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Abstract: The purpose of this study is to characterize and compare the microstructural features of the
main morphotypes occurring in the char obtained at 850–950 ◦C by fluidized bed gasification of lignite
from the “Szczerców” deposit (Central Poland), and to bring new insights into the knowledge on the
origin of these morphotypes. Optical microscopy and Raman spectroscopy were used. The char is
composed mostly of crassinetwork and inertoid, accompanied by tenuinetwork and small amounts of
fusinoid. Tenuinetwork originates mainly from textinite, crassinetwork is formed from attrinite, while
inertoid results from transformation of strongly gelified macerals such as densinite and ulminite.
Similarities in the microstructure of tenuinetwork and crassinetwork as well as inertoid and fusinoid
are observed. Inertoid and fusinoid are composed of larger aromatic systems, with lower amount
of alkyl-aryl structures, and their microstructure is better organized compared to tenuinetwork and
crassinetwork. Inertoid and fusinoid differ in microscopic appearance and were formed from different
starting materials, but their microstructural properties converged during gasification. Different
morphological features of the network morphotypes (tenuinetwork, crassinetwork) are not reflected
in the differences in their microstructural characteristics.

Keywords: lignite; gasification; char; morphotypes; Raman spectroscopy

1. Introduction

Poland is one of the few European countries where power generation is still largely
based on domestically mined bituminous coal and lignite. The possibility of using coal in
processes other than direct combustion was investigated due to the abundance of lignite
reserves in Poland. The main focus was on clean coal technologies and in particular the
gasification process in gasifiers. Research on various aspects of coal gasification technology
has been conducted for many years [1–14]. Recently, due to the urgent need to mitigate
climate changes and in connection with the rise in oil and gas prices this issue has taken
on particular significance. Lignite is mined on a large scale in many countries, mainly
in Germany, China, Russia, United States, and Poland. The development of local coal
gasification projects is also essential in order to meet the needs of individual countries,
which simultaneously translates into energy security and independence from external
suppliers. Lignite usability for gasification was confirmed in several studies, usually
conducted on coal from China, Japan, Canada, Russia, and the USA [10,11,15–19].

Previous works demonstrated the importance of petrographic examination in deter-
mining the suitability of coal for gasification and in predicting its behavior during the
process. Furthermore, the importance and role of individual macerals in the gasification
process was highlighted [5,12,20–24]. The petrographic features of chars obtained by the
gasification process were also investigated [12,24–31]. The evolution of char structure can
be characterized by coal petrography, in particular, the percentage char determination [27].

The structure of char was found to be one of the key factors affecting its reactivity
during gasification [14,32]. To characterize the chemical-structural evolution of coals during
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gasification, and to determine the properties of the resulting chars Raman spectroscopy was
frequently used [14,27,33–47]. It was found that with increasing temperature the amount
of large aromatic structures increased at the cost of smaller systems (<6 fused aromatic
rings) and amorphous carbon [14,27,33–35,42,43]. The concentration of active sites (sp2–sp3

bonding) initially increased in lower temperature, and decreased above 800 ◦C [27]. The
course of structural changes depends also on the gasifying agent [37,38].

However, these studies focused on bulk samples, and almost no attention was paid to
the individual petrographic components of chars [48]. Therefore, structural properties of the
morphotypes that may affect char reactivity remain unknown. It has also not been known
whether the differences in morphological features, which are the basis for identification
of the char morphotypes [26], are related to different microstructural characteristics of
these components.

The purpose of this study was to characterize and compare the microstructural features
of the main morphotypes occurring in the char produced by fluidized bed gasification
of lignite from the “Szczerców” deposit (Central Poland), and to bring new insights into
the knowledge on the origin of these morphotypes. The Raman characteristics of lignite
macerals before gasification were obtained previously [49].

