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Abstract: In the extremely competitive environment of shipping, minimizing shipping cost is the key
factor for the survival and growth of shipping companies. However, stricter rules and regulations
that aim at the reduction of greenhouse gas emissions published by the International Maritime
Organization, force shipping companies to increase the operational efficiency of their fleet. The
prediction of a ship speed in actual seas with a given power by its engine is the most important
performance indicator and thus makes it the “holy grail” in pursuing better efficiency. Traditionally,
tank model tests and semi-empirical formulas were the preferred solution for the aforementioned
prediction and are still widely applied. However, currently, with the increased computational
power that is widely available, novel and more sophisticated methods taking into consideration
computational fluid dynamics (CFD) and machine learning (ML) algorithms are emerging. In this
paper, we briefly present the different approaches in the prediction of a ship’s speed but focus on
ML methods comparing a representative number of the latest data-driven models used in papers,
to provide guidelines, discover trends and identify the challenges to be faced by researchers. From
this comparison, we can distinguish that artificial neural networks (ANN), being used in 73.3% of
the reviewed papers, dominate as the algorithm of choice. Researchers mostly rely on physical laws
governing the phenomena in the crucial part of data preprocessing tasks. Lastly, most researchers
rely on data acquisition systems installed at ships in order to achieve usable results.

Keywords: machine learning (ML); supervised algorithms; artificial neural networks (ANN); data
driven; fuel oil consumption (FOC); resistance; semi-empirical model

1. Introduction

Lately, an ongoing race in the marine industry for the improvement of energy efficiency
in ships has been witnessed. Recent events such as the fuel oil crisis that started in 2021 [1],
show that the effort to reduce shipping costs is more critical than ever. The cost of fuel has
become the dominant factor of the operational cost of the ships. Conversely, the mandatory
compliance in new stricter regulations regarding the reduction of greenhouse gas emissions
is forcing the industry to search for and adopt methods to optimize the performance of all
vessels. The International Maritime Organization (IMO) introduced in 2018 its long-term
strategy in order to reduce the environmental footprint of the marine industry. The CO2
gas emissions per transport work must be reduced by 40% compared to the corresponding
CO2 gas emissions of 2008, until 2030. The percentage of reduction is increased to 70%
by the year 2050 [2]. The key design aspect of new vessels has become the improvement
of the Energy Efficiency Design Index (EEDI) [3], while Energy Efficiency Operational
Indicator (EEOI) [4], and Ship Energy Efficiency Management Plan (SEEMP) [5], Energy
Efficiency Existing Ship Index (EEXI) [6] and Carbon Intensity Indicator (CII) [7] are the
corresponding criteria for evaluation of the existing fleet.
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The speed that a ship can reach with a given amount of power from the propulsion
system is a measure of hull efficiency. Maximizing the ship speed with respect to water,
speed through water (STW), while keeping the power of the engine constant, or conversely
minimizing the required power for a specific STW, equals to maximizing the energy effi-
ciency of the vessel (regarding propulsion). With this in mind, the adequate estimation
(prediction) of ship speed is of utmost importance in the process of reduction/minimization
of fuel oil consumption (FOC) of the ship’s engine. The STW of a ship is the result of many
factors. Weather conditions, ship resistance, hull degradation, propulsion system efficiency
and propeller design characteristics are the most important [8]. The above factors shape
the total resistance that marine engines have to overcome to achieve a certain speed.

The accurate estimation of the above resistance components differs in complexity,
and many different approaches can be found in the literature. Semi-empirical formulas
and model tests are the well-established “traditional” approaches. These methods are
well developed and can give accurate estimations for the resistance in calm weather and
the added resistance due to wind, but both of them lack the necessary accuracy in the
prediction of added resistance due to irregular waves [9]. This weakness forced the scientific
community to try different approaches. With the vastly increased computational power
that is widely available, more advanced methods for performance estimation are starting
to dominate.

