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Abstract: In many competitive electricity markets around the world, the dynamic behavior of
hourly electricity prices is subject to significant uncertainty and volatility due to electricity demand,
availability of generation sources, fuel costs, and power plant availability. This work is devoted to
describing and comparing the dynamics of electricity prices for some markets in Europe, selecting
the five countries representing the largest economies in Western Europe (France, Germany, Italy,
Spain, and the United Kingdom). Additionally, Denmark is included in the study to assess whether
the size of the country is a determinant of price behavior. The six datasets of hourly price series,
which exhibits a strong daily seasonality, are modelled using the most relevant well-known statistical
models for time series analysis: ARIMA models and different versions of GARCH models. The
comparison of the estimated models’ parameters, the analysis of outliers’ rate of appearance and
the evaluation of out-of-sample one-day-ahead forecast let us draw some insightful similarities and
dissimilarities between the analyzed countries.

Keywords: ARIMA; asymmetry; conditional volatility models; GARCH; outliers; time series analysis

1. Introduction
1.1. Motivation

Electricity markets have experienced a significant transformation around the world in
the last few decades. The price of electricity set by the government each year is entirely
determined by the market every day. In most countries, the price of electricity is arranged
through a daily auction for each 24 h of the next day. The results of the daily market, based
on free contracting between buying and selling agents, represent an efficient solution from
the economic point of view but introduce huge uncertainty for the market participants:
producers, sellers, and consumers.

In the European Union, the wholesale electricity market operates under the so-called
“uniform price” rule [1,2]. In summary, the uniform pricing procedure is as follows: The
daily demand is first satisfied by the supply of technologies whose production costs are
lower, allowing them to offer electricity at a lower price. In practice, these technologies are
those that produce non-storable electricity, such as nuclear and renewables. If this supply
is insufficient to meet the total demand, the unsatisfied part of the demand is covered by
the technology from among all the others whose offered prices are lower, and so on. The
final price is the price corresponding to the supply that satisfies the last fraction of demand.
This final price is largely related to the production costs of the most expensive technology
entering the market supply. In this pricing system, all technologies are remunerated at the
matching price, resulting in benefits of considerable magnitude for those technologies that
generate electricity at a lower cost.

Distinct from most financial or commodity markets, the electricity “spot market” is
typically a daily market that does not allow continuous trading. This is because system
operators require advance notice to verify that the schedule is feasible and conforms to

Energies 2022, 15, 5980. https://doi.org/10.3390/en15165980 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15165980
https://doi.org/10.3390/en15165980
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-2000-9013
https://orcid.org/0000-0002-6573-1774
https://doi.org/10.3390/en15165980
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15165980?type=check_update&version=1


Energies 2022, 15, 5980 2 of 23

transmission constraints. These deregulated prices have been characterized in all the
markets by having extremely high volatility.

Several elements explain the high volatility observed in electricity prices [3]. Probably
the most important factor is the impossibility of storing electricity. Electricity cannot
be physically stored directly, and production and consumption must be continuously
balanced. Therefore, supply and demand shocks cannot be smoothed easily and directly
affect equilibrium prices. Demand and supply characteristics also play an essential role in
the observed volatility. The electricity demand is highly inelastic because it is a necessary
good and highly dependent on weather conditions. The characteristics of the supply
pool in each market can also contribute to the volatility of a given demand. The relative
insensitivity of demand to price fluctuations and supply constraints at peak times make
short-term electricity prices extremely volatile. Therefore, in markets where demand and
supply curves are steep, we can observe sharp price increases as the quantity demanded
increases. Moreover, depending on the structure of the market and the market power of
generators, for high levels of demand, only a few generators could satisfy the residual
demand and, therefore, market power could come into play through monopolistic or
oligopolistic behavior of generators.

Most wholesale electricity markets use the “new” uniform auction system to set the
price. However, the recent experience and perceived poor performance of some decentral-
ized electricity markets has led some regulators to “revisit” the adoption of discriminatory
or “pay-as-you-bid” auctions. Under this rule, each market participant is remunerated
according to the price of its bid. In the short term, less is paid for electricity, but clean
energy is no longer incentivized. It is well known that discriminatory auctions are not
usually superior to uniform auctions in the medium and long term [2,4]. Both types of
auctions are commonly used in financial and other markets, and there is now a voluminous
economic literature devoted to their study. The system of “pay-as-you-bid” or discrimina-
tory auctions resembles the old system of market operation prior to the liberalization of the
electricity sector.

