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Abstract: To mine the battery’s health factors more comprehensively and accurately identify the
lithium battery’s State of Health (SOH), an Improved Douglas–Peucker feature extraction algorithm
is proposed, and the LAOS-XGboost model is proposed to be used to predict the SOH of the battery.
Firstly, to solve the problem that the traditional Douglas–Peucker algorithm has difficulties extracting
curve features in a fixed dimension, the Douglas–Peucker algorithm is improved by de-thresholding.
Then, the Wrapper method combined with the Improved Douglas–Peucker algorithm is used to
construct the feature engineering of battery life prediction, and the optimal feature subset is obtained.
Then, LAOS-XGboost is used to establish a battery SOH prediction model; finally, this model is used
to predict the SOH of different batteries and the same battery, and the robustness of the model is
analyzed. The experimental results show that the R2 of all XGboost models is higher than 0.97 in the
prediction experiments of different batteries. The AE of the LAOS-XGboost model is 0, and the TIC
index is less than 3% under 10 dB SNR. In the same battery prediction experiment, the TIC index of
the model is less than 0.3%.

Keywords: lithium-ion battery; SOH prediction; XGboost; Douglas–Peucker algorithm; LAOS

1. Introduction

Lithium-ion batteries have the advantages of a long service life, high energy density,
low self-discharge rate, no memory effect, and a wide temperature range, and are widely
used as energy storage components of various machines, such as new energy vehicles,
mobile phones, laptops, and other equipment [1–6]. In the long-term use process, lithium-
ion battery performance will gradually degrade and fail due to the corrosion of the external
environment and internal electrode materials and the aging of the diaphragm. Sudden
battery failure can easily lead to electronic equipment losing energy sources and stopping
working, resulting in accidents [7–9]. Lithium-ion batteries’ reliability, safety, and life have
become a critical issue that restricts their successful application. Therefore, accurately
predicting the SOH and remaining useful life (RUL) of lithium-ion batteries is an urgent
problem to be solved in lithium-ion battery research [10–12].

A large amount of data can be obtained from each cycle of a lithium-ion battery by
using the detection instrument. However, obtaining the critical features from them and es-
tablishing the feature engineering to extract the health factors of the battery are undoubtedly
significant and challenging points in predicting the SOH and RUL of the battery [13–15].

In recent years, with the rise of machine learning, data-driven battery life prediction
methods have developed rapidly. Ezemobi et al. analyzed a method to enhance the gener-
alization of SOH estimation using the parallel layer extreme learning machine (PL-ELM)
algorithm and extended the application of a single SOH estimation model to many identical
types of batteries [16]. Bao et al. studied the time dependence and correlation by analyzing
the data distribution of the battery discharge voltage curve and found that this method can
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obtain the spatial characteristics of these data more accurately, and the established model
has higher accuracy and stronger robustness [17]. Rahimifard et al. proposed a robust
adaptive filter called the adaptive smooth variable structure filter (ASVSF-VBL) with a time-
varying boundary layer used to estimate SOC and SOH in electric vehicles [18]. Zhang et al.
extracted two health factors after analyzing the variation characteristics of current and
voltage in the charging process of the lithium-ion battery, proved that the proposed factors
were highly correlated with the battery capacity, and further established a two-factor linear
regression model for lithium battery capacity estimation [19]. Based on the improved
double least squares support vector machine method and Box-Cox transform, Shu et al.
proposed a collaborative estimation method of lithium-ion battery capacity and remaining
cycle life. By extracting the envelope area of the partial capacity increment curve of the
aging battery as the characteristic quantity, the Box-Cox transform was used to further
improve the correlation between the characteristic quantity and the target estimation [20].
Feng et al. proposed an online SOH estimation algorithm for lithium-ion batteries based
on machine learning. This algorithm uses SVM as the diagnosis algorithm built by the
prediction model. According to the charging characteristics of the battery, the relationship
is mapped by the SVM model. The algorithm works by comparing part of the charging
curve with the stored SVM [21]. Hu et al. proposed a novel double Gaussian process
regression model for predicting the SOH and RUL of battery packs. The aging test adopts
the multi-stage constant current charging mode. The health factors of lithium-ion batteries
were extracted from the charging curve, and the capacity change trend and resistance
increment were observed. The double Gaussian process regression model is designed to
predict SOH and RUL near the end of the cycle life [22]. Zhang et al. proposed a new
online synthesis method based on the fusion of partial incremental capacity and ANN
model to estimate SOH and RUL under constant current discharge. The initial incremental
capacity curve is smoothed by the filtering algorithm. Then, the battery health factors are
extracted from the partial incremental curves by correlation analysis. Finally, a prediction
model based on ANN model is established to estimate SOH and RUL simultaneously [23].
The estimation results were thoroughly evaluated by combining the analytic hierarchy
process and entropy weight method. The above method using machine learning for SOH
prediction has made outstanding contributions in the field of battery research, but there is
still room for improvement in feature extraction.