Computational fluid dynamics (CFD) and data-driven models are the new trend in the
search of accurate prediction of ship performance because these take into account the actual
status of the ship (weather conditions, hull degradation, operational profile, propulsion
system efficiency and propeller design characteristics), either in detailed level as far as CFD
models are concerned or as a whole (black box) in the case of data-driven models. CFD is
fundamentally based on physical models and solves the relative equations of mass, energy
and momentum conservation at each computational node, using high CPU demanding
mathematical procedures for the convergence of the problem. The describing system of
partial differential equations is impossible to solve analytically in order to approximate the
solutions via numerical algorithms (solvers) that are calculated by computers [10]. CFD
can be a highly accurate method for calculating ship resistance and is the preferred one in
the design phase of ship building, with an expected error margin of 4% [11]. Using CFD in
real weather conditions is a far more complex procedure due to the difficulty in accurately
describing the real boundary conditions, which result in increased uncertainty for the
accuracy of the predicted values. Concluding, CFD models are based on a solid physical
background for the prediction of ship performance, providing detailed information of the
ship design, which in most cases remains in the possession of shipyards.

Data-driven approaches have become possible due to the digitization of the maritime
industry. All new ships and an increasing number of existing ones are adopting Internet
of Things (IoT) platforms that collect and process a vast amount of data from various
sensors installed on board [12]. This transformation has paved the way for the entrance
of a new trend toward data science. As the research efforts in this direction intensify, the
aim of this study is to present the different approaches in estimation of a ship performance
focusing on data-driven models. The dominant data-driven models, the algorithms in
use and the applied procedures are presented and compared to provide useful insights
and guidelines for their appropriate application in real-life cases. There are interesting
papers in the literature that compare different ML algorithms and present the data pipeline
(method) used for predicting a ship’s speed [13], but the advances in ML dictate the
necessity of an updated review in regular intervals. Furthermore, the authors believe that
the review of the methodology used by different researchers can represent the trend toward
the implementation of these models in ship performance, as long as there are common
limitations. For this purpose, fifteen recent studies that are focusing on the era of ship
performance prediction using ML algorithms are reviewed. These studies were selected by
their association with the subject of the study and by the publication date in order to better
represent the modern trend.
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The rest of the paper is organized as follows: in Section 2, we briefly present modern
papers where researchers access the topic of ship performance prediction in actual seas
using semi-empirical formulas, model tests and CFD. In Section 3, data-driven model
presentation, the basic theory of the most known and frequently used machine learning
algorithms, along with the different metrics of prediction are presented. Section 4 is
dedicated to the presentation of some representative modern implementations of machine
learning for ship performance prediction. In Section 5, we discuss and compare the above
studies, and finally, Section 6 concludes this work with a brief representation of the most
interesting findings.

2. Semi-Empirical Formulas, Model Tests and CFD Models

As mentioned before, semi-empirical formulas as long as model tests are well es-
tablished and give good results in the prediction of ship speed with a given power but
“strangle “to produce accurate results in actual sea conditions. CFD methods conversely can
give accurate results but are extremely computationally demanding and require specialized
knowledge. All of the above methods continually being developed can be found in many
papers in the literature, which reflect the results of their evolution. In Table 1 we present
modern papers that research the implementation of these methods to the prediction of ship
performance not only with the assumption of calm weather conditions but broaden the
spectrum to simulate actual “true” weather conditions.

Table 1. Publications that implement Semi-empirical formulas, model tests or CFD models.

Study
(Reference) Aim Method Used Application System Results/Conclusions

[14]

Validation of the
SHOPERANTUA-

NTU-MARIC
(wave-added

resistance prediction
method.

Semi-empirical
(SNNM) validated by
Pearson’s correlation

coefficient R and mean
square error (MSE)

Model test results of
29 different
type vessels

Pearson correlation
Coefficient R equal to 0.86
and 0.94. The relative error
distribution µ = 0.0% and
σ = 2.0%. Furthermore, 75%
of samples are within ±2%
intervals, and 93% of the
samples are within ±4%,
while almost all sample
points are within ±6%.

[15]

Simulation of optimal
ship route with speed

loss analysis in
conditions including

rough sea voyage.

Semi-empirical.
Comparison of the

results with
measurement data

28,000 DWT-class
bulk carrier

Results vary with different
weather conditions. Further

validations are needed to
produce more

reliable simulations.

[16]

CFD prediction of a
full-scale ship

parametric roll in a
regular head wave.

Reynolds-averaged
Navier–Stokes
(URANS) CFD,
detached eddy

simulation (DES), and
large eddy

simulation (LES).

Container ship

The occurrence of parametric
roll can be simulated well,
and the roll amplitude and

period can be
predicted accurately.

[17]
Semi-empirical model

to estimate a ship’s
speed loss at head sea.

A proposed theoretical
weather factor

prediction model

PCTC and a
chemical tanker.

