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Abstract: This paper presents a new metaheuristic approach based on a self-adaptive genetic al-
gorithm (SAGA) for solving the short-term hydro-thermal-solar scheduling with combined-cycle
(CCGT) units. First of all, the proposed approach is applied to a test system with different character-
istics, considering the valve-point effect. The simulation results obtained from the new SAGA are
compared with the results obtained from some other metaheuristic methods, such as AIS, DE, and EP
to reveal the validity and verify the feasibility of the proposed approach. The test results show that
the proposed metaheuristic approach proves the effectiveness and superiority of the SAGA algorithm
for solving the short-term hydro-thermal-solar scheduling (SHTSS) problem.

Keywords: hydrothermal scheduling; genetic algorithm; self-adaptive penalty; Laplace crossover;
MPTM mutation

1. Introduction

In the recent period, the electric power demand has increased and fossil fuel prices
have risen, which has led to growing the world energy crisis. Therefore, the world has
tended to reduce the use of TPP by using renewable energy sources to reduce the emissions
and harmful gases that are released from TPP. These harmful gases harm the environment,
and this leads to an increase in the temperature of the planet, which causes global warming.
Accordingly, the European Union has introduced stricter directives, which provide for
the decommitment of TPP, and a gradual increase in the renewable penetrations in the
system [1–3].

Therefore, the incorporation of the short-term hydrothermal generation scheduling
(STHS) problem and new renewable energy integration has great importance in the power
system operation [4]. The STHS problem is one of the most important optimization prob-
lems in power system planning. The primary goal of the STHS problem is to determine the
optimal power-generation schedule of the TPP and HPP to minimize the total operation
cost of the system. On other hand, the total operating costs and flexibility of the TPP’s oper-
ation can be favorably influenced by committing combined cycle gas turbines (CCGT) into
the system and the appropriate decommitment of existing conventional TPPs, especially
in the transition period, which has already begun. However, in SHTSS, one of the basic
features of solar power plants (SPP) is the extreme variability and unpredictability of the
output power, primarily due to the dependence on weather conditions [5].

These two attributes are especially evident in modern power systems, in which solar
power plants have an increasing penetration. In addition to this, modern PV modules use
bifacial technology [5], so their orientation significantly affects the output power of the solar
power plant and, thus, all the parameters of the system (including costs). According to what
has been said so far, it can be said that this paper deals with the impact of the orientation of
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the modules on the total operating costs. This analysis is of particular importance for the
integration of SPP in the power system.

2. Motivation, Literature Review, and Contributions

To solve the SHTS problem, various approaches are applied based on the achieve-
ments of applied mathematics and mathematical software, and, initially, various classical
optimization methods were proposed, such as the dynamic programing method [6,7], the
Lagrange relaxation method [8,9], and mixed integer programing [10,11]. In this aspect, it is
known that the considered optimization methods are difficult to apply in solving complex
optimization problems. On the other hand, gradient methods are characterized by fast
convergence but are inefficient and of limited applicability to problems that are described
by nonconvex and discontinuous objective functions, such as the SHTSS problem.

In articles [12–17], techniques based on application of artificial intelligence are con-
sidered: evolutionary programing, simulated annealing, differential evolution, artificial
neural network, genetic algorithm (GA), and particle swarm optimization (PSO) for solving
of the SHTS optimization problem. A characteristic of these manuscripts is that only a
quadratic objective function is used and, also, significantly simpler constraints. Thus, the
SHTS optimization problem has become more complex by incorporating the valve point
load and transmission loss into the objective function while considering various hydro,
thermal, system, and security constraints.

In this regard, it is known that, when applying metaheuristic approaches to solve
optimization problems such as SHTS, there is a significantly greater possibility of avoiding
local minima and obtaining an optimal global approach. Due to the widespread distribution
of decentralized power systems, the hydrothermal scheduling has been widely studied by
researchers worldwide.

In previous studies, some of the considered algorithms failed to obtain optimal
solutions when considering various complex constraints based on multi-objective tasks.
An excellent real-coded genetic algorithm (RCGA) solution was obtained by introducing
a self-adaptive penalty function, Laplace crossover, and Makinen, Perriot, and Toivanen
(MPTM) mutation. Thus, the planning problem is more accurately described based
on the formulation of constraints inherent in the operation of a real system, such as
reservoir storage capacity constraints, water discharge constraints, available produc-
tion constraints, generator constraints, ramp rate constraint, valve point effect, and
transmission line constraint.

All optimization methods strive to obtain the global optimum, but gradient methods
easily become stuck in local optima. GA has proven to be a better method of obtaining the
global optimum because it works with a population which performs diversification and
intensification of the search space, i.e., a group of solutions, compared to gradient methods,
which work with a single solution.

In this article, a new constraint handling technique is proposed through the fitness
function evaluation by a new self-adaptive penalty, Laplace crossover, and adaptive
crossover and mutation strategy. A newly proposed constraint handling repair mecha-
nism has been proposed for consideration of the constraints that are most difficult to
satisfy, especially the power balance constraint and the hydro constraints. The main
contributions of this paper are:

• A new self-adaptive penalty for constraints handling, which require no tuning.
• A new crossover technique, i.e., Laplace crossover, which has a self-adaptive tuning

ability, which is important to maintain population diversity.
• A new constraint handling repair mechanism for simultaneous satisfaction of all con-

straints, especially power balance and hydraulic continuity equation, which are neglected
in other papers. This allows for a significantly more physically realistic solution.
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• Analysis of the influence of the orientation of the modules on the output power of the
solar power plant and, thus, on the overall system parameters. This is especially im-
portant for system operators, as they receive future scenarios for operational planning.
Therefore, they will be able to decide on the maximum installed power of solar power
plants in the system.

• The paper is of particular importance to the academic community, as it presents a
scenario in operational planning in a “green energy transition”, with a slow departure
from coal, i.e., in a period of committing CCGTs, decommissioning TPP, and solar
power plants taking an increasing penetration.

• An additional advantage of the proposed approach is that it can be used to create a
graphical user interface (GUI) that can be developed and enhanced. Having a GUI
is a very important tool for system operators in operational planning and real-time
operational decision making.