There is currently an intense debate in the European electricity sector about the best
pricing system. Critics of the uniform auction system argue that some large utilities have
the market power to artificially alter prices. The aim of our article is to statistically describe
how electricity prices evolve in six countries using the uniform auction system. This
comparative study may be useful to help policy makers and market players evaluate the
current pricing system in the European Union.

As mentioned above, uniform pricing mechanism introduces huge uncertainty, which
means the economic risk for the agents involved in the market. Logically, it is beneficial for
any participant in the auctions to have a procedure for predicting prices when configuring
their purchase or sale bids. Given the importance of electricity prices in a country’s
economy [5], the prediction problem has been the subject of an enormous research effort
from the electricity companies with the support of specialists in statistics and finance from
around the world. The statistical analysis performed and the models constructed allow
us to answer another question of special interest, which is to quantify the uncertainty
associated with the price prediction in each country.

1.2. Aim

This paper aims to statistical analyze hourly electricity price series in six European
countries: Denmark, France, Germany, Italy, Spain, and the United Kingdom, using time
series models. The purpose of the analysis is to select a procedure to make predictions for
the next day’s 24-h prices. With the help of the selected models, the prices predictability for
each country is compared. The five most prominent countries in the European Union have
been selected with Denmark.
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1.3. Literature Review

A significant number of references have been devoted to the electricity price fore-
casting in the state-of-the-art technical literature [6–8]. In general terms, the proposed
techniques can be grouped into three categories in accordance with the forecasting frame-
work: statistical models, time series methods and artificial intelligence.

Concerning the time series approach, in the last years some studies have addressed
the electricity price forecasting using a hybrid approach of statistical and regression mod-
els, based on a NARMAX model [9], or ARMAX Models based on a linear regression
where functional parameters operate on functional variables [10]. Other references employ
dynamic trees and random forest statistical techniques [11].

Concerning the artificial intelligence area, in the last years some references have
analyzed the techniques based on deep learning on hybrid platform [12], ensemble learn-
ing [13], parametric and non-parametric approaches such as nonparametric and/or func-
tional AR models [14], Hybrid ANN and Artificial Cooperative Search Algorithm [15],
General Regression Neural Network and Harmony Search Algorithm [16], via Hybrid
Backtracking Search Algorithm and ANFIS Approach [17], and a comparative of differ-
ent machine learning techniques such as random forest regressor models, deep neural
networks, convolutional neural networks [18].

1.4. Contribution

The contribution of this paper is twofold. First, the hourly price series of six most-
representative European electricity markets have been described and modelled using
ARIMA models and different versions of GARCH models. Secondly, a set of similarities
and differences has been drawn after the exhaustive comparison of the: (i) estimated
ARIMA/GARCH parameters, (ii) outliers’ rate of appearance, and (iii) the evaluation of
out-of-sample one-day-ahead forecasts.

1.5. Paper Organization

The rest of this paper is organized as follows. Section 2 describes the collection of data
employed in this study. Sections 3 and 4 model the daily price time series using ARIMA
and GARCH techniques, respectively. Sections 5 and 6 are devoted to analyzing the data
asymmetry and comparing the out-of-sample forecasts accuracy, respectively. Finally,
Section 7 provides some relevant conclusions. The analysis performed is summarized using
the flow chart in Figure 1 below.
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Figure 1. Flow diagram of the analysis performed.

2. Electricity Prices Dataset
2.1. Characteristics

There is a very general agreement about listing the main characteristics observed in
the descriptive analysis of the price series, which is common to practically all liberalized
electricity markets. The first is the existence of jumps and spikes, which is justified by the
difficulty of storing large quantities of energy to allow a smooth adjustment between supply
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and demand. The second is the strong seasonality due to the dependence of electricity
demand on weather conditions and social and economic activities that generate daily,
weekly, and annual cycles. Finally, another feature that is common to other financial markets
is the existence of intense heteroskedasticity, which creates periods of high volatility [19–21].