In order to mine the typical characteristics of battery charge and discharge data, a new
feature extraction method is proposed by analyzing the characteristics of various attribute
curves of lithium battery charge and discharge. The feature engineering is established
through the IDP algorithm and Wrapper method, and the LAOS-XGboost (Logistic Atomic
Orbital Search, LAOS) model is used to predict the SOH of different batteries and the
same battery.

The paper is organized as follows: The first part introduces the research status of
researchers in the SOH prediction of lithium batteries. The second part introduces the prin-
ciple of the related algorithms used in this paper, including the Improved Douglas–Peucker
algorithm, LAOS algorithm, and XGboost model, and introduces the SOH prediction model
of lithium batteries established in this paper. The third part establishes the characteristic
engineering of lithium-ion battery. The fourth part uses the XGboost model and its opti-
mization model to predict the SOH of lithium batteries, and analyzes the performance of
the model. The last part summarizes the whole thesis.

2. Algorithm Principle
2.1. IDP Algorithm (Improved Douglas–Peucker)

For any curve, the Douglas–Peucker (D.P.) algorithm segments the curve by setting
the threshold in advance and finally obtains the approximate line segment of the curve [24].

In the lithium battery’s cycle charge and discharge process, the time of each charge
and discharge is not equal under the same working condition due to the aging of the battery.
The attribute curves of different charge cycles measured by the instrument have time step
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asymmetry and time sequence length inconsistency. The extracted feature length and
position may be inconsistent if the traditional D.P. algorithm is used to extract features and
the determined threshold is used. The inconsistent length and position of these features will
result in the inability to use them for neural network training, and the extracted features
will lose their function.

In order to solve the problem of the inconsistent length and position of lithium battery
charge and discharge attributes extracted by the traditional D.P. algorithm, an improved
D.P. algorithm is proposed in this paper, which can extract the same dimension in different
curves. The specific process is shown in Figure 1.
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The specific steps are as follows:

(1) A straight line AB connected the two points A and B at the beginning and end of the
curve, which is the string of the curve.

(2) The distance from each point on the curve to the line segment AB is calculated, and
the point C with the largest distance from the line segment on the curve is obtained.

(3) The curve has been divided into N segments. According to step 2, the points of
maximum distance from points on N arcs to their respective chords are calculated,
and the points of maximum distance in N arcs are obtained by comparing the distances
from points of maximum distance to their respective chords. The point E with the
largest distance on several arc segments is obtained, which is on the curve FG.

(4) Dividing curve FG into curves FE and EG.
(5) Repeat steps 1–4 on two curves until the curve is segmented into the target dimension.
(6) When all curves are processed, the broken lines formed by each segmentation point

are connected in turn as the approximation curve.

2.2. LAOS Algorithm
2.2.1. AOS Algorithm

The atomic orbital search (AOS) algorithm is a meta-heuristic algorithm proposed
by Mahdi Azizizi in 2021, which is based on the principle of quantum mechanics and the
atomic model of quantum [25].

The principle of the AOS algorithm is as follows. Firstly, the volume around the
atomic nucleus point can be made into a thin spherical concentric layer. Assuming that the
electron is in the ground state energy, the number of particles n is a constant value, and
the number is related to the radius of the electron orbit. The electrons around the nucleus
can be excited by the interaction of photons and particles or magnetic fields, resulting
in energy absorption or emission. The binding energy represents the energy needed to
remove the atom from the shell. When the energy absorbed by an electron exceeds the
binding energy, the electron will transit to the lower energy level of the inner orbit. When
the energy absorbed by an electron is less than the binding energy, the electron undergoes
a transition to an excitation level in the outer orbit. Each electron is represented as Xi in the
search space. The objective equation of the AOS algorithm is:
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(1)

where M is the number of electrons in the search space and D is the problem dimension. xj
i

represents the j-dimensional value of the i-electron.
The initial position of electrons in the search space is generated by Formula (2):

xj
i(0) = xj

i min + rand× (xj
i max − xj

i min) (2)

where xj
i(0) represents the initial solution of the j(j = 1, 2, . . . , D) dimension of the

i(i = 1, 2, . . . , M) electron, xj
i min represents the lower limit of the j dimension of the i

electron, xj
i max represents the upper limit of the j dimension of the i electron, and rand

represents the random number from 0 to 1.

