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Abstract: This article is devoted to the following issues: calculating the values of temperatures
obtained by simulating welding heating and the subsequent implementation of the welding process
at the given mode parameters made it possible to obtain a welded joint of the rotor with an improved
initial structure and increased mechanical properties, hydrogen resistance and durability by up to
10–15%; simulating welding heating in the areas of fusion, the overheating and normalization of
the HAZ and the formation of austenite grains; specified welding heating creates the conditions
for the formation of new products of austenite decomposition in the form of sorbitol in the area
of the incomplete recrystallization of the HAZ. In air and gaseous hydrogen, the destruction of
the combined joints took place on the weld metal, as well as on the fusion areas, the overheating
and the incomplete recrystallization of the HAZ of 20H3NMFA steel as the base metal. Structural
materials have a relatively low strength and high fracture toughness in air. This is manifested in
a significant reduction in the elongation (δ), the area (ψ) and critical stress intensity factor (KIc) of
welded joints and the endurance limit of cylindrical smooth rotor steel specimens, which were cut
from transverse templates. Welded joints in the whole range of load amplitudes are sensitive to the
action of hydrogen.

Keywords: turbine rotor; welded joint; hydrogen crack resistance; durability; overheating

1. Introduction

Modern requirements for the operation of the United Electric Power System (UEPS)
of Ukraine and the Polish Power System (PSE S.A.) (main activity: provide the services
of electricity transmission in compliance with the required criteria of the security) with a
tendency to major “green” electricity are quite high. The reliability of work and the increase
in the power plant turboaggregate (TA) service life are the priority tasks [1]. They are
operated in harsh conditions determined by high temperatures and stresses, which lead to
irreversible changes in the properties of the metal and damage to the steel weldments [2–8]
(Figures 1 and 2).
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are operated in harsh conditions determined by high temperatures and stresses, which 
lead to irreversible changes in the properties of the metal and damage to the steel weld-
ments [2–8] (Figures 1 and 2). 

 
Figure 1. Hydrogen-cooled TA and possible rotor damage in the working environments: I—gaseous 
hydrogen (0.5 MPa MPa, 80 °C), II, III, IV—steam (0.25 … 5 MPa, 190 … 540 °C), rotors of TG (1), 
low (2), intermediate (3), high (4) steam turbine pressure [2,6]. 

 
Figure 2. Typical tandem compound, single reheat, condensing turbine: 1—front pedestal; 2—thrust 
and journal bearing; 3—high pressure stages; 4—nozzle box; 5—HP turbine inlet; 6—crossover pip-
ing; 7—journal bearings; 8—rotor; 9—low pressure stages; 10—journal bearing; 11—to condenser; 
12—pedestal; 13—intermediate pressure stages; 14—extractions; 15—IP turbine inlet; 16—to re-
heater [2]. 

Turbogenerator (TG) rotor shafts (Figure 3d) are a complex engineering structure 
with numerous structural stress concentrators both on the rotor barrel and on its tail. The 
materials used for the manufacture of such TG assemblies must have sufficient strength 
and ductility during all TA operating modes [2,3]. So, investigating the heat transfer on 
the surface and inside TA elements, the stress-strain behavior and influence of hydrogen-
containing environments and mechanical loading, the methods of enhancement of cooling 
media heat transfer, the manufacturing of heat exchangers and other components under 
mechanical and thermal loading is very useful, because the steam and hydrogen turbine 
rotors have limited the lifetime of TA. 

Figure 1. Hydrogen-cooled TA and possible rotor damage in the working environments: I—gaseous
hydrogen (0.5 MPa MPa, 80 ◦C), II, III, IV—steam (0.25 . . . 5 MPa, 190 . . . 540 ◦C), rotors of TG (1),
low (2), intermediate (3), high (4) steam turbine pressure [2,6].
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Figure 2. Typical tandem compound, single reheat, condensing turbine: 1—front pedestal; 2—thrust
and journal bearing; 3—high pressure stages; 4—nozzle box; 5—HP turbine inlet; 6—crossover
piping; 7—journal bearings; 8—rotor; 9—low pressure stages; 10—journal bearing; 11—to con-
denser; 12—pedestal; 13—intermediate pressure stages; 14—extractions; 15—IP turbine inlet; 16—to
reheater [2].

Turbogenerator (TG) rotor shafts (Figure 3d) are a complex engineering structure
with numerous structural stress concentrators both on the rotor barrel and on its tail. The
materials used for the manufacture of such TG assemblies must have sufficient strength
and ductility during all TA operating modes [2,3]. So, investigating the heat transfer on
the surface and inside TA elements, the stress-strain behavior and influence of hydrogen-
containing environments and mechanical loading, the methods of enhancement of cooling
media heat transfer, the manufacturing of heat exchangers and other components under
mechanical and thermal loading is very useful, because the steam and hydrogen turbine
rotors have limited the lifetime of TA.
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Figure 3. Types of turbine rotor construction: (a)—schematic of a monoblock stream turbine rotor, 
(b1, b2)—schematic of a built-up stream turbine rotor with shrunk-on discs; (c)—schematic of a 
welded stream turbine rotor. The welds connect the discs (ABB Power Generation, Baden, Switzerland) 
[2,9–23]. Rotor body with detailed drawing of gaps for wedges and winding (d) [5]. Linear slots of 
the hydrogen cooled turbogenerator rotor shaft tail (original design). 1—rotor shaft; 2—current 
supply slot; 3—ventilation slot; 4—slot wedges; 5—current supply tire; 6—shaft fracture areas due 
to fretting (wedge joining areas) (e). Design slot wedges rotor tail after application of the antifretting 

Figure 3. Types of turbine rotor construction: (a)—schematic of a monoblock stream turbine ro-
tor, (b1,b2)—schematic of a built-up stream turbine rotor with shrunk-on discs; (c)—schematic
of a welded stream turbine rotor. The welds connect the discs (ABB Power Generation, Baden,
Switzerland) [2,9–23]. Rotor body with detailed drawing of gaps for wedges and winding (d) [5].
Linear slots of the hydrogen cooled turbogenerator rotor shaft tail (original design). 1—rotor shaft;
2—current supply slot; 3—ventilation slot; 4—slot wedges; 5—current supply tire; 6—shaft fracture
areas due to fretting (wedge joining areas) (e). Design slot wedges rotor tail after application of the
antifretting measures system: 1—rotor shaft; 2—current supply slot; 3—ventilation slot; 4—current
supply wedge; 5—current supply tire; 6—ventilation slot wedge; 7—easy shifting seal (f) [2,6,23–34].