2. Materials and Methods
2.1. Gasification

The tested material is the residue from the gasification of lignite from the “Szczerców”
deposit. The deposit is situated in the southern part of the Middle Polish synclinorium,
within the Kleszczów Graben in Central Poland. The gasified coal is of the Miocene age.
The physico-chemical parameters of the gasified lignite from the “Szczerców” deposit are
shown in Table 1, whereas its petrographic composition is given in Table 2.

Table 1. Physico-chemical parameters of lignite from the “Szczerców” deposit [50].

Parameter Norm Lignite

As received
Total moisture content Mt

ar [%] ISO 589:2008 [51] 50.3
Ash content Aar [%] ISO 1171:2010 [52] 11.6

Total sulfur content St
ar [%] ISO 19579:2006 [53] 0.46

Net Calorific Value NCVar [kJ/kg] ISO 1928:2020 [54] 8159
Air-dried

Moisture content Mad [%] ISO 589:2008 [51] 8.5
Ash content Aad [%] ISO 1171:2010 [52] 20.1

Volatile matter content Vad [%] ISO 562:2010 [55] 41.13
Net Calorific Value NCVad [kJ/kg] ISO 1928:2020 [54] 17,075

Carbon content Ct
ad [%] ISO 29541:2010 [56] 46.40

Hydrogen content Ht
ad [%] ISO 29541:2010 [56] 3.75

Nitrogen content Nt
ad [%] ISO 29541:2010 [56] 0.52

Total sulphur content St
ad [%] ISO 19579:2006 [53] 0.84

Dry basis
Ash content Adb [%] ISO 1171:2010 [52] 23.2

Total sulphur content St
db [%] ISO 19579:2006 [53] 0.92

Volatile matter content Vdaf [%] ISO 562:2010 [55] 58.59
Gross Calorific Value GCVdaf [kJ/kg] ISO 1928:2020 [54] 18,099

The lignite was gasified at the Institute for Chemical Processing of Coal in Zabrze,
Poland, in a pilot circulating fluidized bed reactor using CO2 as the gasification agent. The
other components of the gasification mixture were nitrogen and oxygen. The temperature
was between 856 ◦C and 952 ◦C. The process used 97 kg of coal, which yielded 21.5 kg of
char [56].
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Table 2. Petrographic composition of lignite from the “Szczerców” deposit [49].

Component Content
[% vol.]

Macerals

Huminite

Textinite 11.7
Ulminite 12.1
Attrinite 29.9
Densinite 23.9

Corpohuminite 1.6
Gelinite 1.5

Liptinite

Sporinite 0.6
Cutinite 0.1
Resinite 1.1

Suberinite 0.2
Alginite 0.1

Liptodetrinite 3.6

Inertinite

Fusinite 1.0
Semifusinite 0.2

Funginite 0.1
Micrinite 0.0

Inertodetrinite 1.8

Minerals
Pyrite 0.8

Carbonates 0.5
Quartz + Clays 9.2

The gasification parameters and the content of combustible components in the pro-
cess gases are presented in Table 3. The entire system was discussed by [56]. Table 4
shows the physical parameters and chemical composition of the resulting char. A repre-
sentative channel sample of char was collected to make preparations for microscopic and
spectroscopic examinations.

Table 3. Gasification process parameters and the content of combustible components in the process
gases [50].

Parameter Value

Gasification temperature [◦C] 856–952
Carbon flow rate [kg/h] 83–130

Air flow rate [m3/h] [m3/h] 40–120
CO2 flow rate [m3/h] 0–65
O2 flow rate [m3/h] 0–19
Hydrogen [% vol.] 9.1–13.2
Methane [% vol.] 2.3–4.6

Carbon monoxide [% vol.] 12.3–20.1

Table 4. Physico-chemical parameters of the studied char [50].

Parameter Norm Char

As received
Total moisture content Mt

ar [%] ISO 589:2008 [51] 0.4
Ash content Aar [%] ISO 1171:2010 [52] 29.1

Total sulphur content St
ar [%] ISO 19579:2006 [53] 1.18

Net Calorific Value NCVar [kJ/kg] ISO 1928:2020 [54] 22,337
Air-dried

Moisture content Mad [%] ISO 589:2008 [51] 1.6
Ash content Aad [%] ISO 1171:2010 [52] 28.7

Volatile matter content Vad [%] ISO 562:2010 [55] 7.8
Net Calorific Value NCVad [kJ/kg] ISO 1928:2020 [54] 22,039
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Table 4. Cont.