2.2.2. LAOS Algorithm (Logistic Atomic Orbital Search)

When the atomic orbit search algorithm initializes the atomic position, the random
generation method is used, which will make the atomic position distribution uneven
and affect the further iterative optimization. The Logistic Atomic Orbital Search (LAOS)
algorithm uses the randomness, ergodicity, and regularity of chaotic mapping to optimize
the position of atoms by using logistic mapping in chaotic mapping to avoid falling into
local optimum and improve the global search ability and optimization accuracy.

The logistic mapping expression is:

Zi+1 = µZi(1− Zi), 0 < µ ≤ 4, Zi ∈ (0, 1) (3)

where Zi is the initial value and Zi+1 is the value after tent mapping. µ is the chaotic factor.
The specific optimization steps of the LAOS algorithm are:
Step 1. Use Formula (3) to generate chaotic variables Zd according to the initial

particle Xd.
Step 2. Carrier chaotic variables into the solution space of the problem to be solved:

Xd
new = Xd

min + (Xd
max − Xd

min)× Zd (4)

where Xd
max and Xd

min are the maximum and minimum values of the d-dimensional variable
Xd

new, respectively.
Step 3. Chaotic perturbation of individuals according to Formula (3):

X′new =
(X + Xnew)

2
(5)

where X is the individual that needs chaotic disturbance, Xnew is the generated chaotic
disturbance, and X′new is the individual after chaotic disturbance.

2.3. Principle of XGboost

Ensemble learning (ensemble learning) is a model framework of a strong learner by
constructing multiple machine learners, training and forming multiple weak learners, and
combining multiple weak learners through some combination strategy [26].

The boosting algorithm improves the performance of weak learners by iterative feed-
back. The training effect of the previous learner is adjusted, and the next learner is trained
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according to the new sample distribution so that the iteration is M times. Finally, a series
of weak learners are combined into strong learners. The boosting algorithm schematic
diagram is shown in Figure 2.
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The gradient boosting decision tree (GBDT) is an additive model, the learning algo-
rithm is a forward step-by-step algorithm, and the base function is the CART tree. The loss
function is a quadratic loss function regression problem, exponential function classification
problem, and general loss function decision problem.

The GBDT algorithm model is a combination of the boosting algorithm and decision tree.
XGboost belongs to one of the boosting methods, so the sample is not put back at

sampling time, thus each round of calculation sample is not repeated. In addition, XGboost
supports subsampling, and each round of calculation can use no full sample to reduce
overfitting. Another point is that XGboost also supports column sampling and randomly
extracts a percentage of features per round of the calculation for training, improving speed,
and reducing overfitting [27,28].

The predicted value of the ith sample after the input feature vector set D is superposed
by K weak classifiers is:

ŷk
i =

K

∑
e=1

fk(xi) =
K

∑
e=1

we
j (6)

where j = q(xi) represents the leaf node corresponding to the sample on the e(e = 1, 2 . . . K)
weak classifier, w represents the weight of the leaf node, and the initial value represents
each weak learner’s function f0 = 0.

The sum of the error function of all samples in the t CART tree M(t) is:

M(t) =
n

∑
i=1

error f (yi, ŷk
i ) +

K

∑
e=1

Ω( fe) (7)

Among them:

Ω( f ) = γT +
1
2

λ‖w‖2 (8)

where error f represents the loss function of the calculation error between the actual value
and the predicted value; Ω( f ) is a regularization term; T is the number of leaf nodes; and γ
and λ are hyperparameters.
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When the loss function is MSE:

M(t) =
n
∑

i=1
(yi − (ŷ(t−1)

i + ft(xi)))
2
+

t
∑

i=1
Ω( fi)

=
n
∑

i=1
[2(ŷ(t−1)

i − yi) ft(xi) + ft(xi)
2] + Ω( ft) + const

(9)

where const is the complexity of the first t − 1 tree. For a general loss function, make it
a Taylor second-order expansion:

M(t) =
n

∑
i=1

[error f (yi, ŷ(t−1)
i ) + gi ft(xi) +

1
2

hi f 2
t (xi)] + Ω( ft) + const (10)

Among them: 
gi = ∂

ŷ(t−1)
i

error f (yi, ŷ(t−1)
i )

hi = ∂2

ŷ(t−1)
i

error f (yi, ŷ(t−1)
i )

(11)

XGboost uses level-wise to generate a decision tree strategy and splits the leaves at
the same layer to conduct multi-threaded optimization and prevent overfitting.