2. Literature Survey: State of the Art

The steel for shaft and rotor blanks is smelted in open-hearth furnaces with acid lining
or electric furnaces. Vacuuming must be used when pouring ingots weighing more than
25 t. According to [2–5], for the manufacture of shafts and rotors of steam turbines and
TG in Ukraine, Poland and other countries, it is recommended to use special grades of
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steel with the appropriate chemical composition, depending on the strength category. The
length of the rotor shafts can reach 13.4 m, and the diameter can reach 1.8 m with a total
mass of about 160 t (for the mass of the output ingot over 360 t).

Only the part of the ingot that has the most homogeneous material is used to make
the rotor. Magnetic and ultrasonic flaw tests, together with the study of the mechanical
properties of the samples obtained by radial and axial drilling and the careful control of
the structure, allow for the selection of the necessary material for the rotor. Along with
the promising open-hearth method of manufacturing powerful TG rotors, there is the
electroslag welding of two workpieces.

The need to develop a new method is associated with the prospect of developing TG
for power plants with a capacity of up to 2000 MW. In this case, the diameter of the rotor
will approach 3.0 m, and the mass of the rotor shaft can exceed 300 t (respectively, the
forging for the manufacture of such a shaft will weigh more than 400 t, and the total weight
of the steel ingot is about 680 t).

Therefore, the search for non-traditional methods of manufacturing shafts and rings
from electroslag steel for high-speed (3000, 3600 RPM) and low-speed (1500, 1800 RPM)
powerful TG and related turbines continues.

At the same time, manufacturers are improving existing technologies for the man-
ufacture and reliable operation of rotors. The parameters that determine the operat-
ing conditions of the contact of the wedges with the shaft for TG vary widely. In par-
ticular, the nominal bending stress in the shaft varies from 16 . . . 19 (TVV-320-2) to
29 . . . 33 MPa (TVV-1200-2), and the average contact pressure varies from 85 (T3V-800-2)
to 300 . . . 305 MPa (TVV-1200-2, current supply groove). The durations of rotor operation
before the appearance of developed cracks also differ—from (2 . . . 3)× 107 cycle (TVV-1200-
2) to (2 . . . 3) × 1010 cycle (TVB-320-2). For TG type TVV-220-2, the operation duration
(5 . . . 8) × 1010 cycle [2–4] in gaseous hydrogen (used for cooling technology) can be the
base for the materials selection for hydrogen turbine rotors.

Low-alloy steels with a typical carbon content of 0.2 . . . 0.3% are mainly used for steam
turbine rotors in EU and the USA. The standard heat treatment of these steels includes
austenitization, hardening and tempering at temperatures above 600 ◦C, which results in a
bainite microstructure with a yield strength of 800 MPa [2–34].

The operating time of most of the NPP power units has already exceeded its park
resource [25–34]. Thus, the priority direction of research is to increase the reliability and
extend the service life of the operation of power units, including the components of power
units.

The increase in operational requirements for the rotors of high-power steam turbines
at nuclear power plants necessitates improving the quality characteristics of the initial
metal structure of their welded joints, which is characterized by the presence of a certain
heterogeneity. It is advisable, by using the optimal welding heating of the manufactured
joints, to reduce the level of the initial structural heterogeneity, which increases with an
increase in their operating time [25–34].

In the process of the formation of the initial structure of welded joints, structures can
be formed (locally) in it, which can be conditionally referred to as rejection ones. Such
rejection structures contribute to the accelerated damage of the metal of the welded joint
of the rotor during its operation under fatigue conditions, which causes a decrease in its
reliability and a decrease in its resource.

The goal of this work is to simulate the welding heating of the manufactured joint of
the steam turbine rotor made of 25H2NMFA and 20H3NMFA steels to obtain the initial
structure of the welded joint with an improved quality of mechanical characteristics and
crack resistance in hydrogen-containing environments.

3. Formulation of the Problem: Materials and Methods

For the manufacture of forged billets of welded turbine rotors (for example, K-1000-
60/1500 and its modifications, K-1000-60/1500-2, etc.), 25H2NMFA steel is used. Blanks for
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welded rotors are subject to the individual determination of mechanical properties using
special quality control methods for their metal.

In the energy sector, the trend of using powerful steam [2,3] and promising hydro-
gen [4] turbines with a combined rotor, which is obtained by welding, is becoming rele-
vant [1]. This rotor is operated in high- and low-temperature modes. The combined rotor
is made of alloy steels that meet the special operating conditions of high-pressure (HP),
medium-pressure (IP) and low-pressure (LP) cylinders. For the stages of the rotor, which
operates in low temperatures at JSC “Turboatom”, the steels 25H2NMFA and 20H3NMFA
were proposed [10–15].

For stages operating in the temperature range close to 500 ◦C, the steel 25H2NMFA
was proposed. This steel has relatively high mechanical properties but is difficult to weld.