Parameter Norm Char

Carbon content Ct
ad [%] ISO 29541:2010 [56] 64.7

Hydrogen content Ht
ad [%] ISO 29541:2010 [56] 0.88

Nitrogen content Nt
ad [%] ISO 29541:2010 [56] 1.01

Total sulphur content St
ad [%] ISO 19579:2006 [53] 1.17

Dry basis
Ash content Adb [%] ISO 1171:2010 [52] 29.2

Total sulphur content St
db [%] ISO 19579:2006 [53] 1.19

Volatile matter content Vdaf [%] ISO 562:2010 [55] 8.0
Gross Calorific Value GCVdaf [kJ/kg] ISO 1928:2020 [54] 22,270

2.2. Petrographic Analysis

The petrographic analysis of chars was based on the procedure used to develop a coal
char classification [26]. It was performed with the use of 500 equally spaced points on the
surface of the polished sections, prepared following the ISO standard 7404-2:2009 [57].

2.3. Raman Spectroscopy

Raman spectroscopy investigation was carried out on polished sections, allowing for
identification of char morphotypes. This was done following the previous studies [27,48].
However, based on the recommendations of Lünsdorf [58], the final polishing (with the
finest slurry of 0.5 µm) was omitted to exclude the possible effect of polishing on the Raman
spectra. Vitrinites are unaffected by polishing up to maximum reflectance value of 7% [58].

The Raman measurements were performed on 22 (fusinoid) to 32 (inertoid) randomly
chosen spots, with a Thermo Scientific DXR Raman microscope with a 900 grooves/mm
grating and a CCD detector. The smaller number of analyses executed on fusinoid, in
comparison to other morphotypes, was due to low proportion of this component. The
Olympus 10× (NA 0.25) objectives (spot sizes 2.1 µm and 1.1 µm, respectively) were used.
Excitation was activated with a 532 nm diode laser with a maximum power of 10 mW.
Measurements were conducted in a spectral range of 400–3500 cm−1, at a spectral resolution
of 1 cm−1, and an area of 1 µm2. The laser power was set at 1–2 mW. The spectrometer
was calibrated using a polystyrene standard. The accumulated measurement time was 30 s
for each spectrum. The spectra were analyzed by peak-fitting performed in the range of
1000–1800 cm−1 using GRAMS32, based on the previous Raman studies of chars and related
carbon materials [39,40,59–62]. The second derivative of the spectra was also considered
to find the initial positions of the bands. Four bands (D2, G, D1, and D4) were fitted by
Lorentzian curves and one (D3 band) by the Gaussian curve. The goodness of fit was
checked by the χ2 test. The ID1/IG ratio was determined from the D1 and G band intensities
(heights). Furthermore, the AD1/AALL, AD3/AALL, and AD4/AALL ratios were calculated
from the band areas, where “AALL” denotes the sum of all band areas in a spectrum. The
final Raman results given below are the arithmetic means of the values obtained from the
individual spectra. The standard deviations were also calculated.

2.4. Statistical Analysis

To assess the statistical significance of the differences in the spectral parameters be-
tween the morphotypes, the analysis of variance ANOVA and the Tukey’s HSD multiple
comparison test were performed. This was preceded by checking the normality of distribu-
tion by the Shapiro-Wilk test and assessing the equality of variances by the Levene test. All
statistical analyses were carried out using the Statistica 13.3. software (TIBCO Software
Inc., Palo Alto, CA, USA).
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3. Results and Discussion
3.1. Petrographic Composition of the Char

The petrographic composition of the char is dominated by inertoid (35.44% vol.)
(Table 5, Figure 1C,D) and crassinetwork particles (31.59% vol.) (Table 5, Figure 1B,F).
Inertoids are dense with porosities between 5 and 40% [26]. In the tested samples it can be
either fused or unfused. On the other hand, commonly observed crassinetwork chars are
particles with internal network structure, where most of wall area >3 µm, and the porosity
is greater than 40%. However, it should be noted that, in total, chars with several types of
pores formed by degassing (tenuinetwork, crassinetwork, tenuisphere, crassisphere, mixed
porous) account for 52.33% by volume of all components (Table 5).