3. Problem Formulation
3.1. Combined Cycle Gas Turbines

TPP with combined cycle gas turbines (CCGT), shown in Figure 1, has a gas and steam
turbine. The main purpose of such plants is to use the heat generated at the outlet of the
gas turbine. Since the exhaust gases coming out of the gas turbine have extremely high
temperatures, about 600 ◦C can be used as a means to heat water and produce steam for
the steam turbine. This increases the efficiency of the process itself, as the heat that would
otherwise be lost is used for further steam production. The efficiency of such a plant reaches
up to 60%. In a CCGT, the compressor compresses the air and sends it to the combustion
chamber, where the combustion fuel is supplied at the same time.
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Figure 1. CCGT with two GTs and one ST. Figure 1. CCGT with two GTs and one ST.

Very high-temperature combustion gases are led from the combustion chamber to
the gas turbine, where they expand, giving useful work on the shaft connected to the gas
turbine rotor. The shaft drives the generator and produces electricity that is sent to the grid.

After expansion, the exhaust gases from the gas turbine are led to the heat recovery
steam generator (HRSG). There is still a lot of unused air at the output of the gas turbine,
and this excess air is used to burn additional fuel in the HRSG. In the HRSG, the feed
water is heated to evaporation and overheats to the set parameters. The superheated
steam goes from the HRSG to the steam turbine, where it expands and hands over the
mechanical work to the electric generator. After that, the steam, now of low parameters,
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goes to the condenser, where it condenses. After condensation, the water is returned to
the HRSG by the feed pump for reheating. It has already been mentioned that, with this
principle, we increase the usability of the whole process, by changing CCGT’s operation
mode, which is shown in Figure 2 [17], i.e., the optimal output power, according to the
daily load diagram [18,19].
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3.2. Objective Function

The main objective in solving the SHTSS optimization problem is to minimize fuel
costs in the thermal power plants (TPPs). In this regard, fuel costs in HPPs are neglected,
as the ongoing costs of hydropower generation systems are significantly lower compared
to other production costs, such as thermal energy. In this way, the optimal fuel costs are
determined for the electricity generation from the TPPS. When using an optimization
procedure in modern power systems, the main objective is to minimize the total fuel cost
by properly using renewable energy sources, such as SPPs, while providing the demand
power for the whole optimization period, which, in SHTSS, is one day, i.e., 24 h. It should
be noted that, firstly, the units are committed according to [18–20] (considering various
constraints), and then the SHTSS problem is solved.

The fuel costs of TPPs are usually represented by a quadratic function and depend on
the generator output power. Therefore, the objective function of the problem is the sum of
the fuel costs of all TPPs that are subject to optimization, i.e., [21–23]:

minF =
J

∑
j=1

NT
∑

t=1

[
Ft,j · j

]
· ut,j

∀t ∈ NT; j ∈ J; u ∈ {0, 1}
(1)

where u represents the commitment state of TPP t at interval j (0 for a decommitted unit
or 1 for a committed unit). On other hand, Ft,j is the fuel cost function of the TPP t and is
represented by the nonconvex function:

Ft,j = at + bt · PGTt,j + ct · P2
GTt,j+

∣∣∣dt sin
(
et
(

Pmin
GTt − PGTt,j

))∣∣∣
∀t ∈ NT; j ∈ J

(2)
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where at, bt, ct, dt, and et represent cost coefficients of the TPP t, and Pmin
GTt is the technical

minimum, while j is the index of the optimization interval.

3.3. Constraints
3.3.1. Generator Constraint

The generation output power of TPPs and HPPs is enclosed in the technical minimum
and the technical maximum, and is represented by:

ut,jPmin
GTt ≤ PGTt,j ≤ ut,jPmax

GTt
uh,jPmin

GHh ≤ PGHh,j ≤ uh,jPmax
GHh

(3)

3.3.2. Power Balance Constraint

The total output power from all TPP (including CCGT), HPP, and SPP must be equal
to the total load and losses in the system:

NT

∑
t=1

ut,jPGTt,j +
NH

∑
h=1

uh,jPGHh,j +
NS

∑
s=1

us,jPGSs,j = PP,j + PL,j (4)

PL,j =
NG
∑

i=1

NG
∑

j=1
PGiBijPGj +

NG
∑

j=1
Bi0PGj + B00

∀i ∈ NG; j ∈ NG; NG = NT + NH
(5)

3.3.3. Spinning Reserve Constraint

The required level of spinning reserve, which is required for the system security, is
given as:

NT+NH

∑
i=1

ui,jPmax
Gi ≥

(
PP,j + PL,j + R

)
; ∀j ∈ J; u ∈ {0, 1} (6)

while the required spinning reserve is calculated according to the empirical formula of
ENTSO (UCTE), i.e., [24]:

R =
√

ares · PP,max + bres2 − bres; ares = 10 MW; bres = 150 MW (7)

where ares and bres represent empirical constants, and PP,max the system’s peak load.
Thus, the spinning reserve constraint with available spinning reserve from TPPs and

HPPs is represented by:
NT
∑

t=1
ut,jPAV

GTt ≥ RT

NH
∑

h=1
uh,jPAV

GHh ≥ RH

(8)

where PAV
GT,t and PAV

GH,h are the available spinning reserve of TPP t or HPP h; RT is the total
required spinning reserve of TPPs; and RH is the totally required spinning reserve of HPPs.
It is considered that RT = 0.75R and RH = 0.25R.

3.3.4. Ramp Rate Constraint

The sudden change in the output power of the generators is limited by the ramp rate
constraint, i.e.,

PGTt,j = max
(

Pmin
GTt ,

(
PGTt,j − DRTt

))
PGHh,j = max

(
Pmin

GHh,
(

PGHh,j − DRHh

)) (9)

PGTt,j = min
(

Pmax
GTt ,

(
PGTt,j + URTt

))
PGHh,j = min

(
Pmax

GHh,
(

PGHh,j + URHh

)) (10)

where URTt, DRTt, URHh, and DRHh represent the allowable upper and down rates of TPP
t or HPP h.
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3.3.5. Transmission Line Constraint

The maximum power that can be transmitted by a transmission line is represented by
the following constraint: ∣∣Pline,g

∣∣ ≤ Pmax
line,g, g = 1, . . . , G (11)

where G is the total number of transmission lines in the system. The active power of the
transmission line is obtained by power flow calculation by applying the DC model, i.e., DC
power flow [20].