The welding of the 25H2NMFA and 20H3NMFA steels (Table 1) is an extremely
difficult task [10–14], which is associated with the formation of defective structures in the
alloying area, as well as in the area of incomplete recrystallization of the heat-affected zone
(HAZ) of the 20H3NMFA steel welded joint. An urgent requirement is also to ensure the
necessary resistance against the formation of cold cracks.

Table 1. Chemical composition of the base metal, electrode wire and weld metal of the combined
weld [2–5,10,34].

Investigated
Object

Chemical Composition, Mas %

C Si Mn Cr Ni Mo V W S P

20H3NMFA 0.20
(0.16–0.24)

0.30
(0.17–0.40)

0.34
(0.25–0.60)

3.0
(2.40–3.30)

0.20
(0.20–0.50)

0.65
(035–0.65)

0.70
(0.60–0.85)

0.46
(0.30–0.50) ≤0.012 ≤0.032

25H2NMFA 0.24 0.34 0.46 1.0 2.55 0.46 0.02 - ≤0.014 ≤0.024
Wire
SV08HN2
GMYu

0.08 0.53 1.05 0.75 2.0 0.45 0.016 - ≤0.012 ≤0.018

Weld metal 0.056 0.25 0.98 0.73 1.8 0.45 0.003 - ≤0.012 ≤0.018

The content of Co (rotor of the primary circuit of the steam turbine) should not exceed 0.025%, Cu ≤ 0.25.

The SV08HN2GMYu electrode wire with a diameter of 2.0 mm and AN-43M flux was
used for the experiments, which ensured the achievement of the optimal composition in
the weld metal of the alloying elements and also limited the presence of harmful impurities
of sulfur and phosphorus (Table 1).

The restriction of sulfur and phosphorus prevented the metal from crumbling to weld,
which occurs after high tempering.

The welding of the rigid technological samples was performed on the mode:
Iweld = 300 . . . 320 A; Uweld = 34 . . . 36 V; Vweld = 18 m/h. Control over the formation and
growth of cracks was performed using acoustic emission signals. It was established that
cold cracks are formed in the weld metal during the welding of technological samples with-
out preheating. Their origin, as shown by acoustic emission signals, begins immediately
after welding and continues with the imposition of subsequent rollers.

The resistance to failure of 20H3NMFA welds in unheated welding was relatively
low, but when heated to 300 ◦C, such indicators become satisfactory. Thus, to ensure a
high resistance to the slow destruction of welded joints of the steels 25H2NMFA and
20H3NMFA, obtained by automatic submerged arc welding, it is possible to recom-
mend the pre-heating and concomitant heating of samples in the temperature range of
250 . . . 300 ◦C.

The proposed technology, as shown by metallographic studies (Figure 4), allowed for
the obtention of welded joints with relatively high mechanical properties, without cracks
and tears.
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*—mkm.

The use of wire, as well as the above modes of welding, provided the structure of
the weld metal in the form of bainite with carbides. This structure is not prone to slow
destruction, which is ensured by the absence of the local microplastic deformation of its
structural components.

The determination of the mechanical properties was performed on samples cut
from weld metal, as well as from combined welded joints of the steels 25H2NMFA and
20H3NMFA, the thickness of which was 80 mm. Welding was performed according to the
above modes. Welded joints were subjected to high tempering at 620 ◦C for 30 h.

It was found that the strength and ductility of the welded joints at 20 ◦C and 450 ◦C
(operating temperature) are relatively high and meet the regulatory requirements (Table 2).
The toughness of the weld metal is slightly lower than that of the base metal, which was
not affected by welding heat (Tables 2 and 3). The critical temperature of fragility is in the
region of low temperatures (−15 ◦C . . . −10 ◦C).

Table 2. The toughness of the weld metal of the combined welds after tempering at 630 ◦C for 30 h.

Investigated Object
Impact Toughness KCV, J/cm2

20 ◦C −20 ◦C −40 ◦C

20H3NMFA 105 . . . 78
91.5

60 . . . 45
55

40 . . . 30
35

25H2NMFA 136 . . . 120
128

81 . . . 40
60.5

60 . . . 30
45

Weld metal
(wire SV08HN2GMYu)

100 . . . 72
86

50 . . . 35
42.5

39 . . . 31
35

Table 3. Impact toughness of samples with a V-notch along the HAZ (fusion and overheating areas)
(Figure 4).

Investigated Object
Impact Toughness KCV, J/cm2

Suggested Welding Process Standard Welding Process

Sample 1 (fusion area) 74 64
Sample 2 (fusion area) 59 57
Sample 3 (fusion area) 69 60

Sample 1 (overheating area) 187 176
Sample 2 (overheating area) 171 168
Sample 3 (overheating area) 88 178

The metallographic analysis of the structure of combined welded joints showed that the
metal of HAZ sections has a mainly sorbitol and bainitic-ferritic structure on the 25H2NMFA
side, as well as a bainitic martensite structure on the 20H3NMFA side [10–13,20].

The weld metal is characterized by the presence of a bainitic-ferritic structure. Mea-
surements of the hardness of the metal of the combined weld showed that the structures
in the area of overheating on the side of the 20H3NMFA steel have a hardness of HV
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350 . . . 360, and in the area of overheating of the 25H2NMFA steel, they have a hardness of
HV 300 . . . 320.

The base metal, which has not undergone welding heat, has a hardness of HV
280 . . . 290 (steel 20H3NMFA) and HV 230 . . . 240 (steel 25H2NMFA). After tempering at
620 ◦C (20 h) the structure of the welded joints acquires alignment, and the hardness is HV
180 . . . 190.

In the area of the fusion of the weld metal with the steel 25H2NMFA, the hardness
decreases to HV 160 . . . 170. In the area of the fusion of the weld metal with the steel
20H3NMFA, the hardness is slightly higher than HB 190 . . . 205.