Sufficiently accurate
approximations compared to

the other existing
well-known approaches.

[18]

Prediction of the
added resistance and
attainable ship speed

under actual
weather conditions

2-D and 3-D potential
flow method and CFD

with unsteady
Reynolds-averaged

Navier–Stokes
(URANS)

Container ship

Numerical results were found
to agree reasonably well with

the experimental data in
regular head and

oblique seas.
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Table 1. Cont.

Study
(Reference) Aim Method Used Application System Results/Conclusions

[19]
Estimation of the

speed of a vessel in
rough seas

Simplified analytical
method Container ship Analytical approximation has

room for improvement.

[20]

Analysis of the
experimental results of
the mean sway forces

at low speeds in
regular waves of

various directions

Empirical formula Six full-type ships

Empirical formula can
satisfactorily capture the

mean sway force acting on
full-type ships, at both zero
and non-zero low speeds.

[21]

Prediction of the
propulsive power of

ships and comparison
with 1978 ITTC

Performance
Prediction Method

Combination of
towing tank EFD
testing and CFD

(Reynolds-averaged
Navier–Stokes

(RANS))

Fourteen common
cargo vessels

Proposed method can
provide immediate

improvements to the 1978
ITTC Performance
Prediction Method

[22]

Prediction of the
wave-induced

motions, and steady
wave forces and

moments in regular
head and

oblique waves

CFD
Reynolds-averaged

Navier–Stokes (RANS)

Oil tanker
KVLCC2

(1) The computed added
resistance as well as the
steady wave sway force and
yaw moment with inertia
effects due to the
wave-induced motions agree
well with the available
experimental data.
(2) The comparison of the
computed resistances using
two wave amplitudes
indicates that added
resistance is not proportional
to the square of
wave amplitude.
(3) RANS solver can be used
as a tool for ship
seakeeping analysis.

[23]

Test case focused on
the resistance and

thedynamic behavior
of the wing–vessel

configuration in calm
water conditions and

in head waves.

Experiments
conducted in the

towing tank and CFD.
Ferry ship hull model

(1) Bow wing in static mode
can be used for trim-control
of a vessel by altering the
angle of attack,
leading to a possible drop in
wave resistance both in calm
water and in waves.
(2) Utilizing the wing in head
waves results in a significant
reduction in the pitching and
heaving responses of
the vessel.

[24] Trim Optimization
in Waves

CFD simulation and
use of JONSWAP

spectrum to determine
the individual

wave components

AFRAMAX Tanker

There is an economic benefit
in performing trim

optimization studies for full
hull forms, at least those
sailing on longer routes.

[25] Investigation of speed
lost due to swell

CFD simulations
using Stokes’ second

wave theory

Capesize and
Handysize vessel

(1) With a minimum
warranted speed of 13 kn,
speed loss of the Capesize
vessel is 0.67 kn, while for the
Handysize vessel, it is 1.85 kn.
(2) More attention needs to be
given to swell when
observing the performance of
a vessel.
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3. Data-Driven Models

The use of numerical calculations, a model test or CFD have proven to be problem-
atic [26], as they have low accuracy in the prediction of added resistance due to waves in
real conditions (which is one of the three main components of the total resistance of a ship).
For this reason, the scientific community’s attention turned to a completely new approach
in the effort of predicting ship performance. Data-driven models with the use of supervised
regression machine learning (ML) algorithms are starting to be implemented for this task.

3.1. Machine Learning Approach Basics

A commonly accepted definition of machine learning is “the process of making com-
puter systems to learn and improve by themselves without being specifically programmed”.
Machine learning designs algorithms that automatically gather data and use them to learn.
The supervised machine learning builds models that make predictions based off the knowl-
edge provided. Adaptive algorithms identify patterns in the given data and “learn” from
them. Then, they use this knowledge to generate reasonable predictions for new data. As an
algorithm is provided with more known data, the predictive performance is improved [27].
Input data quality in terms of consistency and accuracy is crucial in machine learning. The
uncertainty of input data heavily affects the validity of the results. The basic steps that are
needed for completion of any supervised learning task are the following [28,29]:

• Collection of the labeled data that will be used for training;
• Determination of input and output features;
• Preprocess of the labeled input data;
• Separation of these data into three groups: training, validation and test data sets;
• Determination of the suitable algorithm for the model;
• Optimization of the parameters that affect the operation of the above algorithm (hy-

perparameter optimization);
• Validation of the model;
• Test of the prediction accuracy of the model by providing the test set;
• Model ready for new predictions.