2.4. Lithium Battery Health Factors Extraction and SOH Prediction Model Based on the
IDP Algorithm

For battery life prediction, the IDP algorithm is used to extract the feature of lithium
battery health factors, and the LAOS-XGboost model is constructed to predict the SOH of
lithium-ion batteries. The specific principle is shown in Figure 3.
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Figure 3. IDP-based lithium battery health factor extraction and SOH prediction model.

The lithium battery health factor extraction and SOH prediction model based on IDP
mainly comprise feature engineering, LAOS optimization, and SOH prediction. The data
feature engineering part mainly uses the IDP algorithm to extract the health factor of each
cycle data of the battery and cascades the binary LAOS encoder for feature selection. The
LAOS optimization part uses the LAOS algorithm to optimize the hyper-parameters of the
XGboost model and obtain the optimal parameters. The SOH prediction part is to train and
test the XGboost model to predict the SOH of the battery and evaluate the model.
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3. Feature Engineering Establishment and Full Information Health Factor Extraction
3.1. Feature Extraction Based on the IDP Algorithm

In this paper, the first batch of the data set of the NASA Prognostics Center of Ex-
cellence (PCoE) included battery numbers B0005, B0006, B0007, and B0018 data [29]. The
battery used is the lithium cobaltate lithium-ion battery, 18650 model size, with a rated
capacity of 2 Ah. The data set contains the voltage, current, impedance value, and tempera-
ture of lithium battery charging and discharging. The charging process of the experiment is
as follows: charge at 1.5 A constant current and change to constant voltage charging when
the voltage reaches 4.2 V, until the charging current drops to 20 mA. The discharge process
is as follows: discharge at a constant current of 2.0 A, and stop discharge when the B0005,
B0006, B0007, and B0018 battery voltage drops to 2.7, 2.5, 2.2 V, 2.5 V. The battery capacity
under different charge-discharge cycles is shown in Figure 4.
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Figure 4. Battery capacity.

Figure 4 indicates that with the increase in charge and discharge cycles, the battery
capacity decreases, but the battery will form a capacity regeneration phenomenon, resulting
in the battery capacity not monotonically decreasing. According to the minimum standard
SOH of the automobile industry, when the battery capacity drops to 80% of the rated
capacity, it is considered to be invalid. According to references [30,31], the life failure
thresholds of B0005, B0006, B0007, and B0018 are set as 1.38 Ah, 1.38 Ah, 1.5 Ah, and
1.4 Ah, respectively.

Taking the B0005 battery as the research object, due to the aging of the lithium battery
during charging and discharging cycles, the time steps of the measured attributes in each
cycle are not aligned, and the sequence length is inconsistent. Taking the measured voltage
attribute of the charge as an example, the voltage curves under different cycles are shown
in Figure 5.

Due to the inconsistent position of the measured attributes under the same time step
of each cycle, the intelligent algorithm and machine learning method cannot be used to
extract features. Therefore, the corresponding prediction curve cannot be modeled directly
using the attributes measured by the battery. However, it can be observed from Figure 5
that the shapes of the curves under different cycles are similar, and the model points on the
curve have typical characteristics, such as the minimum point and the time at the minimum
point of the curve point. The time at the minimum point decreases with the increase in
the cycle of the curve, which is obviously related to the capacity. In order to extract these
representative points, this paper uses the IDP algorithm to extract the characteristics of
each attribute of the battery.
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Figure 5. Charge voltage curve of B0005 battery under different cycles.

The representative points have high visibility, such as the convex and convex of the
curve, the highest and lowest points of the curve. According to the curve shape, there
are six representative points of the curve in Figure 5, and the IDP algorithm extracts the
six representative points of the curve. The results are shown in Figure 6.
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Figure 6. Measurement voltage properties of discharge at points extracted by the Improved Douglas–
Peucker algorithm.

Taking point 5 in Figure 6 as an example, the principle of extracting feature points
by the IDP algorithm is shown: point 4 is the lowest point of the curve, and point 6 is the
endpoint of the curve, while the line segment formed by point 4 and point 6 is A.B. The
distance between all points on the curve from point 4 to point 6 to A.B. is calculated, and
the corresponding point with the maximum distance is point 5. It can be observed from
Figure 6 that the representative points on the curve can be well extracted by using the
IDP algorithm.