The hydrogen content in the metal of the ingots should not exceed 2.23 ppm [10–15],
and the decrease in its value in steel and weldments has led to the improvement of the
mechanical characteristics, hydrogen resistance and durability of steam turbine rotor steels
welded joints. The initial steel structure is tempered bainite (Figure 4).

The study of the structural state of welded joints made of 25H2NMFA steel, as well as
of steels with a similar chemical composition [6,10–14], showed that rejection structures or
structures close to rejection ones can form in the metal of welded joints. For example, it
is still an urgent task to obtain fine austenite grains in the areas of the heat-affected zone
(HAZ) of welded joints: fusion, overheating and normalization. A significant contribution
to the practical and theoretical solution of the problem of obtaining a fine-grained austenitic
structure was made in [6,10]. However, his work could not lead to a solution to the problem
of preventing the formation of large austenite grains in thick-walled welded joints.

Welding heating (standard technology) provides a long stay of fusion, overheating
and normalization of the HAZ of the studied thick-walled welded joints in the tempera-
ture range Ts-950 ◦C, which leads, accordingly, to the formation of large austenite grains.
Long-term heating to the temperature range AC1–AC3 leads, in the area of the incomplete
recrystallization of the HAZ, to the formation of new products of austenite decomposi-
tion in the form of globular pearlite [11–14]. In the samples, after welding, a significant
increase in hardness was revealed, corresponding to the areas of fusion and overheating
of the HAZ [11–14]; however, they did not explain the relationship between the increased
hardness and the structural state of the areas.

The presence of the above structures reduces the resistance of the metal of welded
joints to brittle fracture from the action of centrifugal forces, stress corrosion, hydrogen
cracking and fatigue damage under the action of alternating stresses during rotation,
bending and torsional vibrations.

The improved thermal problem [11–14], applied to the welded joint of the rotor
(Figure 5), was solved in a joint delivery under the conditions of the Navier–Stokes (molten
metal of the weld pool) and Fourier (base metal, as a solid phase) laws (Figure 6).
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The solution was carried out in a cylindrical coordinate system in an axisymmetric
setting. It was assumed that a quasi-stationary process of heat transfer and crystallization
takes place.

Let us write the Navier–Stokes Equation (1):
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Here, υ = µ/ρ is the kinematic viscosity; g—acceleration of gravity; vector
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determines the influence of

electromagnetic forces on the behavior of the dynamics of flows of liquid metal in the

molten bath;
→
B is the magnetic field strength; β is the coefficient of thermal expansion;

T is the temperature; ψ is the melt flow function; ξ—coordinate of the rotor of the ve-
locity field; ρ, s, µ, k—density, heat capacity, dynamic viscosity and thermal conductivity;
Qk—additional heat input into the bath melt.

Let us introduce the stream function of the molten metal ψ and the vortex ξ. The
relationship with physical variables will be as follows:
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∫
Ω

[
∂ψ
∂r

∂ξ
∂z −

∂ψ
∂z

∂ξ
∂r +

∂ψ
∂z

ξ
r

]
ϕkdrdz+

+ν
∫
Ω

[
( ∂ξ

∂r ϕk + r ∂ϕk
∂r + ξ

∂ϕk
∂r + ∂ξ

∂z
∂ϕk
∂r r)

]
ϕkdrdz+

+gB
∫
Ω

T(ϕk + r ∂ϕk
∂r )ϕkdrdz =

∫
Ω

π(
→
j ×

→
B)ϕkdrdz∫

Ω

[
∂ψ
∂z

∂ϕk
∂z + 1

r
∂ϕk
∂r (ϕk + r ∂ϕk

∂r ) + ξϕkr
]

ϕkdrdz = 0∫
Ω

[
( ∂ψ

∂z
∂T
∂r + ∂ψ

∂r
∂T
∂x ) +

k
ρCp

( ∂T
∂r

∂ϕk
∂r + ∂T

∂z
∂ϕk
∂z )
]

ϕkdrdz =

=
∫
Ω

Qk ϕkdrdz, (k = 1, . . . , n)

(3)

ϕk are basis functions, which were determined by the method of R-functions.
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The free surface of the molten bath Ω3 (Figure 6) was taken as flat. With regard to the
weld pool, a joint solution of the nonlinear system of equations of the magnetohydrody-
namics of the motion of molten metal as a viscous liquid, the system of Maxwell’s equations
for the distribution of the vectors of strength of the electric and magnetic components of
electromagnetic fields, was performed. With regard to the base metal, as a solid phase, to
determine the values of temperatures T, the nonlinear equation of thermal conductivity
was solved. System (3) was formulated as a problem as applied to phase transitions with a
free boundary, which corresponds to the conditions of the Stefan problem.

In the calculations of the temperature regime in welded joints, the traditional scheme
(which coincides with the Ritz method) was used; in this case, the basis functions were
constructed in spatial variables, and the motion in time was taken into account using the
Rothe method, i.e., by sampling in time. This method made it possible to reduce the system
of non-stationary Navier–Stokes equations to a system of stationary equations. The solution
of the last system was carried out in an iterative way, in which the k + 1 approximation
includes the k-th approximation as the initial one.

By choosing a system of basis functions {ϕ} in the form of splines (the classical method),
we projected the resulting expansion of solutions into an n-dimensional subspace. In this
case, the time for calculating all the integrals that are included in the matrix of the system
of linear Navier–Stokes equations is significantly reduced. With the optimal selection of the
initial basis functions (taking into account the experimental data), fairly accurate results
were obtained already on the first few terms of the expansion.