3.3.6. Water Availability Constraint

The total water discharge is physically constrained by a total available volume i.e.,

J

∑
j=1

Qth,j · Tj ≤ Vh,k (12)

where Tj is the duration of interval j, Qth is the water discharge, i.e., the input–output curve
of the HPP, and is represented by a quadratic function:

Qth(PGH,h) = αh + βh · PGHh + γh · P2
GHh (13)

where PGHh is the output power of HPP h, and αh, βh, and γh are constant coefficients of
the input–output curve.

3.3.7. Available Production Constraint

The available production of TPPs is defined according to the following expression:

NT+NH

∑
i=1

PGi,j · Tj = Wmax,i (14)

The available production of HPPs is defined according to the available (initial) volume
Vk and the total discharge time Tdis, i.e.,

Qmax,h = Qins,h = f
(

αh, βh, γh, Pmax
GH,h

) (
m3/h

)
(15)

Tdis,h =
Vk,h

Qmax,h
(h) (16)

Wmax,h = Pmax
GHh · Tdis,h (MWh) (17)

3.3.8. Dynamic Balance of the Reservoir Storage

Reservoir storage of HPP is compressed by spillage and inflow at the preceding event
and it must track the continuity equations of the hydraulic system at each time interval j,
and it is described as follows:

Vh,j = Vh,(j−1) + Ih,j −Qth,j − Sh,j (18)

where Vh,j is the storage volume of HPP h; Ih,j is the inflow in reservoir h; and Sh,j is the
water spillage of the reservoir h. In this paper, water spillage is neglected.

3.3.9. Initial and Final Reservoir Storage Constraint

The volume constraints of the reservoir at the beginning and end of the scheduling
period are determined by:

Vh,0 = Vinitial
h

Vh,24 = Vend
h

(19)
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3.3.10. Water Discharge Constraint

The water discharge constraint is determined by:

Qmin
h ≤ Qh,j ≤ Qmax

h (20)

3.3.11. Reservoir Volume Constraint

The physical limitation of reservoir volume is given by:

Vmin
h ≤ Vh,j ≤ Vmax

h (21)

4. Genetic Algorithm
4.1. Initialization

The initial population is modeled based on the optimal solution, previously obtained
from unit commitment (as conducted in reference [20]), as follows:

Pa
G0,m = (1− ψ) · PGUC,m; Pb

G0,m = (1 + ψ) · PGUC,m

Pn,m = Pa
G0,m + rand ·

(
Pb

G0,m − Pa
G0,m

)
n = 1, . . . , Npop; m = 1, . . . , Nvar = (NT + NH) · J

(22)

where ψ is the diversity factor and has a value of 0.2.

4.2. Fitness Function Evaluation and Constraint Handling

The initial population contains 200 chromosomes. To increase the robustness of the
algorithm but also to maintain the quality of the initial population, before the main stage of
the algorithm, the best 100 chromosomes are selected. This selection is made according to
the following expression [25,26]:

F(x) =


f (X) if X is feasible

fmax +

[
I

∑
i=1
〈gi(X)〉+

K
∑

k=1
|hk(X)|

]
if X is infeasible

(23)

where f max is the value of the objective function of the worst feasible solution, i.e., chromo-
some in the population.

In this paper, a new constraints handling technique is proposed for fitness function
evaluation by a new self-adaptive penalty function, which has not been applied to this type
of optimization problem so far. It consists of distance function d(X) and penalty function
p(X). The proposed technique works only with inequality constraints, i.e., [27–30]:

Gi(X) =

{
max[gi(X), 0], i = 1, . . . , I

max[|hk(X)| − ε, 0], k = I + 1, . . . , K
(24)

and, after that, the final fitness function receives a self-adaptive value (but not the sum of
the objective function and classical penalty function):

F(X) = d(X) + p(X) (25)

d(X) =

{
v(X), if r f = 0√

[ f ′′ (X)]2 + [v(X)]2, otherwise
(26)

v(X) =

m
∑

i=1
wi(Gi(X))

m
∑

i=1
wi

(27)

f ′′ (X) =
f (X)− fmin

fmax − fmin
(28)



Energies 2022, 15, 5989 8 of 25

p(X) = (1− rf)M(X) + rfN(X) (29)

M(X) =
{

0, if rf = 0
v(X), otherwise

(30)

N(X) =
{

0, if X is a feasible
f ′′ (X), if X is an infeasible

(31)

where, wi = 1/Gmax,i is a weight parameter; Gmax,i is the maximum value for violation
of constraint Gi(X) recorded thus far; and v(X) is the total constraint violation. The main
advantage of the proposed algorithm is that, unlike the static penalty, the self-adaptive
penalty does not require parameter setting.

4.3. Selection

To prevent premature convergence, the fitness function is scaled linearly. The relation-
ship between the original fitness function and the scaled one is given by the expression:

fs = as f + bs
as = (sp− 1) fav/( fmax − fmin)
bs = (1− as) fav

(32)

where sp is a parameter that controls the selection pressure and is in the interval (1.2–2), f s
is the scaled fitness value, F is the fitness value, f av is the mean fitness of the population,
f max and f min are the maximum and minimum fitness value in the current population, and
as and bs are scaling coefficients [31–33].

