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Abstract: Seismic data are widely used in oil, gas, and other kinds of mineral exploration and develop-
ment. However, due to low artificial interpretation accuracy and small sample sizes, seismic data may
not meet the needs of convolutional neural network training. There are major differences between
optical image and seismic data, making it difficult for a model to learn seismic data characteristics.
Therefore, a style transfer network is necessary to make the styles of optical image and seismic data
more similar. Since the stylization effect of a seismic section is similar to that of most art styles, based
on an in-depth study of image style transfer, this paper compared the effects of various style transfer
models, and selected a Laplacian pyramid network to carry out a study of seismic section stylization.
It transmits low-resolution global style patterns through a drafting network, revises high-resolution
local details through correction networks, and aggregates all pyramid layers to output final stylized
images of seismic profiles. Experiments show that this method can effectively convey the whole style
pattern without losing the original image content. This style transfer method, based on the Laplacian
pyramid network, provides theoretical guidance for the fast and objective application of the model to
seismic data features.

Keywords: style transfer; deep learning; Laplacian pyramid network; seismic section stylization

1. Introduction

Seismic data interpretation is involved in most geological research fields [1], so the
precision of results is of great significance for oil and gas and mineral exploration and
development. Faults are characterized by low continuity or high discontinuity of cophase
axes in seismic profiles. Seismic data are still interpreted manually or through human–
computer interaction. Conventional interpretation [2] is based on the principle of wave
group contrast, the results of which are obtained by seismic profile recognition and plane
combination. The three-dimensional coherence technique [3–5] uses data volume slices to
interpret faults. The variogram technique [6,7] calculates the optimum time window and
sampling point of the variance values to reveal fault information. However, non-geological
factors such as noise and seismic acquisition errors cause seismic cophase axis discontinuity,
which makes the abovementioned methods very sensitive to them. While detecting faults,
some information unrelated to faults will be highlighted. The ant colony algorithm [8,9]
searches for fault lines based on a positive feedback mechanism. Edge detection [10,11]
highlights continuous and discontinuous information in the profile. The optimal facet
vote [12] selects the fault from the attribute image as the optimal path to search for the
global maximum. These post-processing methods further strengthen the characteristics of
faults in seismic attributes and suppress noise. In recent years, seismic fault interpretation
has moved towards automation and artificial intelligence. Fault recognition [13] based on
a convolutional neural network [14–17] continuously optimizes parameters and weights
during cyclic training and continuously learns the shallow and deep characteristics of faults

Energies 2022, 15, 6039. https://doi.org/10.3390/en15166039 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15166039
https://doi.org/10.3390/en15166039
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://doi.org/10.3390/en15166039
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15166039?type=check_update&version=1


Energies 2022, 15, 6039 2 of 16

in seismic profiles [18]. Finally, the fault recognition model is trained and predicted to
achieve the fault recognition effect. However, artificial intelligence still has limitations in
its application to seismic data processing and interpretation: (1) Artificial interpretation
of faults may be time-consuming and subjective, and inaccurate artificial interpretations
may mislead the model learning process [19]. (2) Training and validation of models often
require a large number of calibrated seismic images, but it is difficult to obtain large datasets
with interpretation results using artificial interpretation. Therefore, the key problem of
insufficient calibration datasets must be faced if artificial intelligence interpretation methods
are to improve the efficiency of fault identification.

Style transfer can expand datasets by adaptively integrating the style of one image
into another and converting the original content to a completely different style. It has
been applied in medicine, aviation, remote sensing, animation, film, and television. In
medicine, the WaveCT-AIN style transmission framework [20] guides optical image data to
learn ultrasonic image data features. The fast style transfer model [21,22] makes optical
image and fog data similar in style using a continuous background with no deformation of
content. The style transfer network for SAR image conversion to optical images [23] solves
the problem of insufficient sample sizes of artificial SAR images. In migrating animation
style to optical image data [24–26], the generated cartoon image quality is high.

A style transfer network can eliminate huge differences in numerical distributions
between optical and seismic image data styles and make them more similar. In this paper,
a Laplacian pyramid network was selected to study the stylization of seismic sections.
Through cosine similarity optimization, the image style of seismic data was transferred
to a common objects in context (COCO) dataset, so that the whole dataset image had the
image style of seismic data. At the same time, the distribution characteristics of stylized
COCO datasets were similar to those for seismic data. Therefore, the style transfer method
provided a richer calibration database for artificial intelligence interpretation algorithms.