Each charge and discharge cycle of the battery includes the voltage measurement,
current measurement, temperature measurement, current charge, and voltage charge of the
charging experiment, including voltage measurement, current measurement, temperature
measurement, current load, and voltage load of the discharge experiment for a total of
10 attributes.
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According to the same method, the IDP algorithm is used to extract the voltage
measured, the current measured, temperature measured, current charge, and voltage charge
attribute characteristics of the charging experiment, and the number of representative
points is obtained as follows: 5, 6, 6, 6, and 6. The voltage measured, the current measured,
temperature measured, current load, and voltage load attribute characteristics of the
discharge experiment are extracted, and the number of representative points is 6, 8, 5, 4, and
8. A total of 60 representative points are obtained, and each point contains two parameters
of time and attributes value, so a total of 120 features are obtained. After removing the
same features (e.g., the x-axis coordinates of the last value of each curve under the charging
attribute are the same) and the features with zero variance (e.g., the x-axis of the first point
of each curve is 1), 81 feature vectors are finally obtained.

3.2. Health Factor Selection Based on Binary LAOS Algorithm

Adding some redundant features will cause multiple collinearity problems and in-
crease the complexity of the prediction model. Some noise features will have a negative
impact on the model. The redundant features and noise features increase the complexity of
the model, resulting in over-fitting, which further affects the diagnostic effect of the model.
Therefore, it is necessary to screen the input features.

This paper uses the Wrapper method to filter features, eliminate irrelevant features,
and obtain the optimal feature subset. The principle is that the model is used to train and
evaluate the feature subset and the target (label) set, and the binary optimization algorithm
is constructed. Training accuracy is used as the standard to measure the quality of the
feature subset, and the optimal algorithm is used to select the best feature subset.

In this paper, 39-dimensional features are removed by the filter filtering method and
81-dimensional features are retained. Due to the large dimension, there are 281 possibilities
for an exhaustive search with a complete search method. The computational complexity
of full traversal is too large, and a heuristic search can obtain better features with fewer
search times. Therefore, this paper uses a heuristic rather than a complete search method.

The training model selected in this paper is the XGboost model, and the LAOS algo-
rithm is used as a heuristic search algorithm to construct a LAOS binary coding algorithm
to select the features of the obtained feature set.

The definition of independent variables in a binary optimization algorithm is as
follows: set a column length of N (N = 81) 0/1 binary column vector as the independent
variables of the optimization algorithm; N is the number of features in the original data set,
0 is the not selected features, and 1 is the selected features.

The specific steps of feature selection are as follows: Firstly, the first 100 cycles of
battery B0005 are divided into training samples, and the 101st to 168th cycles are divided
into verification samples. Then, the input features are normalized, and the MSE (Mean
Square Error) value of the predicted value and the actual value is used as the fitness
function value. The training samples are used to train the XGboost model. Then, the
trained XGboost model is used to predict the validation samples. The 0/1 binary column
vector with length N is used as the independent variable, and the above MSE value
is used as the fitness function value. The LAOS algorithm is used as the optimization
algorithm. The feature subset with the minimum fitness is obtained, which is the optimal
feature subset.

MSE =

N

∑
i=1

(ŷi − yi)
2

N
(12)

In Equation (12), N is the number of samples; yi is the true value; and ŷi is the
predicted value.

The fitness function curve of the binary LAOS optimization algorithm is shown
in Figure 7.
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Figure 7. The fitness curve of the LAOS optimization algorithm.

Figure 7 shows that the fitness function value does not change after 19 iterations, and
the MSE value reaches the minimum value. After LAOS coding, a 12-dimensional optimal
feature subset is obtained. The Pearson and Spearman values between the capacity of the
12-dimensional feature subset and the features are shown in Figure 8.
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Figure 8. Pearson and Spearman correlation coefficients between characteristics and capacity.

According to Figure 8, the Pearson and Spearman values between some features and
the capacity are higher than 0.9, indicating that the features fit the capacity well.

4. The SOH Prediction of Lithium Batteries

In practical applications, we expect that the model trained by one or more batteries
can accurately predict the SOH of other batteries under the same model, the same working
condition, and the same environment and accurately predict the SOH of the same battery.
Therefore, this paper has conducted two experiments with different battery predictions
and the same battery prediction.