4.4. Crossover

For the proposed SAGA, Laplace crossover (LX) was applied. Two offspring are
generated from a pair of parents, as described. First, a uniformly distributed random
number αL is generated, so αL ∈ [0, 1]. Then, a random number βL is calculated, which
follows the Laplace distribution by simply inverting the distribution function of the Laplace
distribution, i.e., [34]:

βL =

{
aL − bL ln(αL), αL ≤ 0.5
aL + bL ln(αL), αL > 0.5

(33)

The offspring are given by the equations:

y(1)i = x(1)i + βL

∣∣∣x(1)i − x(2)i

∣∣∣
y(2)i = x(2)i + βL

∣∣∣x(1)i − x(2)i

∣∣∣ (34)

4.5. Mutation

In the newly proposed self-adaptive genetic algorithm (SAGA), the Makinen, Periaux,
and Toivanen mutation (MPTM) is applied (which is originally proposed by Makinen [35]
and is applied for a general optimization problem). In this paper, MPTM is applied for the
first time to that optimization problem. The implementation of MPTM in SAGA consists
of the following. First, an evenly distributed random number r is generated, such that
r ∈ [0, 1]. Then, the new mutated chromosome x̂ is calculated as follows:

x̂ = (1− p̂)x(l) + p̂x(u) (35)

p̂ =


p− p

(
p−r

p

)b
if r < p

p if r = p

p + (1− p)
(

r−p
1−p

)b
if r > p

(36)
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p =
x− x(l)

x(u) − x
(37)

where x(l) and x(u) are the upper bound and the lower bound, respectively.

4.6. Adaptive Crossover and Mutation Strategy

The target of the newly proposed crossover and mutation strategies is to regulate the
crossover and mutation probability of the chromosome, and thus maintain population
diversity. These strategies are based on the difference between its fitness function and the
average fitness function of the population [20], i.e.,

Pc =

{
k1( fmax − fc)/( fmax − fav), fc ≥ fav

k2, fc < fav
(38)

Pm =

{
k3( fmax − fc)/( fmax − fav), fc ≥ fav

k4, fc < fav
(39)

where k1 < 1, k2 < 1, k3 < 1, and k4 < 1. The values of the k parameters, i.e., k1, k2, k3, and
k4, were obtained by the “trial and error” method. Because these parameters regulate the
crossover and mutation probability, a large number of simulations were performed on
a suitable test system, and then results are compared with the results of other proposed
algorithms. Taking into account that these parameters significantly affect the performance
of the algorithm and the CPU time, an optimal interval is determined, which represents a
balance between the quality of the results (the global optimum) and the CPU time, so it is
recommended 0.8 ≤ k1 ≤ 1; 0.17 ≤ k2 ≤ 0.22; and 0.94 ≤ k3 ≤ 1; 0.14 ≤ k4 ≤ 0.18. In this
paper, k1 = 0.95, k2 = 0.20, and k3 = 1, k4 = 0.18.

4.7. Elitism Strategy

In this paper, an elitism strategy is proposed by creating a combined population that
consists of the best 50 parents and the best 50 children. This combined population represents
the population for the next generation. Figure 3 shows the simplified block diagram of the
SAGA, while Algorithms 1–3 represent different parts of the newly proposed constraint
handling repair mechanism.

Algorithm 1: New constraints handling for reservoir storage volume (initial and final reservoir storage)
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Algorithm 3: New constraints handling for real power balance and ramp rate.
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4.8. Computational Procedure

The computational procedure of the newly proposed SAGA is shown in Figure 3, and
is briefly described as follows:

Step 1: Preparation and initialization. Determine the necessary computational
parameters of the algorithm. Generate the initial population from the previous UC
solution, perform fitness function evaluation using Equation (24), and select the top
100 chromosomes.
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Step 2: Calculate the fitness function values and total constraint violation of each
chromosome in the parent population using Equations (25)–(31). Then, determine the
elite chromosome.

Step 3: Apply a linear rank selection. Each chromosome in the population is ranked
in increasing order of fitness function, from 1 to n. Linear ranking assigns a selection
probability to each chromosome that is proportional to the individual’s rank.

Step 4: LX and MPTM is used to generate the offspring population. To enhance the
population diversity and prevent premature convergence, before the predefined crossover
operator and mutation operator, an appropriate strategy will be applied. These strategies
regulate the crossover and mutation probability, based on the fitness deviation of the
chromosome from the mean fitness function of the entire population.

Step 5: Fitness function evaluation. Calculate the fitness function values and total
constraint violation of each chromosome.

Step 6: Determine constraint violations, and then apply the new constraint handling
repair mechanism, in order for the chromosome to be feasible again.

Step 7: Apply an elitism strategy. The parent population and offspring population are
combined in one group. They are then sorted based on the fitness function in descending
order. Then, the better, i.e., best 100 chromosomes, will be chosen as the members in the
new generation.

Step 8: Repeat steps 3 to 7 until the maximum number of generations is reached, then
export the optimal solution, i.e., chromosome.

5. Simulation Experiment and Result Analysis
5.1. Test System 1

The investigated system consists of two TPPs and two HPPs, and the effect of the valve
point is considered in the simulation. The data for conducting the numerical experiments
were taken from [36]. Table 1 shows the optimal generation of the studied system. In the
performed simulations, the population size and maximum generations are 100 and 500,
respectively, as shown in [37].

Table 1. Optimal generation scheduling of the test system [37].

Interval PGT1
(MW)

PGT2
(MW)

PGH1
(MW)

PGH2
(MW)

1 181.14 264.66 400.00 85.11
2 300.00 340.23 400.00 217.02
3 140.76 309.24 400.00 300.00

In the simulations, the spin reserve is chosen to be 10% of the total load demand.
Table 2 presents a comparison of the results for the test system using different optimization
methods, which was obtained in the authors’ previous research [37]. In the particular ex-
ample, the experiment was conducted 50 times. Thus, the average fuel costs were obtained
based on the data from conducting 50 experiments.

Table 2. Optimal generation scheduling of the test system [37].

SAGA GA 1 AIS [30] DE [30] EP [30] AIS [30]

FT (EUR) 47,184 66,341 66,117 66,121 66,198 −40.12 (%)
CPU time (s) 6.03 28.53 53.43 60.76 75.48 −47.4 (s)
STD (EUR) 26,861 - - - - -

1 This means that generation scheduling is obtained with Classical GA (modeled by the author, neglecting all
newly proposed techniques from SAGA), to represent the difference between GA and SAGA [32].
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5.2. Test System 2

In this subchapter, the efficiency of the first part of the proposed algorithm, i.e., the
unit commitment part, will be verified. For this purpose, the algorithm will be applied to a
test system, which consists of six thermal power plants. All data, such as unit characteristics
and load demand, are taken from [38,39]. On an Intel Core i7-9750H CPU@2.60GHZ with
16GB RAM, 50 independent simulations were made for a relevant comparison with other
methods. Table 3 shows the total fuel costs for test system 2.