2. Materials and Methods

This section mainly introduces the style transfer algorithms based on a convolutional
neural network used in image seismic profile experiments and the necessary datasets.

2.1. Style Transfer Algorithm

In this section, we introduce some generative adversarial network (GAN)-based style
migration algorithms, with CycleGAN, Unsupervised Generative Attentional Networks
with Adaptive Layer-Instance Normalization for Image-to-Image Translation (U-GAT-IT)
and Lapstyle as representative models. We also describe in detail the algorithmic principles
of the models, the application formulas and the losses during training.

2.1.1. CycleGAN

First proposed by Jun-Yan Zhu (2017), CycleGAN [27], GAN is a generative adversarial
network that realizes the function of image style conversion between two types of images
without a corresponding relationship. As shown in Figure 1, a CycleGAN consists of two
symmetric GANs that form a ring network that shares two generators while each carries
a discriminator.

The loss included antagonism LGAN and cyclic consistency loss Lcyc. The former
ensured that the generator and discriminator mutually evolved to produce more realistic
images; the latter that the input and output images had the same content but different styles,
because images must be converted between source and target domains. The antagonism is

LGAN(G, DY, X, Y) = Ey∼pdata(y)
[log DY(y)]+ Ex∼pdata(x)

[log(1−DY(G(x))] (1)
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Figure 1. Structure diagram of cyclic consistency generative adversarial network [27]. Model contains
the two mapping functions G : X→ Y and F : Y→ X , and the associated adversarial discriminators
DY and DX. DY encourages G to translate X into outputs indistinguishable from the domain Y,
and vice versa for DX and F. We introduced two cycle-consistency losses that illustrated the idea
of translating from one domain to the other and back. We should arrive at where we started:
forward cycle-consistency loss: x→ G(x)→ F(G(x)) ≈ x , and backward cycle-consistency loss:
y→ F(y)→ G(F(y)) ≈ y .

During the mapping from X to Y, G stands for generator and tries to generate an
image G(x) that looks similar to the image in the target domain Y, and DY distinguishes
the generated image G(x) from the real image y. log DY(y) is the probability that the
discriminator recognized the true data as true data; and log(1−DY(G(x)) is the probability
that the discriminator still recognized the false data generated by the generator as false
data. The adversarial loss is the sum of the two. The cyclic consistency loss is

Lcyc(G, F) = Ex∼pdata(x)
[||F(G(x))− x||1] + Ey∼pdata(y)

[||G(F(y))− y||1] (2)

where x and y are two image domains, G is the generator of close y samples; and F
refers to the generator of close x samples. When we fed x into G, we got a fake y graph
called G(x). Then we fed G(x) into F to get an even faker x graph called F(G(x)). This
constituted a cycle. F(G(x)) was the generated G(x) mapped back to X, and G(F(y)) was
defined similarly.

2.1.2. U-GAT-IT

Based on CycleGAN, U-GAT-IT [28] adds an adaptive instance (AdaIN) regularization
layer to control the style transfer process for image-to-image translation. As shown in
Figure 2, the generator carries out image downsampling on the input terminal and combines
it with residual blocks to enhance image feature extraction. The attention module is
guided by AdaIN to obtain the transformed image by upsampling the residual block. The
discriminator converts the decoding process into an authentication output.

The model’s objectives include four loss functions, including antagonistic loss, which
are used to match the generated and target image distributions:

Ls→t
lsgan =

(
Ex∼Xt

[
(Dt(x))

2
]
+ Ex∼Xs

[
(1−Dt(Gs→t(x)))

2
])

(3)

In the mapping process from source domain s to target domain t, Gs→t(x) refers to the
false data generated from source domain s. The probability that the discriminator will still
determine the false data generated by the generator in the source domain as false data is
given by 1−Dt(Gs→t(x)). Dt(x) is the probability that the discriminator will determine the
true data as true data, and the adversarial loss is the sum of the two. Cyclic consistency loss
reduced the mapping path from the source to the target domain. Given an image x ∈ Xs,
after the sequential translations of x from Xs to Xt and from Xt to Xs, the image should be
successfully translated back to the original domain:

Ls→t
cycle = Ex∼Xs [|x−Gt→s(Gs→t(x))|1] (4)
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where Gs→t(x) refers to the false data generated from the source domain s. We fed Gs→t(x)
into Gt→s to get the false data Gt→s(Gs→t(x)), which ideally should be comparable to the x.
This constitutes a cycle. We applied an identity consistency constraint to the generator to
preserve the consistency of the color composition of the input and output images. Given an
image x ∈ Xt, after the translation of x using Gs→t, the image should not change:

Ls→t
identity = Ex∼Xt [|x−Gs→t(x)|1] (5)

Energies 2022, 15, x FOR PEER REVIEW 4 of 16 
 

 

 

Figure 2. Network structure of normalized unsupervised generation of adaptive layer instances 

[28]. The generator has a decoder module implemented by the AdaLIN algorithm more than in the 

discriminator. The input image of the generator creates the feature map through the encoding 

stage Es of the Encoder, and then an auxiliary classifier ηs is added. The attention mechanism is 

introduced to maximize the pooling of the feature map. The prediction of a node is output 

through the full connection layer, and then the parameters of the full connection layer and the 

feature map are multiplied to obtain the feature map of attention. Finally, the output image is ob-

tained through Decoder module Gt. The discriminator compresses the input image at a deeper 

level and adds an auxiliary classifier ηDt
. Finally, the output is judged by the classifier CDt

. 

The model’s objectives include four loss functions, including antagonistic loss, 

which are used to match the generated and target image distributions: 

Llsgan
s→t = (Ex~Xt

[(Dt(x))2] + Ex~Xs
[(1 − Dt(Gs→t(x)))2]) (3) 

In the mapping process from source domain s to target domain t, Gs→t(x) refers 

to the false data generated from source domain s. The probability that the discriminator 

will still determine the false data generated by the generator in the source domain as 

false data is given by 1 − Dt(Gs→t(x)). Dt(x) is the probability that the discriminator 

will determine the true data as true data, and the adversarial loss is the sum of the two. 

Cyclic consistency loss reduced the mapping path from the source to the target domain. 

Figure 2. Network structure of normalized unsupervised generation of adaptive layer instances [28].
The generator has a decoder module implemented by the AdaLIN algorithm more than in the
discriminator. The input image of the generator creates the feature map through the encoding stage
Es of the Encoder, and then an auxiliary classifier ηs is added. The attention mechanism is introduced
to maximize the pooling of the feature map. The prediction of a node is output through the full
connection layer, and then the parameters of the full connection layer and the feature map are
multiplied to obtain the feature map of attention. Finally, the output image is obtained through
Decoder module Gt. The discriminator compresses the input image at a deeper level and adds an
auxiliary classifier ηDt

. Finally, the output is judged by the classifier CDt .
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Class activation map (CAM) loss is the biggest difference between the source and
target domain. The auxiliary classifiers ηs and ηDt help the generator and discriminator
to evolve. For an image x ∈ {Xs, Xt}, Gs→t and Dt realize what makes the most difference
between the two domains in the current state:

Ls→t
cam = −(Ex∼Xs [log(ηs(x))]) + Ex∼Xt [log(1− ηs(x))] (6)

LDt
cam = Ex∼Xt

[(
ηDt(x)

)2
]
+ Ex∼Xs

[
(1− ηDt(Gs→t(x))

2
]

(7)

Ls→t
cam refers to the CAM loss of the generator in the source domain. If x is the true data,

the cross-entropy output is −(Ex∼Xs [log(ηs(x))]); if x is the false generated data, the cross-
entropy output is Ex∼Xt [log(1− ηs(x))]. In order to make the generator as false as possible,
−(Ex∼Xs [log(ηs(x))]) should be as small as possible. The higher the discriminator’s ability
to judge true data and false data, the better. ηDt(x) refers to the probability that the auxiliary
classifier ηDt collaborated with the discriminator to judge true data as true data as true data,
and 1− ηDt(Gs→t(x)) refers to the probability that the auxiliary classifier ηDt collaborated
with the discriminator to continue to judge false data from the generator in the source
domain as false data. The sum of the two, LDt

cam, is the CAM loss in the discriminator from
the source domain to the target domain.