The solution to the heat problem allowed:
1. For the establishment of the temperature regime of the welding process, ensuring

the formation of a given structure of the welded joint;
2. For the revelation, in the weld metal and in the area of HAZ fusion, of the places of

local welding overheating, where structures can form as rejection ones or as structures that
can be referred to as rejection ones. For example, large austenite grains in the areas of fusion,
overheating and normalization of the HAZ and new products of austenite decomposition
in the form of globular pearlite in the area of incomplete recrystallization. It was found
that the reduced structures can form mainly in the central zone of the welded joint (see
Figures 5 and 7) (Samples 1–3). Note that the simulation of welding heating allows, in a
practical way, for the prevention of the formation of both rejection structures and structures
that can be attributed to rejection [6].
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crack resistance properties and determining the microhardness (1–3 template numbers).

The use of numerical data characterizing the temperature regime of welded joints made
it possible, taking into account the known techniques [15–35], to optimize the parameters
of the automatic welding regime. Then, the welding process of the prototype witness
was carried out on the optimized parameters: welding current 390–420 A; arc voltage
38–40 V; welding speed 20–25 m/h; electrode wire feed speed 125–130 m/h; diameter of
the electrode wire 2.0–2.5 mm.
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The mode parameters during the welding process were changed within the recom-
mended values. Their change was caused by the need to obtain an optimized temperature
regime that ensures the formation of a given structure.

The preliminary and concomitant heating of the prototype to be welded was 300–350 ◦C.
Immediately after welding, the sample was subjected to high tempering T = 630–650 ◦C,
lasting 130–150 h. Then, from the witness sample (Figure 5), templates were cut out to
study the structure and properties (Figure 7).

4. Results and Discussion: Weldments Structure and their Mechanical Properties

The application of the famous method, when solving the heat problem, made it
possible to construct smoothly-approximated temperature isotherms (Figures 8 and 9),
which made it possible to restrict the HAZ sections with the same structure in the welded
joint.

Energies 2022, 15, 6006 10 of 24 
 

 

found that the reduced structures can form mainly in the central zone of the welded joint 
(see Figures 5 and 7) (Samples 1–3). Note that the simulation of welding heating allows, 
in a practical way, for the prevention of the formation of both rejection structures and 
structures that can be attributed to rejection [6]. 

 
Figure 7. Scheme of cutting templates from a welded joint for studying the structure, mechanical 
and crack resistance properties and determining the microhardness (1–3 template numbers). 

The use of numerical data characterizing the temperature regime of welded joints 
made it possible, taking into account the known techniques [15–35], to optimize the pa-
rameters of the automatic welding regime. Then, the welding process of the prototype 
witness was carried out on the optimized parameters: welding current 390–420 A; arc 
voltage 38–40 V; welding speed 20–25 m/h; electrode wire feed speed 125–130 m/h; diam-
eter of the electrode wire 2.0–2.5 mm. 

The mode parameters during the welding process were changed within the recom-
mended values. Their change was caused by the need to obtain an optimized temperature 
regime that ensures the formation of a given structure. 

The preliminary and concomitant heating of the prototype to be welded was 300–350 
°C. Immediately after welding, the sample was subjected to high tempering T = 630–650 
°C, lasting 130–150 h. Then, from the witness sample (Figure 5), templates were cut out to 
study the structure and properties (Figure 7). 

4. Results and Discussion: Weldments Structure and their Mechanical Properties 
The application of the famous method, when solving the heat problem, made it pos-

sible to construct smoothly-approximated temperature isotherms (Figures 8 and 9), which 
made it possible to restrict the HAZ sections with the same structure in the welded joint. 

 
Figure 8. Scheme of HAZ Sections: 1—fusion section, 2—overheating section, 3—normalization sec-
tion, 4—incomplete recrystallization section, 5—weld metal, 6—base metal. 

The calculated and experimental data characterizing the regions of the formation of 
the corresponding structures were compared with the data of the thermos-kinetic diagram 
of the steels 25H2NMFA and 20H3NMFA. The comparison, as well as taking into account 
the known results [22–31], made it possible to improve the mathematical model of 

Figure 8. Scheme of HAZ Sections: 1—fusion section, 2—overheating section, 3—normalization
section, 4—incomplete recrystallization section, 5—weld metal, 6—base metal.

Energies 2022, 15, 6006 11 of 24 
 

 

welding heating of the manufactured rotor and to refine the numerical data characterizing 
the thermal cycle. 

The widths of the HAZ sections on the templates (Figure 4) were determined by tak-
ing into account the presence of similar structures in the areas. The separation of differing 
structures in relation to the corresponding sections of the HAZ was marked with reference 
points. The study of the structural state of the welded joint made it possible to reveal the 
width of the HAZ sections (Figure 5). 

Template 1: fusion area 0.1–0.12 mm; overheating area 3.0–3.1 mm; area of incom-
plete recrystallization 2.4–2.6 mm. Template 2: fusion area 0.11–0.13 mm; overheating area 
3.2–3.3 mm; area of incomplete recrystallization 2.6–2.8 mm. Template 3: fusion area 0.1–
0.11 mm; overheating area 3.1–3.2 mm; area of incomplete recrystallization 2.5–2.7 mm. 

Seam metal (Figures 4 and 6, Template 1) has a bainitic structure with sorbitic com-
ponents oriented in accordance with the temperature regime providing their directional 
formation. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 9. The structure of the weld metal of the welded joint made of the steel 25H2NMFA (Figure 
7): (a)—template 1, (b)—template 2, (c)—template 3, (d)—original metal. ×400. *—mkm. 

On template 2, the structure is presented as bainite-troostite with sorbite inclusions 
with a locally thickened character. On template 3, the structure is also bainite-troostite 
with a small amount (about 8%) of the ferrite component. 