Table 5. Petrographic composition of chars. Reprinted with permission from [29] 2016 Elsevier.

Component Content [% vol.]

Tenuisphere 1.92
Crassisphere 1.92

Tenuinetwork 12.64
Crassinetwork 31.59
Mixed Porous 4.26
Mixed Dense 2.34

Inertoid 35.44
Fusinoid/Solid 1.79

Mineroid 8.10

Tenuinetwork, such as crassinetwork have internal network structure, but their poros-
ity is over 70%. In contrast to crassinetwork, in the case of tenuinetwork more than 50% of
wall area is thinner than 3 µm. Sphere-type grains, tenuisphere and crassisphere, which
are spherical to angular in shape and have porosity higher than 60%, are less commonly
observed in the gasification residue.

In tenuisphere chars over 50% of wall area is below 3 µm, for crassisphere chars
over 50% of wall area is below 3 µm. The share of fusinoid, which is characterized by
inherited cellular fusinite structure, or solid particle with <5% porosity, in the tested chars
is 1.70% vol., (Figure 1D,E). The inertinite group macerals almost do not change during the
gasification process.

Gasification produces char that contains mineral matter. These are products of the
thermal decomposition of the original mineral matter. The minerals in lignite are dominated
by quartz and clay minerals (Table 2). The output coal from the “Szczerców” deposit also
contains calcite and, to some extent, aragonite. Calcite, occurring in the form of lacustrine
chalk in deposits, forms layers and spherical aggregates in the seam. Pyrite occurs as
framboidal pyrite, but also as regular crystals and in the form of veins. The process
produces loose, glassy or crystalline mixtures of silicates and aluminosilicates, and small
amounts of complex mixtures of metal oxides and metalloids. Some minerals, such as
pyrite, quartz, dolomite, and siderite, retain their original form during gasification. Clay
minerals are also present in inertoids.

3.2. Raman Spectroscopy of the Char Morphotypes

The Raman spectra of the studied morphotypes (Figure 2) show the occurrence of
five bands: D2, G, D3, D1, and D4 (Figure 3). The G band (~1585 cm−1) corresponds
to the graphitic lattice vibration (E2g mode) or aromatic ring breathing [34,63,64]. The
D2 band (~1612 cm−1) makes a shoulder on the G band, and it is also assigned to the
E2g mode [65,66]. Its intensity decreases with increasing degree of organization [67].
The D3 band (~1510–1525 cm−1) originates due to interstitial defects outside the plane
of aromatic layers [68,69]. It is attributed to the occurrence of small aromatic systems
composed of 3–5 rings, organic molecules or functional groups forming “amorphous”
carbon phase [59,66,70]. Sometimes two [48] or three [34] bands are detected within the
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D3 band region. The D1 band (~1340 cm−1) is related to vibration mode A1g of graphitic
lattice and assigned to in-plane defects, and the occurrence of heteroatoms [62,63,68,69]
as well as aromatics with six or more fused rings [34]. The D4 band (~1180–1200 cm−1)
is attributed to sp3 or sp2–sp3 carbons such as alkyl-aryl C–C structures, which have been
suggested as the location of active sites [33,34,59,71–73]. Such sites are mostly positioned
at the edges of aromatic structures [72–74]. Three bands within the D4 band region were
also proposed [34]. The extracted spectral parameters are given in Tables 6 and 7.
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Table 6. Position and full width at half maximum (FWHM) of the Raman bands in the spectra of the
studied morphotypes.