In this paper, the data of B0005, B0006, and B0007 are selected for the prediction
between different batteries, which means the B0005 battery is chosen to be the training set
to train the model, and the trained model is used to predict the SOH of the B0006 battery
and B0007 battery. The B0005, B0006, B0007 and B0018 data are used to predict the same
battery. In the selected battery data, since the charge and discharge cycles of the B0018
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battery are different from those of the other three batteries and the data are quite different,
the B0018 battery is not used to predict different batteries.

4.1. The SOH Prediction of Different Batteries

Here, the XGboost model is selected as the SOH prediction model, and the B0005
features extracted by the above method are used as input for model training. Then, the
trained model predicts the SOHs of B0006 and B0007.

Because the super parameters in the XGboost model have a noticeable influence on the
model, different optimization algorithms are used to optimize the super parameters of the
XGboost model, and the performance of each model is compared to select an optimal model.

4.1.1. The SOH Prediction Based on the XGboost Model and Its Optimization Model

Because the super parameters of the XGboost model have an obvious influence on the
model, the learning rate learning_rate makes the calculation process more conservative by
reducing the weight of the feature. The maximum depth, max_depth tree is the maximum
depth, and the greater the value, the easier it is to overfit. The reg_lambda is the weight
coefficient of the L2 regularization term, and the greater the model is, the more conservative
it is. The reg_alpha is the weight coefficient of the L1 regularization term, and the greater
the model is, the more conservative it is. The n_estimators are the number of weak learners.
The larger the model complexity is, the stronger the model fitting ability is, but if the model
fitting ability develops too well, it will lead to the overfitting of the model [32,33].

Here, the AOS algorithm, particle swarm optimization (PSO) algorithm, and LAOS
algorithm are used to optimize the parameters of learning_rate, max _ depth, reg _ lambda,
reg _ alpha, and n _ estimators in the XGboost model, and the related prediction results
are compared. The LAOS, AOS, and PSO algorithm population size is set to 50, and the
number of iterations is set to 100. The B0005 battery is divided into a training set and
a verification set. The first 100 cycles are divided into training sets, and the 101st to 168th
cycles are divided into verification samples. The MSE value of the verification set is used
as the fitness value to train the XGboost model and its optimization models, and then the
SOH prediction of B0006 and B0007 batteries is carried out using the obtained model. The
prediction results of the XGboost model and its optimization models are shown in Figure 9.
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Figure 9. Prediction results of XGboost and its optimization model. (a) SOH prediction results of
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In order to further compare the performance of the above models, this paper takes
the Theil IC (TIC), the square sum of error (SSE), root mean square error (RMSE), the
goodness of fit (R2), and absolute error (AE) of a residual lifetime as the evaluation indexes
to evaluate the model. The hyperparametric values of each model are shown in Table 1.
Detailed indicators of each model are shown in Table 2.

Table 1. Super parameter table of optimization results of each model.

Model Learning_Rate Max_Depth Reg_Lambda Reg_Alpha n_Estimators

LAOS-XGboost 0.19291 650 0.01016 0.00012 1435
AOS-XGboost 0.15683 403 0.01691 0.00013 1411
PSO-XGboost 0.09527 682 0.00158 0.00016 1830

Table 2. Evaluation indicators of various models.

Battery Number Model Actual Life Predicted Life AE R2 RMSE SSE TIC

B0006

LAOS-XGboost

113

113 0 0.9964 0.0156 0.0411 0.0050
AOS-XGboost 115 2 0.9952 0.0228 0.0872 0.0073
PSO-XGboost 109 4 0.9897 0.0259 0.1127 0.0083

XGboost 102 11 0.9746 0.0432 0.3128 0.0138

B0007

LAOS-XGboost

126

126 0 0.9957 0.0109 0.0199 0.0033
AOS-XGboost 127 1 0.9952 0.0120 0.0241 0.0036
PSO-XGboost 127 1 0.9825 0.0218 0.0800 0.0066

XGboost 135 9 0.9733 0.0337 0.1910 0.0102
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Among them:

TIC =

√
1
n

n

∑
i=1

(ŷi − yi)
2

√
1
n

n

∑
i=1

ŷi
2 +

√
1
n

n

∑
i=1

yi
2

(13)

RUL = ANL−CNC (14)

where n is the sample number; yi is the true value; and ŷi is the predicted value. ANL is
the actual number of life cycles, and CNC is the current number of cycles.