In the fusion area of HAZ (Figure 10), there is a smooth transition between the struc-
ture of the weld metal and the base metal. The structure of the fusion area is characterized 
by the presence of fine grains in a dark matrix. There are precipitates of the cementite type 
in the form of rounded, finely dispersed inclusions, the arrangement of which along the 

Figure 9. The structure of the weld metal of the welded joint made of the steel 25H2NMFA (Figure 7):
(a)—template 1, (b)—template 2, (c)—template 3, (d)—original metal. ×400. *—mkm.



Energies 2022, 15, 6006 11 of 23

The calculated and experimental data characterizing the regions of the formation of
the corresponding structures were compared with the data of the thermos-kinetic diagram
of the steels 25H2NMFA and 20H3NMFA. The comparison, as well as taking into account
the known results [22–31], made it possible to improve the mathematical model of welding
heating of the manufactured rotor and to refine the numerical data characterizing the
thermal cycle.

The widths of the HAZ sections on the templates (Figure 4) were determined by taking
into account the presence of similar structures in the areas. The separation of differing
structures in relation to the corresponding sections of the HAZ was marked with reference
points. The study of the structural state of the welded joint made it possible to reveal the
width of the HAZ sections (Figure 5).

Template 1: fusion area 0.1–0.12 mm; overheating area 3.0–3.1 mm; area of incomplete
recrystallization 2.4–2.6 mm. Template 2: fusion area 0.11–0.13 mm; overheating area
3.2–3.3 mm; area of incomplete recrystallization 2.6–2.8 mm. Template 3: fusion area
0.1–0.11 mm; overheating area 3.1–3.2 mm; area of incomplete recrystallization 2.5–2.7 mm.

Seam metal (Figures 4 and 6, Template 1) has a bainitic structure with sorbitic com-
ponents oriented in accordance with the temperature regime providing their directional
formation.

On template 2, the structure is presented as bainite-troostite with sorbite inclusions
with a locally thickened character. On template 3, the structure is also bainite-troostite with
a small amount (about 8%) of the ferrite component.

In the fusion area of HAZ (Figure 10), there is a smooth transition between the structure
of the weld metal and the base metal. The structure of the fusion area is characterized by
the presence of fine grains in a dark matrix. There are precipitates of the cementite type
in the form of rounded, finely dispersed inclusions, the arrangement of which along the
body and along the grain boundaries of the α-phase is close to uniform. The structural
heterogeneity of the fusion area meets the regulatory requirements.
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The overheating section (Figure 11 (template 2, Figures 7 and 8)) has a predominantly
sorbate-troostite structure.

Austenitic grains in the areas of fusion and overheating correspond to No. 7–No. 9.
Accordingly, the largest grains are noted on template 2 (see Figure 11). Smaller ones are
noted on templates 1 and 3. It was revealed that the matrix phase in the areas of fusion and
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overheating of the HAZ is bainite, which is close to granular in shape. The formation of
bainite in the process of post-weld cooling occurs mainly by the martensitic mechanism.

The structure of the area of incomplete recrystallization of the HAZ (Figure 12) repre-
sents temper bainite with sorbitol constituents (dark grains in bainite).
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Sorbitol constituents are the new decomposition products of austenite. It was found
that M3C carbides in the structure of the HAZ sections and in the weld metal structure
are distributed mainly evenly. The grain size of the α-phase under tempering conditions
does not undergo changes. The coagulation of carbides of the first group (M7C23, M23C6)
is insignificant, and in the second group, Mo2C, it is absent.

It was found that the amount of retained austenite (7–9%) in the weld metal, which
turns into a ferrite-carbide mixture during tempering, does not significantly affect the
mechanical properties, which is confirmed by the microhardness values (Figure 13).
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The presence of the considered structures in the metal of the welded joint is also
confirmed by the value of the microhardness.

It was found that the specified welding heating ensures the formation of smaller
austenite grains in the HAZ sections, which is confirmed by the values of the impact
toughness increasing by 10–15% in comparison with the similar values of the samples
manufactured using the standard technology.

It was found that the average short-term mechanical properties of welded joints (see
Figure 7) exceed the regulatory requirements by 5–10%: σB 680 N/mm2; σ0.2 520 N/mm2;
δ 25%; ψ 63%; KCV 187 J/cm2; HB 197.

The study of the welded joints’ structure has shown that high tempering in the weld
metal provides a transition from α-phase crystals to chromium and molybdenum carbides,
as well as the formation of new carbides: M7C23, M23C6 and Mo2C. The value of the
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critical point AC1 decreases by 32–35 ◦C in comparison with the base metal that does
not undergo welding heating. The value of the temperature of the AC3 point of the base
metal, in comparison with similar values, does not change noticeably. The density of
dislocations in the crystals of the α-phase after tempering decreases by about 10–15% and
amounts to 2.15 × 109 cm−2 in the fusion area, 1.9 × 109 cm−2 in the overheating area and
1.7 × 109 cm−2 in the base metal.

5. Weldments’ Static Crack Resistance in Hydrogen

Compact specimens with welds, which provide controlled propagation of the main
crack on the metal of different zones of the weld (Figures 14 and 15) [35–40], effectively
contribute to the optimization of welding modes.
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Figure 15. Samples for studying the parameters of the static crack resistance of welded joints of
different configurations. Guide (longitude) (a), perpendicular (b), T-shaped (c), cruciform (d) (for
investigation of cross-like WJ, which simulates real structures’ shell-bottom vessels under hydrogen
pressure), wedge loading schemes (d,e) of prismatic-type compact specimens (P-force, t, 2a + δ,
b1—specimen thickness, width and length, d—hole diameter, h, l0, b—the distance from the hole
center to the concentrator tip, the end of the initiated fatigue crack and the finish of the crack
path) [36–40]: 1—guide plates, 2—wedge, 3—specimen, 4—guide plate (loaded with a wedge of two
types of fixation) after specimens’ long-term exposure in gaseous hydrogen with high pressures and
temperatures (f) [35–40].