Table 3. Optimal generation scheduling of the test system 2 [38,39].

Best (EUR) Average (EUR) Worst (EUR) Change (%)

DA-PSO [38] 13,292.28 - - -
PSO-GWO [39] 13,600.00 - - -

GA 13,221.55 13,288.19 13,321.57 -
SAGA 13,126.31 13,171.69 13,193.28 −1.264

Newton’s method - 13,170.68 - -
Difference SAGA—Newton - - - 0.0077

- This means that generation scheduling is obtained with Classical GA (modeled by the author, neglecting all
newly proposed techniques from SAGA), to represent the difference between GA and SAGA.

5.3. IEEE 30 Bus System

The performance of the proposed algorithm, after its verification, has been evaluated
using the Modified IEEE 30 bus system. This system consists of 30 buses, 7 generators, i.e.,
four TPP (buses 1, 2, 5, and 8), of which TPP1 (in bus 1) is with CCGT, two HPP (buses 11
and 13), and one SPP (bus 10), and 41 transmission lines. The data for this system are taken
from [38,40–43]. The data for inflows in reservoirs 1 and 2 are taken from [20]. The data for
CCGT TPP are shown in Tables 4 and 5 and are taken from [44]. A spinning reserve value
of 10% of the system’s peak load is selected. When solving the optimization problem, 75%
of the spinning reserve was chosen to be covered by TPPs, and the remaining 25% by HPPs.
Figure 4 shows the daily load diagram of the system, and Figure 5 shows its single-line
diagram. For an IEEE 30 bus system, the proposed approach runs for 50 independent
simulations, and the population size and maximum number of iterations are set to 100 and
500, respectively.

Table 4. Composition data for CCGT.

Mode Composition GT ST Pmin
GT,t

(MW)
Pmax

GT,t
(MW)

URt
(MW)

DRt
(MW)

0 0 + 0 0 0 0 0 0 0

1 1 + 0 1 0 20 80 60 60

2 2 + 0 2 0 40 160 120 120

3 1 + 1 1 1 30 135 105 105

4 2 + 1 2 1 50 215 165 165

Table 5. Cost curve coefficients data for CCGT.

Mode Composition at bt ct dt et

0 0 + 0 0 0 0 0 0

1 1 + 0 169.92700 2.36929 0.00051 18 0.037

2 2 + 0 339.85400 2.36929 0.00025 18 0.037

3 1 + 1 149.39630 1.40033 0.00063 18 0.037

4 2 + 1 247.06916 1.53006 0.00036 18 0.037
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5.3.1. Solar Power Plant Model

The SPP model was developed in the PVSYST software package. It implements
34,000 Trina Solar bifacial 500 Wp PV modules and 170 grid-tie inverters of the type Fronius
International—Tauro Eco 100-3-P, with a modeled DC/AC ratio of 1.00. The SPP consists of
2125 strings and has an installed power of 17 MWp. The albedo of the substrate is 0.7, and
the height above ground is 1.5 m. The data for PV modules are taken from [45].

To prove the initial hypothesis, i.e., that the orientation and location of the SPP affect
the total fuel costs, two SPP (i.e., cases) are modeled. In case 1, the location of the SPP is
Gaag, Netherlands (latitude: 51.96◦ and longitude: 4.29), while, in case 2, the location of
the SPP is Bitola, Macedonia (latitude: 41.03◦ and longitude: 21.33). Given the HUPX’s
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electricity price diagram, which is shown in Figure 6 [46], each of these two cases involves
three different sub-cases. In other words, the electricity price diagram has two peaks, one
in the morning and the other in the afternoon. To achieve the greatest possible energy
balance (largest production in the morning or afternoon), in two of the three sub-cases, the
orientation of the modules, i.e., the azimuth, will be 90◦ and −90◦.
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The parameters for both cases are shown in Tables 6 and 7. The best values of parame-
ters, such as height above ground sheds spacing, injected energy per year (EGRID), and tilt
angle, are obtained through “trial and error”.

Table 6. Data for case 1: Gaag, Netherlands.

Sub-Case Tilt Angle
(◦)

Azimuth
(◦)

Height
(m)

Sheds
Spacing (m) Albedo EGRID

(MWh)

1 25 0 1.5 9 0.7 20,457

2 20 90 1.5 12 0.7 18,883

3 20 −90 1.5 12 0.7 18,734

Table 7. Data for case 2: Bitola, Macedonia.

Sub-Case Tilt Angle
(◦)

Azimuth
(◦)

Height
(m)

Sheds
Spacing (m) Albedo EGRID

(MWh)

1 25 0 1.5 9 0.7 28,620

2 20 90 1.5 12 0.7 26,448

3 20 −90 1.5 12 0.7 26,481

Figure 7 shows the output power of the SPP for case 1, and Figure 8 shows the output
power for case 2 for the specific optimization period, i.e., 9 June 2021.
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From Tables 6 and 7, it can be seen that the annual production for case 2 is significantly
higher than the production for case 1. This should not come as a surprise, given the fact
that the global horizontal radiation for case 2 is 1480.3 kWh/m2, while, for case 1, it is
1040.0 kWh/m2, meaning case 2 is 1.42 times higher compared to case 1.

5.3.2. Case 1: Gaag, Netherlands

Obtained heat rate (HR) for all TPPs, including the CCGT, is given in Table 8. The
average value of total fuel cost for all sub-cases, obtained using the proposed method is
shown in Table 9, and the computation time taken by the algorithm is 21.28 s. The average
fuel costs are obtained from 50 independent simulations. Figure 9, Figure 10, and Figure 11,
respectively, show the optimal output power of TPPs and HPPs for sub-case 1, 2, and 3,
while the optimal generation scheduling for the optimization period for the lowest cost
sub-case, using the proposed optimization algorithm, is shown in Figure 10 and in Table 10.