2.1.3. Lapstyle

Lapstyle [29] transmits a low-resolution global style mode through a drafting network,
revises local details with high resolution through a correction network, and generates
image residuals according to the image texture and sketch extracted by a Laplace filter.
Higher-resolution details can easily be generated by superimposing revision networks with
multiple levels of the Laplacian pyramid. All pyramid-level output is aggregated to obtain
the final stylized image, as shown in Figure 3.
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Figure 3. Network structure of Laplacian pyramid network [29]. Firstly, the content image is
reduced by two times, and L, C and A in the image separately represent Laplacian concatenation
and aggregation operations. At this time, the predefined style image is also reduced by two times

to a low resolution version
−
xs. In the drafting network stage, the content image

−
xc and the style

image
−
xs after double down-sampling are generated through a encoder-decoder AdaIN module to

generate a global but not detailed stylized image
−
xcs. In the revision stage of the network, twice the

up-sampling processing
−
x
′
cs and connecting with the residual detail image as the input, the stylized

residual detail image is generated through a encoder-decoder module. Finally, we aggregate the
two-level image pyramid and output the final stylized image xcs.
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The drafting network includes an encoder, several AdaIN modules and a decoder,
as shown in Figure 4. The visual geometry group (VGG) encoder extracts corresponding
granularity features at layers 2_1, 3_1, and 4_1, feeds them into an AdaIN module for
aggregation, and merges them by jumping connection layers.
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Figure 4. Schematic diagram of drafting network [29]. After double down-sampling, the content

image
−
xc and the style image

−
xs are extracted from the corresponding granularity features at the

1_1, 2_1, 3_1 and 4_1 layers. Then the features of the content and output of each layer of the AdaIN
module are aggregated through an encoder–decoder AdaIN module. Finally, in each granularity
of the decoder, the corresponding features are merged from the AdaIN module through the jump
connection layer.

The revision network modified the rough stylized image by generating a residual

detail graph rcs of the image, and combined it with the rough stylized image
−
xcs to gen-

erate the final stylized image. As shown in Figure 5, the revision network has a simple,
efficient codec architecture with only one undersampling and one upsampling layer. An
image block discriminator helps the revision network capture fine block textures under
adversarial learning.

Energies 2022, 15, x FOR PEER REVIEW 6 of 16 
 

 

Figure 3. Network structure of Laplacian pyramid network [29]. Firstly, the content image is re-

duced by two times, and L, C and A in the image separately represent Laplacian concatenation 

and aggregation operations. At this time, the predefined style image is also reduced by two times 

to a low resolution versionxs. In the drafting network stage, the content imagexc and the style 

imagexs after double down-sampling are generated through a encoder-decoder AdaIN module to 

generate a global but not detailed stylized imagexcs. In the revision stage of the network, twice 

the up-sampling processing xcs
′  and connecting with the residual detail image as the input, the 

stylized residual detail image is generated through a encoder-decoder module. Finally, we aggre-

gate the two-level image pyramid and output the final stylized image xcs. 

The drafting network includes an encoder, several AdaIN modules and a decoder, 

as shown in Figure 4. The visual geometry group (VGG) encoder extracts corresponding 

granularity features at layers 2_1, 3_1, and 4_1, feeds them into an AdaIN module for 

aggregation, and merges them by jumping connection layers. 

 

Figure 4. Schematic diagram of drafting network [29]. After double down-sampling, the content 

imagexc and the style imagexs are extracted from the corresponding granularity features at the 

1_1, 2_1, 3_1 and 4_1 layers. Then the features of the content and output of each layer of the 

AdaIN module are aggregated through an encoder–decoder AdaIN module. Finally, in each gran-

ularity of the decoder, the corresponding features are merged from the AdaIN module through 

the jump connection layer. 

The revision network modified the rough stylized image by generating a residual 

detail graph rcs of the image, and combined it with the rough stylized image xcs to 

generate the final stylized image. As shown in Figure 5, the revision network has a sim-

ple, efficient codec architecture with only one undersampling and one upsampling layer. 

An image block discriminator helps the revision network capture fine block textures 

under adversarial learning. 