The disadvantage of the model in the case of welded joints of different configurations
is that, in the process of spreading cracks along the entire length of the part, welds can
serve as traps for cracks, and this changes their trajectory (Figure 16), sometimes at an angle



Energies 2022, 15, 6006 14 of 23

up to 90◦ (Figure 16). This phenomenon is due to the occurrence of stress concentrators in
the remelting areas, which negatively affect the performance characteristics, particularly
crack resistance. During welding, microcracks appear near the fusion line, which cause
a decrease in compressive residual macro stresses. All of this also negatively affects the
performance of machine parts under cyclic and static loads during long-term operation.
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Uneven grain sizes, the sizes and distribution of reinforcing phases, local thermal
stresses and other defects cause the significant sensitivity of various structural elements of
welded joints to the action of hydrogen [41–46]. Even the simulation of the soldering regime
with the short-term (15 min) heating of KhN43MBTYu and 05Cr19Ni55 alloys to 1473 K
leads to an increase in grain size and the concentration of large grain boundary intermetallic
precipitates, which significantly enhances the hydrogen embrittlement of materials [47,48].
In the presence of hydrogen, the mechanical characteristics of welded joints deteriorate—
short-term strength and ductility [43,44] and low-cycle durability [44,45].

Important characteristics of critical structures, including steam and hydrogen turbine
rotors, are the parameters of crack resistance [49–118], which are also significantly reduced
by hydrogen [41,42,46–48,53–56] with a pressure up to 10 MPa. Given the variety of factors
that determine the properties of welded elements in hydrogen-containing environments,
to assess their performance requires the experimental determination of a set of physical
and mechanical properties of a particular joint [119–125], especially for the structural
elements of the hydrogen energy buffer (electrolizers, fuel cells, hydrogen storage and grid
distribution), with the intention of utilizing hydrogen and the accompanied phenomenon
of their hydrogen degradation during long-term service.

Four types of samples were tested: smooth five-fold cylindrical with a working part
diameter of 5 mm to determine the short-term strength and ductility and the fatigue life;
flat with a rectangular cross-section of 3 × 6 mm and a length of the working part of 20 mm
for the study of low-cycle fatigue; 25 mm-thick rectangular compact specimens with an
off-center tensile speed of 0.1 mm/min to assess fracture toughness. The critical values of
SIF in air were determined by the J-integral method [55], because the plastic characteristics
of the alloy in an inert medium are high (Table 4), and at a specimen thickness of 20 mm,
the plane strain state (PSS) is not realized.
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Table 4. Mechanical properties of welded joints in air (upper value) and in hydrogen at a pressure of
10 MPa (down value).

Investigated
Object T, ◦C σ0.2, MPa σB, MPa δ, % ψ, % KIc,

MPa·m 1/2

Steel
20H3NMFA

20 620
610

730
710

11
8

32
21

112
61

450 510
510

600
610

8
7

27
25

92
83

Steel
25H2NMFA

20 520
530

687
680

14
10

40
26

118
72

450 460
430

570
580

12
12

40
36

101
91

Welded joint
20 530

510
690
690

24
11

67
31

39
21

450 450
460

570
560

16
15

63
52

42
38

The fracture toughness under elastic-plastic fracture was estimated by the J-integral
method using the dependence K2

Ic(J) = JIcE/(1 − µ2), where E is the modulus of elasticity
(Young’s modulus) and µ is the Poisson’s ratio [51]. All roofs and fatigue cracks are located
in the middle of the weld metal (Figure 8, Section 5). In the initial state after heat treatment,
the structure of the steels 25H2NMFA and 20H3NMFA consists mainly of bainite tempering
and a small amount of ferrite-carbide mixture.

Such materials have a relatively low strength and high viscosity of fracture in air
(Table 4). Under the hydrogen action, the strength characteristics of hydrogen do not
change. At short-term stretching at room temperature, its effect is manifested in a significant
reduction in the relative elongation δ, the relative transverse narrowing ψ and the critical
stress intensity factor (KIc) of steels and, especially, welded joints. The viscosity of the
fracture, which is characteristic of many welds, deteriorates significantly (by 40–50%) [41,42].

For example, the reduction in the fracture toughness in the base metal X80 steel
increased with increasing current density; the difference in the effects of hydrogen on
the fracture toughness of the base metal and the weld was attributed to the specific mi-
crostructural features of both materials [41–90]. Compared with the weld, the base metal
exhibited a more refined microstructure. The higher fraction and the larger grain bound-
ary density were conducive to crack arrest performance in gaseous hydrogen-containing
environments [41–90].

In comparison to similar H-free samples, the H-charged samples presented lower
fracture toughness. For samples, with notches located at the base metal, stir zone and
heat-affected zone metal, the average Critical Crack Tip Opening Displacement decreased
from 0.96 to 0.25 mm, from 0.48 to 0.43 mm and from 0.22 to 0.08 mm, respectively [42]. At
the working temperature (450 ◦C), the effect of hydrogen is negligible (Table 4).

Experiments have shown that, in air and hydrogen, the destruction of the combined
joints took place on the weld metal, as well as on the fusion areas, the overheating and the
incomplete recrystallization of the HAZ of 20H3NMFA steel as the base metal.

6. Hydrogen Influence on the Welded Joint Durability under Cyclic Loadings

The operation of many structures—particularly, steam and hydrogen turbine ro-
tors, cooling infrastructures of powerful semiconductor devices and industrial single-
crystal growth applications [3–9,25–34,45,55–59,79–91,110]—is accompanied by their cyclic
loads, which often exceed the yield strength of the material [52,54–56], based on un-
derstanding the hydrogen embrittlement of materials from the atomistic level to the
continuum [100–103,123–128]. In such cases, low-cycle fatigue tests most fully reflect the
operating conditions of the products. Rigid low-cycle bending is also used to assess the wa-
ter resistance of steels and alloys due to the simplicity of the practical implementation and
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combination in the near-surface layers of samples of maximum stresses and concentrations
of hydrogen [57–59].