Morphotype
D2
ω

[cm−1]

G
ω

[cm−1]

G
FWHM
[cm−1]

D3
ω

[cm−1]

D1
ω

[cm−1]

D1
FWHM
[cm−1]

D4
ω

[cm−1]

Tn 1611.4
(2.2)

1584.6
(2.8)

79.3
(5.5)

1510.6
(11.1)

1340.4
(2.7)

200.3
(11.6)

1200.3
(12.0)

Cn 1612.2
(2.2)

1585.9
(3.4)

80.2
(5.8)

1509.9
(15.0)

1344.3
(2.7)

201.2
(8.2)

1202.4
(10.5)

Ind 1612.3
(1.9)

1585.8
(3.3)

75.0
(4.5)

1523.4
(7.8)

1341.3
(3.8)

207.9
(11.3)

1188.3
(9.0)

Fd 1613.6
(1.1)

1588.4
(1.7)

71.3
(4.0)

1525.1
(6.5)

1341.1
(1.1)

195.1
(10.9)

1179.8
(7.9)

Explanations: ω—position of the Raman band, FWHM—full width at half maximum; the standard deviation is
given in the brackets.

Table 7. Raman spectral ratios for the studied morphotypes.

Morphotype ID1/IG AD3/AALL AD1/AALL AD4/AALL

Tn 1.83
(0.21)

0.09
(0.02)

0.58
(0.05)

0.09
(0.03)

Cn 1.85
(0.26)

0.10
(0.02)

0.56
(0.05)

0.10
(0.03)

Ind 2.08
(0.18)

0.10
(0.01)

0.64
(0.04)

0.04
(0.03)

Fd 1.99
(0.12)

0.09
(0.01)

0.64
(0.02)

0.05
(0.01)

Explanations: ID1/IG—relative intensity (height) of the D1 and G bands; AX/AALL—the relative intensity of the
band (D3, D1, or D4) and the sum of intensities of all bands (D2, G, D3, D1, and D4); the standard deviation is
given in the brackets.

The spectra, taking the occurrence of the D3 and D4 bands, and overlapping D2 and G
bands, are typical for poorly organized carbonaceous material (“crystallinity” level 1 [75]).

To assess the significance of the differences in the spectral parameters between the
morphotypes, the statistical analysis was performed. The Shapiro–Wilk test demonstrates
that all sets of results obtained for the G band position and FWHM, D1 band FWHM, and
ID1/IG, AD1/AALL and AD4/AALL ratios, for the morphotypes analyzed (tenuinetwork,
crassinetwork, inertoid and fusinoid) have normal distribution, and the Levene test shows
that variances are equal. Considering this, the ANOVA analysis of variance was conducted.
It indicates that in all six sets of the above mentioned spectral parameters at least one mean
value significantly differs from the others. This was checked by the Tukey’s HSD multiple
comparison test, results of which are summarized in Tables 8–12.

Table 8. Results of the Tukey’s HSD multiple comparison test for the G band position.

Morphotype
G Band Position

Fusinoid Inertoid Tenuinetwork Crassinetwork

Fusinoid 0.02234 0.00042 0.03551
Inertoid 0.48539 0.99801

Tenuinetwork 0.14469
Crassinetwork

Note: Significant differences (p < 0.05) are underlined.
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Table 9. Results of the Tukey’s HSD multiple comparison test for the G band FWHM.

Morphotype
G Band FWHM

Fusinoid Inertoid Tenuinetwork Crassinetwork

Fusinoid 0.07111 0.00014 0.00014
Inertoid 0.01064 0.00229

Tenuinetwork 0.92636
Crassinetwork

Note: Significant differences (p < 0.05) are underlined.

Table 10. Results of the Tukey’s HSD multiple comparison test for the ID1/IG ratio.

Morphotype
ID1/IG Ratio

Fusinoid Inertoid Tenuinetwork Crassinetwork

Fusinoid 0.49077 0.02942 0.07602
Inertoid 0.00021 0.00073

Tenuinetwork 0.97940
Crassinetwork

Note: Significant differences (p < 0.05) are underlined.