Table 8. Obtained HR for TPPs (EUR/MW).

CCGT-
Mode1

CCGT-
Mode2

CCGT-
Mode3

CCGT-
Mode4 PGT,2 PGT,3 PGT,4

HR 4.71 4.64 2.68 2.77 3.27 4.24 3.83



Energies 2022, 15, 5989 17 of 25

Table 9. Total fuel cost for case 1.

Sub-Case 1 Sub-Case 2 Sub-Case 3

FT (EUR) 10,316.19 10,255.34 10,320.99

Relative change compared
to sub-case 2 (%) 0.59 - 0.63Energies 2022, 15, x FOR PEER REVIEW 18 of 26 
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Table 10. Optimal generation scheduling using SAGA for case 1.

Interval CCGT
(MW)

PGT2
(MW)

PGT3
(MW)

PGT4
(MW)

PGH1
(MW)

PGH2
(MW)

PGS
(MW)

PL
(MW)

Q1
(m3/h)

Q2
(m3/h)

1 71.05 m4 31.20 18.24 12.97 22.94 11.60 0.00 2.0 258.02 228.89

2 78.92 m4 38.20 21.17 17.02 26.51 16.86 0.00 2.7 290.02 321.49

3 10.62 m4 39.93 15.00 18.42 23.17 33.17 0.00 4.3 260.10 612.33

4 132.28 m4 52.60 0.00 26.74 28.81 33.61 0.00 7.0 310.80 620.28

5 130.26 m4 54.49 15.00 28.80 28.21 32.42 1.00 6.8 305.38 598.82

6 119.02 m4 49.29 23.30 26.54 28.85 28.62 1.98 5.6 311.17 530.74

7 110.97 m4 41.30 25.67 19.43 27.50 22.25 3.44 4.6 298.97 417.10

8 102.65 m4 34.11 21.33 13.91 23.80 14.60 6.20 3.6 265.75 281.69

9 93.38 m4 28.38 17.03 12.28 23.46 11.40 8.94 2.9 262.75 225.42

10 78.59 m3 20.00 15.00 10.00 18.34 10.00 11.01 1.9 217.03 200.81

11 65.18 m3 20.00 15.00 10.00 15.48 10.00 12.78 1.4 191.71 200.81

12 74.21 m3 20.00 15.00 10.00 18.64 10.00 13.93 1.8 219.67 200.81

13 78.66 m3 20.00 15.00 10.90 22.51 10.20 14.71 2.0 254.22 204.35

14 89.29 m4 24.49 15.00 11.08 22.59 10.00 15.09 2.5 254.96 200.81

15 94.16 m4 31.66 19.68 13.55 24.39 13.27 14.36 3.1 271.06 258.16

16 100.44 m4 38.05 24.47 14.46 27.15 17.65 13.51 3.7 295.79 335.43

17 107.23 m4 40.88 24.18 17.79 27.87 20.85 11.48 4.3 302.31 392.12

18 109.53 m4 40.22 24.58 17.00 26.56 19.04 8.41 4.3 290.49 360.05

19 103.00 m4 39.78 26.91 19.52 28.28 18.79 3.72 4.0 305.97 355.70

20 111.21 m4 37.09 23.23 14.35 25.94 17.32 0.13 4.3 284.99 329.58

21 97.33 m4 34.05 22.10 14.18 24.65 15.04 0.00 3.3 273.35 289.44

22 97.02 m4 27.54 16.10 10.71 22.99 10.64 0.00 3.0 258.53 212.02

23 88.13 m3 20.00 15.00 10.00 20.22 10.00 0.00 2.3 233.75 200.81

24 96.03 m3 0.00 0.00 0.00 23.15 14.12 0.00 2.3 259.97 273.16
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5.3.3. Case 2: Bitola, Macedonia

The average fuel cost for all sub-cases, obtained using the proposed method, is shown
in Table 11, and the computation time taken by the algorithm is 22.14 s. The average fuel
costs are obtained from the 50 independent simulations. Figure 12, Figure 13, and Figure 14,
respectively, show the optimal output power of TPPs and HPPs for sub-case 1, 2, and 3,
while the optimal generation scheduling for the optimization period for the lowest cost
sub-case, obtained by newly proposed SAGA, is shown in Figure 14 and in Table 12.

Table 11. Total fuel cost for case 2.

Sub-Case 1 Sub-Case 2 Sub-Case 3

FT (EUR) 10,397.02 10,345.02 10,184.02

Relative change compared
to sub-case 3 (%) 2.05 1.55 -Energies 2022, 15, x FOR PEER REVIEW 20 of 26 

 

 

 
Figure 12. Optimal generation scheduling for case 2–sub-case 1. 

 
Figure 13. Optimal generation scheduling for case 2–sub-case 2. 

 
Figure 14. Optimal generation scheduling for case 2–sub-case 3.  

Figure 12. Optimal generation scheduling for case 2–sub-case 1.

Energies 2022, 15, x FOR PEER REVIEW 20 of 26 
 

 

 
Figure 12. Optimal generation scheduling for case 2–sub-case 1. 

 
Figure 13. Optimal generation scheduling for case 2–sub-case 2. 

 
Figure 14. Optimal generation scheduling for case 2–sub-case 3.  

Figure 13. Optimal generation scheduling for case 2–sub-case 2.



Energies 2022, 15, 5989 20 of 25

Energies 2022, 15, x FOR PEER REVIEW 20 of 26 
 

 

 
Figure 12. Optimal generation scheduling for case 2–sub-case 1. 

 
Figure 13. Optimal generation scheduling for case 2–sub-case 2. 

 
Figure 14. Optimal generation scheduling for case 2–sub-case 3.  Figure 14. Optimal generation scheduling for case 2–sub-case 3.

Table 12. Optimal generation scheduling using SAGA for case 2.