The combination of Table 2 and Figure 9 shows that in B0006 and B0007 batteries,
the goodness of fit of all XGboost models is higher than 0.95, and the battery capacity
regeneration can be well predicted. Compared with other models, the TIC value and RMSE
value of the LAOS-XGboost model are the lowest, and the AE is 0. The RUL prediction
effect is good and the model performs best. Therefore, the model established in this paper
has a good generalization ability in battery SOH prediction.

4.1.2. Model Robustness Test

This paper adds Gaussian white noise to the input features to test the robustness of
the proposed Improved Douglas–Peucker LAOS-XGboost model.

Since the units of health factors are different, the variation ranges of values are also
different. The influence of Gaussian noise with the same intensity directly added to each
health factor on each feature is also different. In order to ensure that the added noise can
simulate more real interference, Gaussian white noise is added after the normalization of
each feature. The noise intensity is 10%, 1%, and 1 ‰, and the corresponding signal-to-noise
ratio is 10 dB, 20 dB, and 30 dB.

Taking B0005 as the training set, the IDP algorithm extracts features and selects the
optimal feature subset. Then, the LAOS-XGboost model is used to predict the SOH of
B0006 and B0007 after adding Gaussian white noise. The results are shown in Figure 10.
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The detailed indicators of the model are shown in Table 3.

Table 3. Detailed prediction results of various models.

Battery Number SNR Actual Life Predicted life AE R2 RMSE SSE TIC

B0006

Original

113

113 0 0.9964 0.0156 0.0411 0.0050
30 dB 102 11 0.9896 0.0264 0.1174 0.0084
20 dB 88 25 0.9798 0.0361 0.2190 0.0115
10 dB 75 38 0.9031 0.0794 1.0585 0.0254

B0007

Original

126

126 0 0.9957 0.0109 0.0199 0.0033
30 dB 125 1 0.9867 0.0187 0.0587 0.0057
20 dB 128 2 0.9462 0.0383 0.2465 0.0116
10 dB 113 13 0.8881 0.0539 0.4878 0.0163

Since the generated Gaussian noise is random, the results of each operation are slightly
different. The average results are selected in Figure 10 and Table 3. Combined with
Table 3 and Figure 10, it can be observed that with the decrease in SNR, the intensity of
environmental noise increases and the prediction accuracy of the model decreases gradually.
On the other hand, although the AE index of the B0006 battery becomes larger and the
RUL prediction accuracy becomes worse after adding noise, the R2 is above 0.9, the TIC
index is lower than 0.03, and the SSE value is lower than 0.5, indicating that the SOH
prediction effect of the model after adding noise is still good. In summary, the feature
extraction method and the LAOS-XGboost prediction model used in this paper perform
high robustness.

4.2. The SOH Prediction of the Same Battery

In order to test the universality of the feature extraction method and prediction model
in this paper, SOH prediction between the same battery is carried out, that is, using the
data of the first n cycles of the battery to train the model, and then predict the N cycles of
the battery.

After data preprocessing, 168 cycles of B0005, B0006, and B0007 batteries, and 131 cycles
of B0018 batteries were obtained. The first 70 loops of B0005, B0006, and B0007 are set as
the training set, 70 to 85 loops as the validation set, and 86 loops as the prediction starting
point. The first 60 cycles of the B0018 battery are set as the training set, 61 to 75 cycles as the
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validation set, and 76 cycles as the prediction starting point. According to references [30,31],
the life failure thresholds of B0005, B0006, B0007, and B0018 batteries were set as 1.38 Ah,
1.38 Ah, 1.5 Ah, and 1.4 Ah, respectively. The proposed feature extraction method is used
to establish feature engineering, and the XGboost model and its optimization model are
used to predict the data. The population size of each optimization algorithm is set to 50,
and the number of iterations is set to 100. The prediction results are shown in Figure 11.
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Figure 11. The SOH prediction of the same battery. (a) SOH prediction results of B0005 battery.
(b) SOH prediction results of B0006 battery. (c) SOH prediction results of B0007 battery. (d) SOH
prediction results of B0008 battery.

It can be observed from Figure 11 that the optimized XGboost has a better prediction
effect than the original XGboost. In order to compare the model performance in detail,
the five indicators of TIC, SSE, RMSE, AE, and R2 are still used to evaluate the model
performance, and the results are shown in Table 4.