Table 11. Results of the Tukey’s HSD multiple comparison test for the AD1/AALL ratio.

Morphotype
AD1/AALL Ratio

Fusinoid Inertoid Tenuinetwork Crassinetwork

Fusinoid 0.99982 0.00015 0.00014
Inertoid 0.00014 0.00014

Tenuinetwork 0.39791
Crassinetwork

Note: Significant differences (p < 0.05) are underlined.

Table 12. Results of the Tukey’s HSD multiple comparison test for the AD4/AALL ratio.

Morphotype
AD4/AALL Ratio

Fusinoid Inertoid Tenuinetwork Crassinetwork

Fusinoid 0.62918 0.00031 0.00014
Inertoid 0.00014 0.00014

Tenuinetwork 0.47441
Crassinetwork

Note: Significant differences (p < 0.05) are underlined.

The G band position in the spectra of the tested morphotypes falls in a narrow range of
1585–1588 cm−1 (Table 6). The mean value is highest for fusinoid and differs significantly
compared to the other components (Table 8). The FWHM of the G band is smaller in
fusinoid (ca. 71 cm−1) and inertoid (ca. 75 cm−1) spectra than those of tenuinetwork and
crassinetwork (ca. 79 cm−1 and 80 cm−1, respectively) (Tables 6 and 9, Figure 4A), which
indicates higher structural ordering of the first pair of the morphotypes [67]. Similar G
band half-width as determined herein for fusinoid and inertoid was previously found in
the spectra of chars from low rank coals [48], inertinite-rich coals [27,33], and inertinite
concentrate chars [61,76]. Similar to what is observed in this study, lower G band FWHM
in the spectra of fusinoid and dense char (inertinite-derived) than the fused char (vitrinite-
derived) was communicated [27,48].
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The D1 peak is centered at 1340–1344 cm−1, and its FWHM ranges from 195 cm−1 to
208 cm−1 (Table 6), which means that the size distribution of aromatic clusters does not
differ much between the morphotypes studied [77]. In fusinoid, however, it is less varied
than in inertoid (lower D1 band half-width), as the Tukey’s HSD test confirms (p < 0.05).
Compared to this study, lower D1 band FWHM values (ca. 160–170 cm−1) were found both
for the vitrinite-derived and inertinite-derived chars [27]. On the other hand, higher values
were communicated for the bituminous coal chars [33]. The RBS value (i.e., the distance
between the G and D1 peak) is highest in the case of fusinoid (247 cm−1).

The ID1/IG ratio is higher in the inertoid than in the tenuinetwork and crassinetwork
spectra (Tables 7 and 10, Figure 4A). The fusinoid spectra reveal higher ID1/IG ratio than
those of tenuinetwork (Tables 7 and 10, Figure 4A). As previously discussed [77–80], when
the diameter of coherent domains (“crystallites”) (La) in carbonaceous materials is below
2 nm, increase in La corresponds to increasing ID1/IG ratio, contrary to the equation
introduced by Tuinstra and Koenig [63]. When domains are larger than 2 nm, the increase
in La is reflected by the decreasing ID1/IG ratio value. The studied char was obtained
at 850–950 ◦C. As it is known from numerous studies, the size of coherent domains in
chars and similar carbonaceous materials, formed at approximately the same temperature,
does not exceed 2 nm [81–87]. Therefore, the higher value of the ratio is indicative for
morphotypes with a larger La. An increase in ID1/IG ratio of various carbonaceous materials
with temperature increasing up to 900◦, and its subsequent decrease at higher temperature
was previously observed [27,33,34,41,48,61,73,76,78–80,88,89]. This change was directly
correlated with an increase in La [76,80]. The increase in the size of coherent domains
results mainly from the dehydrogenation of hydroaromatics [34]. A higher ID1/IG ratio was
found for fusinoid [48] and the inertinite-derived char [27] than for the vitrinite-derived
char [27,48].