 

Figure 5. Schematic diagram of network revision [29]. C and A represent concatenation and ag-

gregation operations separately. The residual detail image rc is connected with the result image 

xcs
′  of the drafting network stage after double up-sampling. After revising the network, the resid-

Figure 5. Schematic diagram of network revision [29]. C and A represent concatenation and aggre-
gation operations separately. The residual detail image rc is connected with the result image x′cs of
the drafting network stage after double up-sampling. After revising the network, the residual detail

image rcs of the image is generated to modify the rough stylized image
−
xcs. Then rcs is combined

with the rough stylized image
−
xcs to generate the final stylized image which is output through the

discriminator with the style image xs.
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During training, the drafting and revision networks optimized the content and style,
and the revision network adopted the adversarial loss function. We described the style and
content loss and introduced the goals of each network. The Laplacian pyramid network is
a single style for a single model during training, keeping one xs and one set of xc from the
content set Xc.

Following the STROTSS method, the rEMD and the commonly used mean-
variance loss functions were combined into a style loss function. Given an image, we
used the advance training VGG-19 encoder to extract a set of characteristic vectors for
F =

{
F1_1, F2_1, F3_1F4_1, F5_1

}
. The rEMD loss function measured the distance between

the characteristic distribution of stylized images xs and xcs. where 1
hsws

∑hsws
i=1 min

j
Cij

denoted the distance of fitting the style map with pixels of the image xs and of the
1

hcswcs
∑hcswcs

j=1 min
i

Cij image. A smaller cosine distance term Cij means that xs and xcs are

more similar. Assuming that Fs ∈ Rhsws×c and Fcs ∈ Rhcswcs×c to be the properties of xs and
xcs, respectively, their rEMD losses are calculated as

lr = max

(
1

hsws

hsws

∑
i=1

min
j

Cij,
1

hcswcs

hcswcs

∑
j=1

min
i

Cij

)
(8)

The content loss function is adopted between Fc ∈ Rhcwc×c and Fcs ∈ Rhcswcs×c using
normalized perceived loss and self-similarity loss. hcs was equal to hc, and wc was equal to
wcs, because xc and xcs had the same resolution. Perceptual loss is defined as

lp = ||norm(Fc)− norm(Fcs)||2 (9)

where norm represents the normalized channel direction F . The purpose of self-similar
loss is to maintain the relative relationship between the content and stylized images and is
defined as

lss =
1

(hcwc)
2 ∑

i,j

∣∣∣∣∣ Dc
ij

∑i Dc
ij
−

Dcs
ij

∑i Dcs
ij

∣∣∣∣∣ (10)

where Dc
ij and Dcs

ij are the (i, j)th terms of self-similar matrices Dc and Dcs, respectively.
Here, Dij is the cosine similarity Fi, Fj.

In the training stage of the revision network, the parameters of the drafting network
were fixed and the training loss was based on xcs. To better learn local fine grain textures, a
discriminator was introduced, and a revision network with an antagonistic loss term was
trained. The overall loss function is defined as

min
Rev

Lbase + βmin
Rev

max
D

Ladv(Rev, D) (11)

where Rev denotes the revision network, D denotes the discriminator, and β controls the
balance between basic style transfer loss and antagonism loss. Lbase is the basic content
loss, and Ladv is the standard adversarial training loss.

2.2. Seismic Dataset Preparation

Herein, we discuss the required data, including seismic data, from a work area and the
open-source COCO image instance segmentation dataset. The seismic profile classification
dataset, shown in Figure 6, contains only seismic profiles and no artificial interpretations
to avoid data leakage. These seismic profiles were selected because the faults were less
developed, and the alignment of the in-phase axis was clear, thus avoiding ambiguity from
the influence of geological structures or data processing. This avoided the influence of
faults in the seismic profile classification dataset on the training of the Laplacian pyramid
network. The seismic section classification dataset was only used in the image style
migration network. We did not need to mark it, as it only provided the unique type, i.e.,
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the seismic data class, used to pre-train the classification network in the style migration
network, which this time was used to transfer the global style and local texture of the seismic
section. Therefore, after migration, the image only had the sequence texture features of
seismic data, and there were no obvious fault features to influence subsequent modeling.
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Figure 6. Image of seismic profile classification dataset.