Interval CCGT
(MW)

PGT2
(MW)

PGT3
(MW)

PGT4
(MW)

PGH1
(MW)

PGH2
(MW)

PGS
(MW)

PL
(MW)

Q1
(m3/h)

Q2
(m3/h)

1 71.68 m4 30.87 17.51 13.99 22.70 11.27 0.00 2.0 255.94 223.06

2 71.09 m4 38.49 24.79 15.85 27.21 21.01 0.00 2.4 296.33 395.08

3 93.38 m4 39.98 29.62 20.81 28.60 20.16 0.00 3.6 308.92 379.87

4 121.68 m4 45.73 27.05 23.00 28.85 26.04 0.17 5.5 311.17 484.57

5 127.31 m4 46.65 32.06 23.50 28.85 26.46 4.54 6.0 311.17 492.11

6 117.57 m4 46.27 25.19 24.05 28.63 25.40 10.17 5.3 309.13 473.13

7 111.55 m4 41.76 16.07 17.03 28.09 23.08 13.01 4.6 304.30 431.72

8 97.86 m4 37.23 0.0 19.33 28.45 19.44 14.46 3.8 307.51 367.21

9 103.39 m4 28.67 0.0 12.44 22.69 13.12 15.16 3.5 255.79 255.52

10 63.04 m3 20.24 15.00 12.52 23.49 12.67 15.51 1.5 262.97 247.72

11 59.45 m3 20.00 15.00 10.00 18.30 10.00 15.52 1.3 216.72 200.81

12 67.26 m3 20.00 16.58 11.22 21.34 10.94 14.24 1.6 243.72 217.30

13 83.41 m3 22.15 15.00 10.00 19.13 10.00 12.51 2.2 224.02 200.81

14 94.72 m4 25.17 0.00 10.00 17.61 30.48 10.27 3.2 210.51 564.10

15 103.06 m4 29.63 15.00 15.80 24.56 16.21 7.24 3.5 272.52 310.09

16 119.02 m4 20.98 24.35 16.26 27.47 24.54 3.69 4.3 298.69 457.81

17 124.51 m4 0.00 33.45 28.56 28.85 32.97 1.98 4.3 311.17 608.71

18 114.34 m4 20.51 35.20 19.50 28.85 26.44 0.32 4.2 311.17 491.76

19 102.08 m4 30.81 31.35 21.80 28.85 24.91 0.00 3.8 311.17 464.37

20 111.04 m4 31.91 24.55 16.01 26.72 18.87 0.00 4.1 291.92 357.16

21 98.91 m4 34.51 21.27 13.98 24.11 14.63 0.00 3.4 268.57 282.26

22 83.69 m3 28.58 20.36 13.13 24.92 13.83 0.00 2.5 275.81 268.05

23 88.07 m3 20.00 15.09 10.00 20.13 10.05 0.00 2.3 232.98 201.63

24 87.82 m3 0.00 15.00 0.00 20.05 10.00 0.00 1.9 232.23 200.81
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5.4. Analysis of the Obtained Results

First of all, the total fuel costs of the test system 1 are EUR 57,640, compared to other
previously proposed algorithms, where they are EUR 66,117, EUR 66,121, and EUR 66,198.
The same was established for test system 2, which refers to unit commitment, where the
total costs amount to EUR 13,126.31, compared to the previously proposed methods, i.e.,
EUR 13,292.28 and EUR 13,600.00. According to this, it can be concluded that the proposed
SAGA provides better results (for all parts, i.e., unit commitment and hydro-thermal
scheduling) compared to optimization algorithms proposed in [30,38,39].

For case 1, the sub-case with the lowest total fuels costs is sub-case 2, where they
are EUR 10,255.34. For sub-cases 1 and 3, the total fuel costs are EUR 10,316.19 and EUR
10,320.99, which is a relative change, i.e., sensitivity by 0.59% and 0.63%, compared to
sub-case 2, which is not a small amount, in terms of short-term planning.

For case 2, the best scenario is sub-case 3, where the total fuel costs are EUR 10,184.02.
For the sub-cases 1 and 2, the total fuel costs are EUR 10,397.02 and EUR 10,345.02, which is
a relative change, i.e., sensitivity by 2.05% and 1.55%, respectively, compared to sub-case 3,
which is also not negligible. The different sensitivities for cases 1 and 2 are based on the fact
that these two different locations have significantly different global horizontal solar radia-
tion. The annual global horizontal solar radiation for Gaag, Netherlands is 1040.0 kWh/m2,
while, for Bitola, Macedonia, it is 1480.3 kWh/m2, i.e., even 50 percent higher.

This statement can confirm the initial hypothesis, i.e., that the different orientation of
the PV modules affects the total fuel costs in the system. It is important that the different
orientation of the PV modules also affects other system parameters, such as active power of
transmission lines and optimal output power of TPPs and HPPs, according to Figures 9–14.
On the other hand, the auxiliary hypothesis can also be confirmed, i.e., that the different
location of the SPP installation also has an impact on the total fuel costs, even for the same
topological structure of the system, which is the case in this paper. The confirmation of the
hypothesis is also based on the fact that the transmission line constraint has a major impact
on fuel costs because it directly affects the optimal power flow of the system. This means
that if the active power of one of the transmission lines in a given time interval is equal
to its maximum capacity, then the optimal output power from an HPP or TPP (regardless
of whether it is the most economical TPP) will be redirected to another transmission line
or distributed to several transmission lines. The consequences of this scenario are greater
transmission losses and, hence, reduced overall efficiency and increased fuel costs.

In other words, the transmission line constraint limits the production from the “op-
timal” hydroelectric plant or thermal power plant and forces production from another
thermal power plant that may have a higher HR, which significantly affects the overall
fuel costs.

On the other hand, the power that the solar power plant injects into the system also has
an impact on power flows, but also on TPPs and HPPs. In other words, in some intervals,
the output power of the SPP is almost maximum and, in other periods, it is zero. In order
to cover such a sudden change, the TPPs are exposed to a sudden change in their output
power, i.e., their ramp rate limit is directly affected, and thus to their optimal power, i.e.,
total fuel costs. In this case, the cost sensitivity of the ramp rate limit is not so pronounced
due to the implementation of CCGT in the system. The advantage of CCGT is that it has a
negligibly low ramp rate limit, which significantly contributes to maintaining the stability
of the system, as well as reducing overall fuel costs.