The higher AD1/AALL ratio for fusinoid and inertoid (Tables 7 and 11, Figure 4B)
indicates that they are more abundant in larger aromatic structures (composed of at
least 6 aromatic rings) than tenuinetwork and crassinetwork. On the other hand, lower
AD4/AALL ratio in fusinoid and inertoid spectra (Tables 7 and 12, Figure 4B) shows that
sp3 or sp2–sp3 bonding (active sites) is less frequent in these components than in the other
two. This is because concentration of active sites decreases as the size of coherent domains
increases [27,42,74]. The content of small aromatic units (3–5 rings) and amorphous carbon
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does not vary between the morphotypes, as it can be concluded from the AD3/AALL ratio
values (Table 7).

Considering the above findings, morphotypes tested can be divided into two groups.
The first includes inertoid and fusinoid, and the second comprises tenuinetwork and
crassinetwork. In general, these two groups differ by the G band FWHM, and the ID1/IG,
AD1/AALL and AD4/AALL ratios (Tables 6–12, Figure 4A,B). Inertoid and fusinoid and
are composed of larger aromatic structures, forming larger coherent domains, with lower
amount of alkyl-aryl structures. Their microstructure is better organized compared to the
network morphotypes. Raman characteristics of the morphotypes within each pair do not
differ significantly. The fusinoid spectra compared to those of inertoid are distinguished
by the G band peak positioned at higher values. The highest standard deviations of most
spectral parameters found for crassinetwork (Tables 6 and 7) indicate that it is the most
heterogeneous of all morphotypes examined.

Tenuinetwork, which has the highest porosity (>70%, [26]) of all morphotypes tested,
accounts for 12.64% vol. (Table 5) of the char, and it is mainly derived from textinite
(11.70% vol.) (Table 2). Textinite is a porous maceral, which contains varied amounts of
humins, cellulose, and lignin as well as resins and waxes, depending on a variety (textinite
A or B) [29,90,91]. During gasification it acts as a reactive component and produces
substantial amounts of tar and gas, while its porosity increases [16]. Textinite belongs
to the macerals, which are most heavily altered [31] but its primary cellular structure
is frequently preserved [29]. Therefore, mostly thin-walled network (i.e., tenuinetwork)
comes into being.

Crassinetwork constitutes 31.59% vol. (Table 5) of the char, and its porosity varies be-
tween 40% and 70% [26], whereas inertoid accounts for 35.44% vol., and its porosity is below
40%. Given the petrographic composition of the parent coal and the char (Tables 2 and 5),
and the chemical properties of lignite constituents, the explanation of the origin of these
two morphotypes leads primarily to the other macerals of the huminite group, which are:
attrinite (29.90% vol.), and densinite and ulminite, which together comprise 36% vol. of the
char (Table 2). Attrinite, densinite, and ulminite, which are the main components of the
parent coal, differ by their content of small aromatic units (3–5 rings), amorphous phase
and sp2–sp3-bonded carbon, increasing from attrinite to ulminite [49]. These differences
are related to the degree of gelification, as aromaticity increases with increasing gelifica-
tion [90,92–94]. They may also result from different origin of the plant material, as attrinite
may come from the soft tissues (i.e., cellulose-rich), while ulminite—from the lignin-rich
(and though more aromatic) xylem [95]. Attrinite, due to its low aromaticity, is the most
reactive of these three macerals. Moreover, it is often accompanied by various liptinite mac-
erals, such as resinite or sporinite, which are abundant in aliphatic hydrocarbons, further
increasing its reactivity [96]. Lignite chars obtained at 500 oC contain cavities resulting
from complete decomposition of liptinite group macerals, whose shapes are similar to
the morphology of these macerals [24]. Such cavities retain their shape even after heating
at 950 ◦C [24]. These are the reasons for the formation of still very porous but a thick-
walled network (i.e., crassinetwork) from attrinite. Densinite, and, especially, ulminite are
more abundant in small aromatic systems [49]. They are also less porous, which makes
the process of gasification more difficult, even though they are richer in active sites than
attrinite [49]. Technological properties of the former maceral depend on the degree of
homogenization and gelification, and worsen as gelification increases [97,98]. Densinite
does not have coking properties. Ulminite produces greater amount of char than textinite
during carbonization [97,98]. It accounts for the largest part of unchanged macerals during
gasification [31]. Moreover, ulminite does not change its shape, and its porosity does not
increase substantially [29]. This explains the transformation of densinite and ulminite
into inertoid. It is usually observed that dense chars are produced from inertinite-rich
coals [27,89,98]. However, inertinite content (deducting fusinite, which contributes to the
formation of fusinoid) is about 2% vol., being incomparably lower than inertinoid content in
the char (ca. 35% vol.). This indicates that the other macerals must have played a significant
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role in the formation of inertoid, with inertodetrinite (1.80% vol.) (Table 2) making only a
minor contribution.