Low-cycle endurance was investigated by the rigid zero-zero pure bending of flat
samples with the dimensions of the working part (3 × 6 × 20 mm) in the range of defor-
mation amplitudes of 0.3 . . . 1.25%. From such amplitudes, the load frequency of 0.83 Hz
ensured the absence of heating of the samples and the short duration of the experiments
and allowed for the detection of the effect of hydrogen on the number of cycles before
failure [57–59].

It was found that, in the studied range of amplitudes in the logarithmic coordinates of
the load amplitude, the number of cycles to failure is represented by straight lines in both air
and hydrogen, as described by the Coffin–Manson equations (Figure 17). It is known [57–59]
that, under low-cycle loading, the magnitude of the deformation amplitude ε determines
the time to crack formation, the stress-strain state at the crack tip and, when tested in the
presence of hydrogen, the amount and nature of the distribution in the sample.
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Figure 17. Curves of low-cycle fatigue (number of cycles before failure—load amplitude) of samples
of the steels 25H2NMFA (1,2) and 20H3NMFA (3,4) and their welded joint (5,6) in air (1,3,5) and
hydrogen at a pressure of 10 MPa (2,4,6).

In steels with a high viscosity and a low yield strength, the level of local micro stresses
for crack germination requires a high concentration of hydrogen [119–125], which decreases
with the increasing frequency and amplitude of the load, which probably causes the
weakening of the hydrogen embrittlement steels 25H2NMFA and 20H3NMFA (Figure 18,
curves 1, 2).
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Figure 18. Dependencies of the coefficient of influence of hydrogen under a pressure of 10 MPa on
the number of cycles to failure of samples made of 25H2NMFA (1) and 20H3NMFA (2) steels and
their welded joint (3) on the amplitude of low-cycle bending.

The opposite pattern was found in tests of 17G1SU steel [54]—for large amplitudes
of cyclic tensile, the effect of the corrosive environment on the number of cycles to the
destruction of the parent metal and the weld is greater.

20H3NMFA steel with a higher strength and lower ductility has a lower durability
and is stronger in hydrogen than 25H2NMFA steel. In the whole range of amplitudes,
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the influence of hydrogen on welded joints is very strong (Figure 18) and is illustrated by
βN—the coefficient of hydrogen influence on the number of cycles to failure of samples
made of 25H2NMFA and 20H3NMFA steels and their welded joint during low-cycle
bending (βN = NH/NHe).

The endurance limit of cylindrical smooth specimens that rotate was determined by
their bending. Cylindrical specimens for fatigue tests were cut from transverse templates of
butt-welded joints. In the whole range of load amplitudes, the number of cycles before the
destruction of combined welded joints is very sensitive to the action of hydrogen (Figure 19)
and is significantly less than that of the rotor steel 38KhN3MFA [5].
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An analysis of the improvement of up to 10–15% of the mechanical characteristics,
hydrogen crack resistance and durability of rotor steels welded joint is possible in order
to obtain an initial structure by the overheating and normalization of the HAZ and the
formation of austenite grains reduced in size. This revealed that the specified welding
heating creates conditions for the formation of new products of austenite decomposition in
the form of sorbitol in the area of incomplete recrystallization.

7. Conclusions

It was established that the calculated values of temperatures obtained by simulating
welding heating and the subsequent implementation of the welding process at the given
mode parameters made it possible to obtain a welded joint of the rotor with an improved
initial structure and increased the mechanical properties, hydrogen resistance and durability
by 10–15%.

By simulating welding heating in the areas of the fusion, overheating and normaliza-
tion of the HAZ, the formation of austenite grains reduced in size was provided.

It was revealed that the specified welding heating creates conditions for the formation
of new products of austenite decomposition in the form of sorbitol in the area of the
incomplete recrystallization of the HAZ.

It was shown that, in air and hydrogen, the destruction of the combined joints took
place on the weld metal, as well as on the fusion areas, the overheating and the incomplete
recrystallization of the HAZ of 20H3NMFA steel as the base metal. Structural materials
have a relatively low strength and high viscosity of fracture in air.

At short-term stretching at room temperature, its effect is manifested in a significant
reduction in the relative elongation δ, the relative transverse narrowing ψ and the critical
stress intensity factor (KIc) of steels and, especially, welded joints. The fracture toughness,
which is characteristic of many welds, deteriorates significantly (by 40–50%).

The endurance limit of cylindrical smooth specimens of rotor steel which were cut
from transverse templates of butt-welded joints in the whole range of load amplitudes and
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the number of cycles before the destruction of combined welded joints are very sensitive to
the action of hydrogen.
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Nomenclature and Abbreviations

σB ultimate tensile strength (UTS)
σ0.2 yield strength (YS)
σ−1 fatigue limit
N number of cycles
δ elongation
ψ reduction of area
ε strain
CH hydrogen concentration
wppm weight parts per millions
SIF stress-intensity factor
GTE gas turbine engine
GET environmentally ‘greener’ hydrogen energetic turbine
HCF high-cycle fatigue
LCF low-cycle fatigue
RPM rotation per minute
HCE hydrogen-containing environment
HE hydrogen embrittlement phenomena
UEPS United Electric Power System
PSE S.A.Polish Power System
FPP fossil power plant
NPP nuclear power plant
TA turboaggregate (turbine + turbogenerator)
TG turbogenerator
HP high-pressure turbine
IP intermediate-pressure turbine
LP low-pressure turbine
HAZ heat-affected zone
WJ welded joint
WM weld metal
BM base metal
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