In Figure 1, we present the basic flow diagram of a supervised machine learning approach.
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Figure 1. Flow diagram of supervised machine learning.

3.2. Basic ML Algorithm Categories Used for Regression

By far, the most commonly used algorithm for supervised regression problems in
machine learning is the artificial neural network (ANN). They consist of a number of simple
and internally interconnected processing units, which are organized in layers [30]. The first
layer is always the input layer. We can then have different intermediate (hidden) layers,
and then, the last layer is the output layer. In Figure 2, we present a common structure of
an ANN.
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Figure 2. ANN structure with one hidden layer.

At the core of every ANN is the neuron, which is the processing element. Each neuron
receives signals, (from other neurons in previous layers or input signals from the external
world) processes them, and outputs a signal to the next neuron or to the external world if it
belongs to the output layer. In Figure 3, we present the inner structure of a neuron.
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Figure 3. Neuron inner structure.

The neuron receives inputs (x0 to xq) that are multiplied with weights (w0 to wq). The
weights represent the “strength” of the interconnection between the neurons, in other
words the importance of each input. The weighted inputs are summed by the transfer
function f (x).

f (x) =
q

∑
i=1

(xiwi) (1)

The above sum is used as input into the activation function, which is also a transfer
function that is used to obtain the desired output for the problem designed. The importance
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of the activation function lies in the need for “breaking” the linearity in order for the neuron
to output if this summation exceeds a predefined threshold value. The most commonly
used activation functions are represented in Figure 4.
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Another algorithm used for regression is polynomial Regression. It is a form of
regression analysis in which the relationship between the independent variables and
dependent variables is modeled by an n-th degree polynomial [31,32]. This algorithm is
trying to fit a line that better “describes” the requested (predicted) values by tuning the
coefficients of a n-th degree polynomial equation.

y = a0 + a1x1 + a2x2
2 + . . . + anxn

n (2)

where y is the independent value (may be the ships actual speed), x1 to xn are the input data
(the different factors that affect speed such as engine power, sea conditions, etc.), and a0 to an
are the coefficients (the factor by which each of the input data affect the independent value).

Next in line is support vector regression (SVR), in which the algorithm aims at the re-
duction of prediction error by determining a hyperplane that minimizes the range between
the predicted and the true values [33]. The objective of the SVR is to find a hyperplane
in an nth-dimensional space (where n is the number of different input values) that fits in
the maximum number of data points. This hyperplane is a complex form that is used to
predict the values of the task that it is used (actual ship speed). Although SVC might seem
to resemble polynomial regression, the basic idea is quite different. Polynomial regression
tries to minimize the error rate, while SVC is fitting the error inside a certain threshold,
which means that SVC approximates the best values within a given margin, called ε, as
shown in Figure 5.
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Given the training data in the form of Equation (3), the algorithm is trying to minimize
Equation (4) under the constraints of Equation (5), where b and c are parameters.

(xi yi) i = 1 . . . .y = wx + b (3)

1
2
‖ w ‖2 + c

m

∑
i=1

(ξ1ι − ξ2ι) (4)


yi − (wxi)− b ≤ ε + ξ1i

(wxi) + b− yi ≤ ε + ξ2i

ξ1i, ξ2i ≥ 0

(5)

A different category of machine learning algorithms that is commonly used is the
tree-based algorithm. Decision tree (DT) is the basic form of this kind of algorithm. The
structure of these algorithms resembles a tree (thus, the name). The goal is to create a model
that predicts the value of a target variable implementing simple decision rules inferred
from the data features [34]. A more sophisticated tree-based algorithm is random forest
(RF). Random forest combines a number of decision trees on various subsets of the given
data set and calculates the average of each result to improve the predictive accuracy of that
data set. By implementing the above rules, the algorithm can predict an independent value
(once again: actual ship speed) by combining the different results that have been learned
given the different input data (dependent values—factors that affect that speed).