Morphotypes constituting the studied char are typical products of lignite gasification,
as lignite usually generates network-type to solid char structure [31,89]. Morphology of the
chars derived from the low rank coals closely reflects coal maceral composition [24]. This
results from the limited thermoplasticity of such coals. An increase in heating temperature
increases the proportion of the more reacted network-type morphotypes due to further
chemical-structural changes [23,24,89,99].

Compared to the corresponding macerals from the parent coal [49], the huminite-
derived char morphotypes are characterized by a higher content of large aromatic systems
(≥6 fused rings), and the occurrence of larger coherent domains (higher ID1/IG ratio).
The amount of small aromatics and amorphous carbon decreased. Regarding various
types of chars (bulk samples), such changes were previously reported [14,27,33,34,42,43].
Crassinetwork and tenuinetwork are still rich in alkyl–aryl C-C structures that are not
easily removed [34].

Fusinoid (1.79%), porosity of which is below 5% [26] emerges mainly from fusinite
(1.0%). Alteration of chemical structure of fusinite requires high activation energy and has
more limited range, which reflects inert nature of this maceral, resulting from highly cross-
linked structure and low content of mobile phase [61,74,76,100]. However, in comparison
to the fusinite in the parent coal [49], the content of large aromatic systems in fusinoid
increased, and the amount of amorphous carbons and small aromatics decreased. The
sp2–sp3 bonds in fusinoid are scarce and therefore concentration of active sites is low, as in
inertoid, which is due to the presence of relatively large coherent domains, as evidenced
by the ID1/IG ratio (Tables 7 and 10, Figure 4A). These observations are consistent with
the results of previous works on the microstructural alteration of fusinite under heat-
treatment [48,61,76].

The Raman characteristics of inertoid and fusinoid are remarkably similar, although
these morphotypes differ in morphology and they are derived from macerals having differ-
ent properties. During gasification, the chemical-structural features of both morphotypes
converged. Similar phenomenon was previously observed by Guedes et al. [48] who
studied Raman properties of a fused char and fusinoid after heat treatment at 800 ◦C. In
addition, chars generated at 800–1000 ◦C from inertinite- and vitrinite-rich coals had similar
structure, differing mainly in La size, which was larger in the former char [27,42].

4. Conclusions

The studied lignite char is composed mainly of crassinetwork and inertoid, accompa-
nied by tenuinetwork and small amounts of fusinoid. Tenuinetwork originates mostly from
textinite, crassinetwork is formed from attrinite, while inertoid results from transformation
of strongly gelified macerals such as densinite and ulminite. Similarities in the microstruc-
ture of tenuinetwork and crassinetwork as well as inertoid and fusinoid are observed.
Inertoid and fusinoid are composed of larger aromatic systems, with lower amount of alkyl-
aryl structures, and their microstructure is better organized compared to tenuinetwork and
crassinetwork. Inertoid and fusinoid differ in microscopic appearance and were formed
from different starting materials, but their microstructural properties converged during
gasification. Different morphological features of the network morphotypes (tenuinetwork,
crassinetwork) are not reflected in the differences in their microstructural characteristics.
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