1 different coefficients to attach to the change in each factor. The
weight of each coefficient (n− 1− k)!k! is dependent on two things, the number of factors
n and the number of base year values (subscript 0) in the coefficient represented by k. The
changes in carbon emissions can be decomposed into five elements contributions, emission
intensity, allocation structure, population size, supply-side economic activity, and supply-
side economic structure. Therefore, the number of decomposition forms is 120. The number
of different coefficients of each factor is 16. Table A2 shows the 16 decomposition forms of
carbon emission intensity. Accordingly, other factors have similar decomposition forms.
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Table A2. The decomposition form of carbon emission intensity.

Decomposition Form k Weight

E = p1w1N1G∗1∆ε̂ 0 24
E = p1w1N1G∗0∆ε̂ 1 6
E = p1w1N0G∗1∆ε̂ 1 6
E = p1w0N1G∗1∆ε̂ 1 6
E = p0w1N1G∗1∆ε̂ 1 6
E = p1w1N0G∗0∆ε̂ 2 4
E = p1w0N1G∗0∆ε̂ 2 4
E = p0w1N1G∗0∆ε̂ 2 4
E = p1w0N0G∗1∆ε̂ 2 4
E = p0w1N0G∗1∆ε̂ 2 4
E = p0w0N1G∗1∆ε̂ 2 4
E = p1w0N0G∗0∆ε̂ 3 6
E = p0w1N0G∗0∆ε̂ 3 6
E = p0w0N1G∗0∆ε̂ 3 6
E = p0w0N0G∗1∆ε̂ 3 6
E = p0w0N0G∗0∆ε̂ 4 24

These different decomposition forms lead to the uncertainty in the SDA. However,
all these decomposition forms are equivalent, indicating that no one form is superior to
the others on a theoretical basis. Table A3 shows the average effects and the ranges of
each factor, which are suggested to be published by Dietzenbacher and Los (1998) [61]. By
comparing the SDA results calculated by Equation (11) in Table 2 with the average of the
120 decomposition forms shown in Table A3, it shows that the SDA results are extremely
close to each other. Equation (11), by taking the average of the two polar decompositions,
is the most accurate form in the general case.

Table A3. Variability of the SDA outcomes of 120 different decomposition forms.

Period Factor Min Max Average Standard Deviation

2007–2012

∆Eε −2995.17 −1437.03 −2199.58 729.21
∆EG −654.27 −309.14 −475.38 157.15
∆Ep 110.41 322.77 199.30 62.61
∆Ew 4406.51 6636.41 5499.17 843.02
∆EN −685.35 −313.48 −489.27 159.90

2012–2017

∆Eε −2235.49 −1276.33 −1718.40 307.15
∆EG −1914.26 −1080.56 −1462.60 269.30
∆Ep 166.76 353.53 247.54 45.90
∆Ew 2898.98 4313.45 3579.70 500.25
∆EN −431.13 −227.07 −318.62 62.22
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