3.3. Prediction Assessment Metrics

To establish a comparison framework among the different approaches, a common
metric must be identified. The accuracy of a prediction is mathematically defined as the
total number of correct predictions divided by the total number of predictions made for
a specific data set. This definition is not valid in a regression problem (the ML problems
where the output variable is a real or integer number) because we are seeking to predict the
specific value of an attribute. In order to set limits on the deviation of predicted values and
compare the results, several metrics have been introduced. The most commonly used in
the literature are:
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• Mean absolute error (MAE). It is the average of the absolute differences between
predictions and actual (true) values of the attribute of interest [35]. If N is the number

of observations, yi is the actual (true) value, and
︷︸︸︷

yi is the predicted one. Then, the
mathematical equation of MAE is:

MAE =
1
N

N

∑
i=1

∣∣∣yi −
︷︸︸︷

yi

∣∣∣ (6)

• Mean squared error (MSE). MSE takes the average of the square of the difference
between predictions and actual (true) values. Because of the use of error squares,
the effect of larger errors becomes more pronounced. The mathematical equation of
MSE is:

MSE =
1
N

N

∑
i=1

(
yi −

︷︸︸︷
yi

)2
(7)

• Root mean squared error (RMSE). This is the square root of MSE. RMSE is more
sensitive to variance than MAE because it is more affected by outliers in the results [30].
RMSE is mathematically expressed with the following equation:

RMSE =

√√√√ 1
N

N

∑
i=1

(
yi −

︷︸︸︷
yi

)2
(8)

• Finally, R square (R2). This focuses more on the operation of the algorithm and
not on the results. It specifies the degree to which any variations in the values of
the dependent variable (target attribute) can be explained by changes in the values

of the independent variables (data set). If
︷︸︸︷

yi is the mean of all values, then it is
mathematically expressed as:

R2 = 1−
∑i

(
yi −

︷︸︸︷
yi

)2

∑i(yi − yi)
2 (9)

4. Implementation of Machine Learning in Ship Performance Prediction
4.1. Input Data Sources

As already mentioned, the first step in the machine learning procedure is data collec-
tion. For this purpose, when ship performance is of interest, the main sources for collecting
the data needed are the following:

• Noon reports;
• Data acquisition systems (DAS) installed on board;
• Meteorological ocean data from weather services;
• Route data from Global Positioning System (GPS) or Automatic Identification

System (AIS);
• Hybrid methods;
• Databases/simulated by external software.

Noon reports are manual readings/entries by the crew that are conducted once every
day. Noon reports must include weather data that constitute an estimate of the crew. This
method is the dominant in shipping companies worldwide [36]. The next method of data
acquisition is systems installed on ships that collect and store data from various sensors on
board. These systems have the advantage of a much higher sampling frequency, usually in
the range of 15 s. This sampling rate is in accordance with ISO 19030. The next advantage
of the data acquisition systems is accuracy. The minimum accuracy of the necessary sensors
on board ships to fulfil the demands of ISO 19030 must be in the range of 0.1% to 5% [37].
Metocean data from weather services is another data source. It contradicts with the crew
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weather subjective estimations that usually lack accuracy. The term “hybrid” method refers
to all analytical/semi empirical/CFD methods and trials that can be used as data sources.
The last source of data for data-driven models is widely known databases arising from
common-type vessels and data that arise from simulation software (mainly for research
projects). Researchers use these databases as reference. In Table 2, we present the different
data types and sources used in the studies that this paper compares.

Table 2. Data source and data type of related studies.

Study (Reference) Input Data Source Input Data

[27] Data acquisition system Ship, engine data and environmental
data from onboard sensors

[35] AIS and noon reports Ship operational data and metocean data
[38] Experimental research Geometric parameters

[39] Experimental research and
calculated data Geometric parameters

[40] Experimental research and
sea trials Ship operational data and metocean data

[41] Data acquisition system Ship operational data and metocean data
[42] Database metocean data
[43] Data acquisition system Ship operational data
[44] Data acquisition system Ship operational data and metocean data
[45] Data acquisition system Ship, engine data and metocean data
[46] Calculated data Geometric parameters

[47] Data acquisition system Ship, engine data and environmental
data from onboard sensors

[48] Noon Reports Ship, engine data and metocean data

[49] Simulated by route
planning software Engine data and metocean data

[50] Database Ship operational data and ocean
environmental data

4.2. Preprocessing Methods

Data preprocessing is the next crucial step in the data-driven models. The data set
that has been formed from the collected data can be used “as is” to train the machine
learning algorithms or can be preprocessed [51]. The aim of the preprocessing is to reduce
the size of the data set (and thus make it easier to handle) and to increase the prediction
accuracy of the algorithms by removing misleading “noisy” input data. Big data sets with
many input features (increased dimensions of the feature space) may lead to sparsity, and
although it may seem to be a contradiction, it can negatively affect the prediction capability
of machine learning algorithms. The so-called “curse of dimensionality” describes this
phenomenon [52]. The most common preprocessing procedures are:

• Feature selection driven by physical laws;
• Feature selection with the use of a high correlation filter;
• Correlation analysis;
• Data normalization;
• Data cleansing using clustering;
• Data cleansing by operational limitations;
• Feature engineering; data transformation based on physical laws;
• Downsampling input data by calculating the average values;
• Principal component analysis (PCA) to reduce the dimensionality;
• Outlier detection and discarding based on z-scores.

In Table 3, we show the data preprocessing approach in the studies examined.
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Table 3. Data preprocessing approach in reviewed studies.

Study (Reference) Preprocessing Approach

[27]
Feature selection driven by physical laws; data cleansing
by operational limitations; data transformation based on

physical laws; data normalization

[35]
Feature selection driven by physical laws; outlier

detection and discarded based on the z-scores; data
cleansing by operational limitations; correlation analysis

[38] Feature selection driven by physical laws

[39] Data transformation based on physical laws, added extra
input layer

[40] Data cleansing using clustering
[41] Feature selection driven by physical laws
[42] Feature selection driven by physical laws

[43] Correlation analysis; feature engineering: data
transformation based on physical laws; data normalization

[44] Feature selection driven by physical laws; outlier
detection and discarded based on the z-scores

[45] Feature selection driven by physical laws;
correlation analysis

[46] Feature engineering; data transformation;
data normalization

[47] Data normalization; downsampling input data by
calculating the average values

[48] Feature selection driven by physical laws
[49] Data transformation based on physical laws
[50] Data transformation based on physical laws

4.3. ML Algorithms Used/Hyperparameter Tuning

The selection of the proper machine learning algorithms is the next decision to be
made. Most of the algorithms that are used in ship performance prediction belong to one
of the three main categories that are presented in Section 3.2. Artificial neural networks are
the dominant choice of the studies that are reviewed in this paper, and the authors believe
that this observation reflects the overall modern trend. Generalized Regression Neural
Network (GRNN), Multilayer Perceptron (MLP), Radial Basis Function Network (RBF),
Linear Network, and Deep Extreme Learning Machine ANN represent the different ANN
networks that are used. Regression Trees, Random Forests, Extreme Gradient Boosting
Trees, Extra Trees Regressor are the tree-based algorithms used and Linear Regression,
Support Vector Regression, Polynomial Regression, Generalized Additive Model, XGBoost,
Gaussian Process Regression, Multiple Linear Regression, Projection Pursuit Regression
are the regressors. Discrete Fracture Network, Adaptive Neuro-Fuzzy Inference and
Generalized Additive Models are the three algorithms that complete the list and cannot be
classified in any of the above categories [29,30,53].

Hyperparameters are the parameters of a machine learning algorithm that affect
the prediction accuracy. The “No Free Lunch Theorem” [54] states that there is not one
global architecture or parameter combination that performs best on a variety of machine
learning tasks. It is of absolute importance to conduct hyperparameter tuning in order
to optimize each specific task. The most commonly used method of optimization is grid
searching. All the potential combinations of the chosen hyperparameters are tested, and
the best combination is chosen. This method might lead to a substantial computational
work because of the extremely high absolute number of combinations that may have to be
evaluated. To address the above problem and in order to limit the computational workload,
we can use the random search method. This method does exactly what it sounds, random
combinations of hyperparameter settings are chosen, and the best configuration using trial
and error qualifies. Another more elegant optimization approach is a model-based method
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using Bayesian optimization. The Bayesian theorem is used to adaptively generate data for
hyperparameters and find the optimum hyperparameter values using surrogate models.

In Table 4, we present the different algorithms and the hyperparameter strategies (if
stated) used in the studies reviewed in this paper.

Table 4. Algorithms and hyperparameter tuning methods used in the reviewed studies.