Microsoft Common Objects in Context (MS COCO) is a large, rich, object detection,
segmentation, and subtitled dataset that takes scene understanding as the target and is
mainly extracted from complex daily scenes. The target in the image is calibrated by precise
instance annotation. The dataset includes 91 categories of objects, 328,000 images, and
2.5 million labels. So far, the largest dataset with semantic segmentation has 80 categories
and more than 330,000 images of which 200,000 are labeled. Some images are shown
in Figure 7.
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Figure 7. Images from COCO dataset.

3. Results

This section focuses on how the three models CycelGAN, U-GAT-IT, and Lapstyle
are network trained in seismic image profile stylization. We compared and analyzed the
results after stylized mapping both subjectively and objectively and use them to evaluate
the quality of the stylized images.

3.1. Network Training of Each Algorithm

In the experiments, CycleGAN and U-GAT-IT were trained on 256 pixels with the
parameter batch size set to 1. The Lapstyle experiment had three stages: the drafting
network trained on 128 pixels, the revision network trained on 256 pixels with a batch size
of 14 and the revision network trained on 512 pixels, with a batch size of 5.

The training results of the drafting network are shown in Figure 8, from which it can
be seen that the content and style of the resulting graph were retained globally under the
premise of migrating the profile style, so the Lapstyle experiment could be continued.
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is similar to that of (e), but in principle the greater the degree of style change the better 

because the image content can be recognized by the naked eye. Therefore, the migration 

Figure 8. Drafting network training results. Transferring the global pattern at low resolution, the
result image has only a fuzzy contour; the leg and other details are seriously lost; and the overall
color is dark. (a) Content; (b) Style; (c) Drafting network training transfer of the overall style of the
graph (b) while ensuring that the content of the graph (a) as far as possible was not lost.

In the second stage of the experiment, the training weight of the drafting network
was added. Five groups of control experiments were set according to the proportional
relationship between content and style weights. The style weight was 3.0, 2.0, 1.0, 1.0, 1.0,
with corresponding content weights of 1.0, 1.0, 1.0, 2.0, 3.0, as shown in Figure 9.
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Figure 9. First training results of revision network. (a) Content. (b) Content weight = 1.0; style weight = 3.0;
and the woman’s clothing contour is fuzzy. (c) Content weight = 1.0; style weight = 2.0; seismic profile
is obviously stylized; and the woman’s clothing details are not prominent. (d) Content weight = 1.0;
style weight = 1.0; and the contour is clear, but the color is not obvious. (e) Content weight = 2.0;
style weight = 1.0; the woman’s clothing is similar in color to (a) and more prominent. (f) Content
weight = 3.0; style weight = 1.0; and the effect is equivalent to (e).

Figure 9 shows the top part of a woman framed by a red box. From left to right, the
shape of the top becomes gradually clearer and the color more prominent. The effect of
(f) is similar to that of (e), but in principle the greater the degree of style change the better
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because the image content can be recognized by the naked eye. Therefore, the migration
effect of content weight 2 and style weight 1 was the best for the first modified network
training. The training weight was assigned to the second modified network training, and
five groups of control experiments were set. Figure 10 shows a woman’s calf framed by a
red box. In (c), the outline of the leg is not clear, while in (d), the details of the calf muscle
can clearly be seen. Based on the above principles, the migration effect of content weight 1
and style weight 1 were the best in the second revision of network training.
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Figure 10. Second training results of revision network. Visually, the overall color is brighter than
before, and the beach position, shape of the waves and details of the woman’s legs are further
highlighted. (a) Content. (b) Content weight = 1.0; style weight = 3.0; the woman’s leg muscle
contour is blurred. (c) Content weight = 1.0; style weight = 2.0; the woman’s leg detail lines are
too thick to finely restore the original leg features. (d) Content weight = 1.0; style weight = 1.0; the
contour is clear and the overall composition is bright. (e) Content weight = 2.0; style weight = 1.0; the
effect is equivalent to (d). (f) Content weight = 3.0; style weight = 1.0; the effect is equivalent to (e).