From all this, another hypothesis can be confirmed. It means that the solution for the
SPP installation with an orientation that “covers” the peaks in the electricity price diagram
will give the lowest total fuel costs.

6. Conclusions

The optimal generation and optimal power flow in SHTSS are of the most important
goals in the planning and operation of modern power systems. The use of power electronic
devices and systems expands the possibilities of power regulation and control of power
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plants. In this aspect, in recent years, more and more research has focused on the solution of
this problem. Unfortunately, in most of the published manuscripts, a number of factors that
affect the quality of the obtained results are neglected: CCGT, security constraints (valve
point effect, ramp rate, spinning reserve, and transmission line constraint), and power
flow calculations. In this sense, this paper focuses on solving the problem of optimal short-
term hydrothermal planning in a more realistic manner, i.e., focuses on the application of
CCGT and solar power plants in short-term hydrothermal planning. This was achieved by
introducing the security and power flow constraints into the SHTSS mathematical model. A
novel GA algorithm is proposed that uses a self-adaptive mechanism, LX operator, MPTM
operator, adaptive crossover, and mutation strategy to solve the SHTSS problem under an
imposed DC power flow constraint. The complex constraints of the SHTSS problem are
solved by using a new approach to their handling. The optimization results obtained by
using the proposed SAGA algorithm on a known hydrothermal test system are compared
with those obtained by other algorithms. The comparisons convincingly proved that the
proposed SAGA performs better than other algorithms in terms of both determining the
optimal value and the average CPU time used to solve the problem. After verifications
of traditional STHS problems, SAGA is used for SHTSS problem of IEEE 30 bus systems
considering transmission networks, CCGT and SPP. These results also show the better
qualities of the proposed SAGA. To better illustrate the impact of different parameters
on the final solutions, the proposed constraint handling techniques are neglected and the
hydrothermal test system is solved by classical GA. The numerical results obtained from
this test system show that LX, MPTM, self-adaptive fitness, and adaptive crossover and
mutation strategy also play an important role in the SAGA algorithm. Numerical results
show that using these parameters would significantly increase the feasible solutions and
reduce the total fuel costs. All this has an extraordinary impact in the current state of the
energy crisis and constantly increasing prices of energy carriers.

On the other hand, taking into account the expansion of the share of produced energy
from decentralized sources and that, in accordance with the EU directives, there is a
tendency towards the gradual decommissioning of thermal power plants, the proposed
algorithm can be successfully applied to a hydro-thermal-solar system. Therefore, the
proposed metaheuristic algorithm gives a clear picture of the operational planning of
the system in the phase of gradual replacement of classical TPPs with combined cycle
units (CCGT), but also the growing influence of large SPPs on total fuel costs and overall
system parameters.

Possible disadvantages of the proposed algorithm can be the long time required
for its modeling, as well as the strong intercorrelation of the proposed techniques that
could affect the output parameters. However, keeping in mind the theorem “there is no
free lunch”, this should not affect the positive outcomes, such as solving a very complex
optimization problem, avoiding local optima, and obtaining a better and more physically
realistic solution compared to other methods.

On the other hand, the author performs further research and upgrades to the math-
ematical model of the proposed algorithm in order to solve the AC short-term hydro-
thermal-solar scheduling, i.e., considering voltage bus constraint, reactive power constraint,
and reactive power flow limit. This means that the Newton–Raphson’s method will be im-
plemented in the algorithm for power flow solving. This model will enable considering the
stochastic nature of SPPs, and objective function will be extended with a penalty function
for solar irradiation.

Therefore, the developed algorithm and the presented opportunities for its develop-
ment allow a much more realistic and physically feasible solution to the SHTSS optimization
problem to be obtained. This is also necessary for optimal planning of the operation of the
power system from the point of view of investments, energy security, and reliability.
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Glossary
Symbols
NT number of TPPs
NH number of HPPs
NS number of SPPs
F total costs, EUR
PGT,t output power of TPP t, MW
PGH,h output power of HPP h, MW
PGS,s output power of SPP s, MW
PP system load, MW
PL transmission loses, MW
Tj duration of interval j, h
J duration of optimization period, h
R spinning reserve, MW
PP,max system’s peak load, MW
PG

min unit technical minimum, MW
PG

max unit technical maximum, MW
Bij, Bi0, B00 Crohn’s B coefficients for losses
Qth water discharge of hydro unit h, m3/h
PAV

GT,t available spinning reserve of TPP t, MW
PAV

GH,h available spinning reserve of HPP h, MW
RT total required spinning reserve of TPPs, MW
RH total required spinning reserve of HPPs, MW
Tdis discharge time, h
URT, URH up rate of TPP and HPP, MW
DRT, DRH down rate of TPP and HPP, MW
PGR,g active power of transmission line g, MW
Pmax

GR,g maximum transmission capacity of transmission line g, MW
G number of transmission lines
Vh,k available water volume of HPP h, 103 m3

Wmax,i total available energy of generator i, MWH
Vh,j storage volume of HPP h at interval j, 103 m3

Ih,j inflow in reservoir h at interval j, 103 m3

Sh,j water spillage of reservoir h at interval j, 103 m3

Vh0, Vh24 initial and final volume of reservoir h, 103 m3

Vh
min, Vh

max minimum and maximum volume of reservoir h, 103 m3

d(X), p(X) distance value and penalty value
v(X) total constraint violation
f s scaled fitness function
f av average fitness function of current population
f max, f min maximal and minimal fitness function of current population
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as, bs scaling coefficients
βL, aL, bL LX parameters
x1, x2 parent chromosomes
y1, y2 children chromosomes
p̂, p, bm MPTM parameters
k1, k2, k3, k4 constants of crossover strategy and mutation strategy
Pc, Pm crossover probability and mutation probability
gi, hk inequality and equality constraints
Subscripts
j hour number
t TPP index
h HPP index
g transmission line index
m gene index
n chromosome index
i inequality constraint index
k equality constraint index
Abbreviations
SHTSS short-term hydro-thermal-solar scheduling
SAGA self-adaptive genetic algorithm
LX Laplace crossover
MPTM Makinen, Periaux, and Toivanen mutation
UC Unit Commitment
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