Study (Reference) Algorithm Used Tuning/Hyperparameter Tuning

[27]

Random Forest, Linear
Regression, K-NN, ANN,

Decision Tree
Regressor, AdaBoost

Yes/(Random)

[35]

Decision Tree Regressor, Random
Forest Regressor, Extra Trees
Regressor, Gradient Boosting
Regressor, Extreme Gradient

Boosting Regressor

Yes (k-fold)
(Cross-validation)

[38]

Generalized Regression ANN
(GRNN), Multilayer Perceptron

(MLP), Radial Basis Function
Network (RBF), Linear Network

Not Stated

[39] Discrete Fracture Network Not Stated

[40] Multilayer Perceptron
(MLP) ANN Not Stated

[41]

Linear Regression, Support Vector
Regression, Polynomial

Regression, Generalized Additive
Model, XGBoost, ANN

Yes (Grid search)

[42] Adaptive Neuro-Fuzzy Inference
ANFIS Not Stated

[43]

Multiple Linear Regression,
Regression Trees, Support Vector

Regression, Gaussian
Process Regression

Yes (Bayesian optimization)

[44]
Linear Regression, Generalized

Additive Models, Projection
Pursuit Regression

Not Stated

[45] ANN Not Stated

[46] Random Forests, Extreme
Gradient Boosting Trees, ANN Yes (Bayesian optimization)

[47] Deep Extreme Learning
Machine ANN Yes (Algorithm adopting)

[48] Random Forests Not Stated

[49] Multilayer Perceptron
(MLP) ANN Not Stated

[50] Deep Feed-Forward ANN Yes (trial and error)

4.4. Validation/Verification

In order to validate the performance of ML algorithms, there are two main approaches.
First, there is the option to extract a relatively small portion of data from the complete data
set and use it as the validation data set as presented in Figure 1. This option is commonly
used but has the disadvantage of restricting the data set used for algorithm training. The
second approach is cross validation. The k-fold validation method, which is representative
of this category, separates the complete data set into k number of folds. One-fold is used as
the test set and the sum of the other k-1 folds as a training set. The fold that is used as a test
set alternates, and thus, we are able to validate the overall performance without the need
to extract any portion of the data set from the training procedure.
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For verification of the results, the prediction assessment metrics that are discussed in
Section 3.3 or the results can be compared with the outcome of one of the other predictive
methods that are presented in Section 2.

The validation of the different methods along with the results are presented in Table 5.

Table 5. Validation and results of the different methods used.

Study (Reference) Validation Verification

[27] Extracted validation data set MAE, MSE, RMSE, R2 (error less
than 3%)

[35] Extracted validation data set Mean absolute percentage error of the
Random Forest regressor = 7.91%

[38] Extracted validation data set MSE values between 0.98 and 1.1
comparisons with STAWAVE-2

[39] Extracted validation data set RMSE (smaller approx. 10–12%)
[40] Extracted validation data set R2 > 0.95, 0.8–2.8% accuracy

[41] Extracted validation data set MAE, RMSE, R2 (XGBoost most stable
and reliable predictive ability)

[42] Extracted validation data set RMSE = 0.161
[43] Cross validation MAE, MSE, RMSE, R2 comparison

[44] Cross validation
Linear regression and generalized

additive models increased accuracy of
16 and 12%

[45] Extracted validation data set R2 > 0.9055
Comparison with simulation software

[46] Cross validation
RMSE, MAE comparison

Verified with numerical and
experimental data

[47] Extracted validation data set Better prediction accuracy and
reliability, with respect to the ISO 19030

[48] Cross validation Comparison with real values
[49] Extracted validation data set RMSE, R2 comparison

[50] Cross validation
Satisfactory accuracy using as input
data only the information about the

sea conditions

5. Discussion

From the comparison of the data-driven models that are used in the presented studies,
we can discern a trend toward data acquisition systems as the means for the collection
of input parameters. In 6 out of 15 papers, these systems are used to provide the input
data. Conversely, noon reports, although they constitute the dominant method of collecting
operational data in shipping companies, have been used in only 2 of the 15 papers. The
beneficial effect of the higher frequency that is provided by the data acquisition systems on
ships is perceived. Another interesting conclusion can be extracted from Table 1. The use
of metocean data from various online services seems to be preferred against the onboard
sensors or the crew estimations. In more than half of the papers, the environmental data
needed were collected from online metocean services, even in the cases where the necessary
sensors for the collection of environmental data were installed on board, as shown in
Figure 6.