Some of the experimental results are shown in Figure 11, where several representative
images were selected to facilitate the comparison of the experimental results. On the whole,
it can be seen that the image changed; however, the original content information style of
the migrated images changed fundamentally, and their characteristics and backgrounds
showed features of the in-phase axis of the seismic section. Figure 11c shows that all seismic
profile styles were transferred at low resolution. The image is blurry, and the color of the
image content is almost covered by that of the style image. Therefore, modification was
carried out, and residual texture details were extracted at high resolution. In Figure 11d, on
the basis of the successful migration of the seismic profile style, the color of the woman’s
clothes in the beach figure is differentiated; the motorcycle figure is clearly outlined; and
the letters in the stamp figure can be identified. The variety and quality of textures in
Figure 11e are significantly improved, and the stylistic characteristics of the seismic sections
were obtained while preserving the content. The image is clearer, and the overall artistic
effect of the visual image has been improved.
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Figure 11. Experimental results. All the content and style images were observed by our network
training. (a) Content. (b) Style. (c) Drafting network training results. (d) First training results of
revision network: content weight = 2.0 and style weight = 1.0. (e) Second training results of revision
network” content weight = 1.0 and style weight = 1.0.

Figure 12 shows changes in the mean value of the generator and discriminator loss
functions in the training of each network with the MS-COCO dataset transformed by
the seismic profile style. Iter is the number of iterations, The Lapstyle and U-GAT-IT
algorithms recorded every 3000 steps, and trained 30,000 pieces of data in total. The
CycleGAN network generation model was limited by a rate of only 6000 iterations. During
the training, the loss function values of CycleGAN, U-GAT-IT and Lapstyle all oscillated
within an acceptable range; the convergence was general, and the obtained style transfer
model was stable.

3.2. Comparative Analysis of Results

We selected CycleGAN, U-GAT-IT, and Lapstyle for comparative experiments, using
the VGG-19 model for network training. The selected target content images were from the
COCO dataset, and the style images were from the Yinggehai seismic profile dataset.

Figure 13 shows the effect of the abovementioned style transfer method, and a com-
parison of the experimental results of sheep, beach, and food. The subjective visual effects
of CycleGAN’s experimental results showed that the original content image color was
completely covered, and the stylized image lost part of the original content color infor-
mation, resulting in ambiguity. U-GAT-IT improved upon CycleGAN, and the quality of
the generated image obviously improved. In contrast, the stylized images drawn by the
Lapstyle method were transformed from the real world into the seismic profile style based
on the premise that the original content color and detail information were not lost, and
both the overall contour migration and texture detail processing significantly improved.
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Figure 12. Training loss comparison of each network. The smaller the probability that false data
were judged as false by the discriminator, the better the probability that the false data generated
by the generator tended to real data. The two fought against each other and finally maintained a
relatively stable range. (a) During CycleGAN network training, the number of iterations was 6000;
the generator loss decreased significantly; and tended to be stable with the increase in iterations.
(b) During CycleGAN network training, the number of iterations was 6000, and the loss in the
discriminator decreased with the increase in the number of iterations and finally oscillated in a stable
range. (c) During U-GAT-IT network training, the number of iterations was 30,000 and the generator
loss oscillated in a stable range of 10–14. (d) During U-GAT-IT network training, the number of
iterations was 30,000 and the loss in the discriminator oscillated in a stable range of 1–3. (e) In the
process of Lapstyle network training, the number of iterations was 30,000 and the generator loss
fluctuated in a stable range of 0–0.6. (f) During Lapstyle network training, the number of iterations
was 30,000 and the generator loss oscillated in a stable range of 1–6.
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Figure 13. Comparison of experimental results. (a) Content; (b) Style; (c) The style transfer graph
generated by CycleGAN model has serious content information loss. (d) The style transfer graph
generated by U-GAT-IT model has serious content information loss and dark overall image color.
(e) The content information of the style transfer graph generated by Lapstyle model is well preserved
and the color is relatively prominent.

4. Discussion

It was necessary to evaluate the stylized image quality both subjectively and objectively.
Visual observation showed that the Lapstyle style transfer effect was obviously better than
that of the other two methods, but there was no unified index for objective evaluation.
Therefore, we adopted the widely recognized Structure Similarity Index Measure (SSIM)
and an image fusion quality evaluation index called QAB/F [30] to evaluate the quality of
the stylized images objectively, and use the running time of an algorithm to evaluate the
efficiency of the migration method.

The SSIM measures the similarity of image structures in brightness, contrast, and
structure. QAB/F uses local metrics to estimate the performance of input style and content
images in the fused image. A higher QAB/F indicates a fused image of better quality.