Combined with Figure 11 and Table 4, it can be observed that the R2 of all models of
B0005, B0006, and B0007 batteries was higher than 0.98, the RMSE was lower than 0.02, and
the TIC was lower than 0.07, indicating that the characteristic engineering established in this
paper had a good prediction effect on the XGboost model. The AEs of B0005, B0006, B0007,
and B0018 batteries are 0, indicating that the feature engineering established in this paper
can accurately predict battery failure in the XGboost model. The B0018 battery prediction
effect is the worst because the B0018 battery data varies considerably, the capacity differs
significantly, and the measured cycle number is lacking. Compared with all models, the
LAOS-XGboost model performs best.
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Table 4. Evaluation results of different models under the same battery.

Battery Number Model Actual Life Predicted Life AE R2 RMSE SSE TIC

B0005

LAOS-XGboost

129

129 0 0.9987 0.0033 0.0009 0.0012
AOS-XGboost 129 0 0.9984 0.0063 0.0033 0.0023
PSO-XGboost 126 3 0.9926 0.0076 0.0047 0.0027

XGboost 132 3 0.9909 0.0151 0.0189 0.0054

B0006

LAOS-XGboost

113

113 0 0.9968 0.0071 0.0042 0.0026
AOS-XGboost 113 0 0.9957 0.0070 0.0041 0.0026
PSO-XGboost 113 0 0.9873 0.0181 0.0272 0.0067

XGboost 119 6 0.9893 0.0475 0.1871 0.0175

B0007

LAOS-XGboost

126

126 0 0.9971 0.0038 0.0012 0.0013
AOS-XGboost 126 0 0.9965 0.0046 0.0017 0.0015
PSO-XGboost 127 1 0.9952 0.0045 0.0017 0.0015

XGboost 126 0 0.9879 0.0091 0.0068 0.0030

B0018

LAOS-XGboost

97

97 0 0.9449 0.0085 0.0041 0.0030
AOS-XGboost 97 0 0.9418 0.0087 0.0043 0.0031
PSO-XGboost 98 1 0.9422 0.0088 0.0043 0.0031

XGboost 100 3 0.8877 0.0164 0.0151 0.0058

According to Tables 2 and 4, under the same model, the TIC index predicted by the
SOH of the same battery is lower, and the prediction effect in the same battery is better
than that between different batteries.

In summary, whether the SOH prediction of different batteries or the SOH prediction
of the same battery, the prediction effect is good by using the feature engineering combined
with the LAOS-XGboost model established in this paper.

5. Conclusions and Discussion

In order to extract the health factors of lithium-ion batteries and accurately predict
the SOH and RUL of batteries, a new feature processing method and SOH prediction
model are proposed in this paper. The IDP algorithm is used for feature extraction and
the Wrapper method is used for feature selection. Then, the LAOS-XGboost prediction
model is established to predict the SOH in different batteries and the same battery. The
conclusions are as follows:

(1) The IDP algorithm in this paper can realize the feature extraction of fixed dimensions
and has achieved good results in the feature extraction of battery data.

(2) With feature engineering based on the IDP algorithm, after eliminating irrelevant
features with the cascade binary coding LAOS algorithm, the SOH prediction is carried
out with the XGboost model, and good results are achieved in the SOH prediction of
different batteries. Among them, the LAOS-XGboost model has the best performance,
and the AE index is 0.

(3) After adding Gaussian white noise, the LAOS-XGboost model achieves good predic-
tion results. Under 30% amplitude of Gaussian white noise, the TIC indexes of the
LAOS-XGboost model are lower than 0.03, each index can maintain good results, and
the model has strong robustness.

(4) In the prediction of the same battery, under the characteristic engineering established
in this paper, the goodness of fit of all XGboost models is higher than 0.88, and the
RMSE is lower than 0.05. The LAOS-XGboost model performs best, and the AE values
are all 0.

Discussion: In practical use, we prefer to realize the SOH prediction between different
batteries (e.g., for the battery in a machine, we hope to use the model established by the
battery data of the same type in the same environment and working conditions to predict
the SOH and RUL of all the batteries after the machine, so as to accurately identify the
failure time of the battery in the same machine in the workshop and prevent the occurrence
of accidents). According to the research of this paper, it is found that the prediction between
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different batteries can achieve a good prediction effect. This paper proposes a feature
extraction method and establishes the LAOS-XGboost model to predict between different
batteries. The robustness of the proposed model is also studied in this paper and it is
found that the model still achieves good prediction results under 10 dB SNR. Following the
research, this paper also studies the SOH prediction under the same battery. It is found
that the prediction effect of the model established under the same battery is better than
that between different batteries. The SOH prediction between different batteries is more
difficult, which can be achieved if the battery model, working environment, and working
mode is the same.
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