Regarding the preprocessing approaches that have been used, we can see that the
dominate trend is toward feature selection driven by physical laws. Purely computational
methods such as principal component analysis, that do not take into account the underlying
physical phenomena, were not trusted by the majority of the researchers. In 66.7% of the
cases, the physical laws governing the movement of the ship in the water were used in the
formation of the data set that had been used, as shown in Figure 7.
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Another interesting conclusion is that ANN, in various forms, seems to be the machine
learning algorithm of choice (73.3% of the reviewed studies that deal with the prediction of
ship performance used at least one form of ANN). ANN algorithms have gained popularity
in recent years because the increased computational power needed for their implementation
is now available with relative low cost. The main disadvantage of the methods that
rely on ANN is that these algorithms need a vast amount of data in order to be trained.
Except for the traditional fields that make use of these methods such as disease diagnosis,
speech recognition and image classification (where the vast amount of input data is not an
issue), the shipping industry with the adoption of data acquisition systems has begun to
benefit from these methods. The other three categories of ML algorithms demand far less
computational power and are more robust to the lack of huge data sets, as inputs can be a
good alternative where the computational power or the data acquisition method used does
not produce the necessary amount of data. These methods can and are being used (with
slight method modifications) in computer science for email spam and malware filtering, as
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online fraud detection systems, among others, and in finance for stock market trading, to
name a few. This if the main advantage of the different data-driven methods; unrelated
scientific and industrial fields can benefit from the experience being built. In Figure 8, we
present the frequency of implementation of the different ML algorithms used.
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The hyperparameter tuning comparison is indistinguishable regarding the preferred
method. Grid search, random search and Bayesian optimization alternate in the reviewed
studies, without being able to identify any specific preference.

The benchmark metrics indicate a better accuracy when some form of ANN machine
learning algorithm is used. In the papers where ANNs are directly compared with other im-
plementations in the same data set, ANNs always prevail. The most important observation
is that the verification of these results mainly occurs with the use of prediction metrics. Only
in three cases have the comparative results been presented between the various existing
predictive approaches, i.e., data-driven models and/or semi-empirical models and CFD
models. The authors believe that a direct comparison of the results between data-driven
models and the other main categories of ship performance estimation models needs to be
further explored.

6. Conclusions

The prediction/estimation of a ship’s total resistance in real weather conditions can
lead to the prediction of the actual speed through water that this ship can achieve with
a given amount of power, which is one of the most important performance indicators.
The resistance in calm weather and the resistance due to wind are relatively easy to be
estimated with good precision and with various numerical/semi-empirical methods, or in
recent years, with computational fluid dynamics models. When the geometric parameters
of the ship and the boundary conditions are known, CFD can achieve remarkable results
in estimating ship resistance. Conversely, numerical/semi-empirical methods are well
developed and can estimate ship resistance with a good approximation and speed. Things
become far more complicated when having to approximate the resistance of a ship in real
weather conditions. The knowledge of the sophisticated geometric parameters of a ship or
educational background in naval architecture is not necessary. When enough representative
historical data of ship performance are available, these methods can estimate the ship speed
performance with comparable or in some cases even better results. Due to their nature,
semi-empirical and CFD are the methods of choice for shipyards, and data-driven models
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better suit the needs of shipping companies. From the study of the above ML approaches,
we can conclude with relative certainty:

• Increased frequency methods (onboard data acquisition systems) are starting to replace
noon reports as the data input method of choice.

• The new data acquisition systems that are installed onboard ships paved the way
for the implementation of methods that rely on complex ML algorithms that achieve
remarkable results. These algorithms were the privilege of other scientific fields
until recently.

• Researchers prefer to use methods for data preprocessing that rely on physical laws
rather than purely computational alternative methods.

• The above preference for research studies with physical laws as a tool for various steps
in the data-driven methods pipeline indicate that the computational tools are not a
good alternative for this application and must be improved upon in the future.

• ANNs in various forms are starting to dominate as the ML algorithm of choice mainly
due to the increased computational power available.

• The accuracy of the prediction results of data-driven models is starting to increase in
levels that offer a credible alternative for practical implementations.

• In the absence of specific information of ship design (which is usually the prerogative
of the shipyards that built the ship), which are necessary for implementing CFD or
other deterministic methods, ML algorithms can currently fill the gap in predicting
ship performance.

• The “universal” nature of data-driven methods and the fact that computer science
drives the evolution of these methods at a fast pace can lead to the total domination of
these methods in shipping.

• The level of uncertainty of input data heavily increases when implementing data-
driven methods in real weather conditions. This drawback creates a demand for the
development of specific preprocessing procedures in the future.
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