Figure 14 shows the SSIM, QAB/F, and running time of stylized images generated
by CycleGAN, U-GAT-IT, and Lapstyle. Compared with CycleGAN and U-GAT-IT, the
stylized drawn image from Lapstyle had a higher fusion quality and greater structural
similarity to the original image, indicating that its color information had been retained as
much as possible and been transformed to the seismic profile style, which has the texture
characteristics of the in-phase axis. The average running time of Lapstyle was 6.15 s, which
was better than that of CycleGAN or U-GAT-IT (12.20 s and 20.21 s, respectively). Lapstyle
also showed a better overall visual effect.
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Figure 14. Evaluations of statistical indicators. (a) Taking the sheep, beach and food images as
examples, the SSIM evaluated the quality of stylized images: the higher the SSIM index, the better
the quality of the stylized image. The SSIM index of Lapstyle was significantly higher than for
CycleGAN or U-GAT-IT. (b) Taking the sheep, beach and food images as examples, QAB/F was used
to evaluate the quality of stylized images: the higher the QAB/F index, the better the quality of the
stylized images. Lapstyle’s QAB/F index was slightly higher than that of CycleGAN or U-GAT-IT.
(c) Taking the sheep, beach and food images as examples, the running time of the algorithm was used
to evaluate the efficiency of the migration method. Lapstyle generated the style migration effect map
with the fastest speed and in the shortest time.

The COCO dataset was uniform in format, rich in content and variety, and suitable
for training convolutional neural networks. The results of the seismic profiling style
conversion based on the COCO dataset showed that features such as overall contour
information and texture detail can be preserved better based on the selection of a suitable
migration algorithm. Because the style migration method was based on the computer field
of vision, it had a strong similarity to most of the fault interpretations carried out by seismic
profiling. Similarly, this method is applicable to the interpretation of special geological
phenomena, such as seismic facies or diapir identification, which are visually identified.
After the style transfer of the COCO dataset was completed, the semantic segmentation
model was trained for the COCO dataset with a stylized seismic profile. The training label
maintained the label of the original COCO dataset. After training was completed, the front
weight of the semantic segmentation model was frozen, and only the last two weights were
retained as the training state. The model structure of the last two layers was modified,
and the number of channels in the last layer was changed from 81 to 2. Next, the dataset
was replaced by the fault dataset of the target work area from the stylized COCO dataset
to reduce the learning rate and to retrain, meaning that only the weights of the last two
layers were fine-tuned. After the loss value converged, the fault recognition model of the
target work area based on the stylized COCO dataset was obtained. This method solved
the problem of insufficient training samples of actual seismic data and provided a feasible
solution that could expand the application of artificial intelligence methods in interpreting
seismic data.
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5. Conclusions

In this paper, we addressed the lack of sufficient training samples for artificial intelli-
gence methods in seismic data interpretation applications, and proposed the use of style
migration to convert the image recognition COCO dataset into a seismic profile format. We
drew three main conclusions.

1. Using a suitable style migration algorithm, the COCO dataset was well migrated into
the seismic profile format, which retained the overall contour information and features
such as texture details more completely. This result can be used to increase artificial
intelligence seismic interpretation training samples and realize the application of
artificial intelligence to visually discernable seismic geological interpretation tasks
such as fault interpretation, seismic facies interpretation, and special morphological
geological body interpretation.

2. By comparing the effects of multiple style migration models, the Laplace pyramid
network was preferred for carrying out seismic profile stylization research. It trans-
mitted low-resolution global style patterns through the drafting network, corrected
high-resolution local details through the correction network, and aggregated all pyra-
mid layers to output a final stylized seismic profile image. Experiments showed
that this method ensured that the overall style pattern was effectively transmitted
without losing the original image content. It provided theoretical guidance for fast
and objective application of the model to learn seismic data features.

3. The quality of stylized images was objectively evaluated on two indexes, SSIM and
QAB/F and the efficiency of the migration method was evaluated for algorithm running
time. Thus, a quantitative evaluation of the good or bad quality of stylized images
was achieved.

However, this study was limited to an analysis of the effect of stylized conversion,
so further work and discussion are needed before implementing artificial intelligence
algorithms combined with the training set of actual seismic interpretation data.
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