2.2. Single Day-Ahead Coupling

Most of Europe is now part of the Single Day-Ahead Coupling (SDAC), which is a
coordinated electricity price setting and cross-zonal capacity allocation mechanism that
simultaneously matches orders from the day-ahead markets per bidding zone, respecting
cross-zonal capacity, and allocation constraints between bidding zones. This allocates scarce
cross-border transmission capacity efficiently by coupling wholesale electricity markets
from different regions. It does so by simultaneously considering cross-border transmission
constraints. Its goal is to create a single pan-European cross-zonal day-ahead power market.
Every day of the year, at 12:00 CET, the daily market session takes place in which the
prices and the volume of energy for the twenty-four hours of the following day are fixed in
most European countries (Spain, Portugal, Germany, Austria, Belgium, Bulgaria, Croatia,
Slovakia, Slovenia, Estonia, France, Holland, Hungary, Ireland, Italy, Latvia, Lithuania,
Luxembourg, Finland, Sweden, Denmark, Norway, Poland, the United Kingdom, the
Czech Republic, and Romania). The daily market (SDAC) aims to carry out electricity
transactions by submitting bids for market players’ sales and purchase of electricity. For
instance, buying and selling agents located in Spain or Portugal will submit their bids to
the daily market through OMIE, which is the sole designated NEMO in those countries
(NEMO stands for a Nominated Electricity Market Operator and they are the organizations
mandated to run the day-ahead and intraday integrated electricity markets in the EU).
Their buy and sell bids are accepted based on their economic merit order and the available
interconnection capacity between the price zones. Suppose at a particular hour of the day,
the interconnection capacity between two zones is sufficient to allow the flow of electricity
resulting from the negotiation; in this case price of electricity at that hour will be the same
in both zones if inverse, and at that hour the interconnection is fully occupied, at that time
the pricing algorithm results in a different price in each zone. This described mechanism
for electricity price formation is called market coupling.

The existence of the SDAC mechanism conditions the price dynamics of each national
market, although the distances between countries and interconnection capacity restrictions,
among other factors, cause the evolution of prices in many areas to vary independently.

2.3. Dataset

Hourly prices have been collected for six countries (Denmark, Germany, France, Italy,
Spain, and the UK), starting 1 January 2013 and lasting until 31 December 2019. To see
how the European daily market (SDAC) affects the prices of the different markets analyzed,
provides the percentage of hours (corresponding to weekdays) in which there has been
price coincidence in two countries in the sample. For example, during the study period,
prices in France and Spain have coincided in 17.9% of the hours. Moreover, the highest
percentage is for Denmark and Germany with 29.8%.

Another important feature of the dynamics of the hourly electricity price series is the
strong seasonality. In many applications, the seasonal behavior can be perfectly described
with stationary time series models. However, in this case, the strong seasonality is asso-
ciated with a loss of stationarity, leading to periodic changes in the mean and correlation
structure of the process. These types of processes are known as periodically correlated
processes [21,22]. In their analysis of daily average prices, Koopman et al. [21] mentions
the lack of stationarity of the series and recommend using different ARIMA models for
each day of the week. Tiao and Grupe [23] explored the properties of periodic models to
characterize seasonal time series. In their paper [23], the authors showed that the use of
stationary ARMA models when processes are periodic leads to a loss in predictive accuracy.
As a result of this, several authors prefer to predict hourly electricity prices with different
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models for weekdays and weekends [24,25]. All these considerations lead us to limit our
analysis to working days (Monday to Friday), eliminating Saturdays and Sundays from
the series.

This is a very critical aspect because it creates a discontinuity in the series. This
decision, however, greatly simplifies the analysis of the series and focuses on the most
relevant days in the price series. The left plot in Figure 2 shows the median prices for
each of the 24-hourly series for each country; whereas the right plot shows the robust
estimate of the standard deviation (median of the absolute deviations from the median,
adjusted by a factor for asymptotically normal consistency) of the same series. Prices show
a clear bimodal curve with two different hours in the day, which are markedly higher
than neighboring values: these are hours between 8 and 10 a.m. and 6 and 10 p.m. In a
comparative perspective across different European markets, data shows clearly that Italy
has values structurally higher if compared with the other markets. Based on Figure 2, Spain
has the second-highest median prices, followed by France and Germany. The median price
curves for Denmark and the UK are similar for the first half of the day and higher in the
UK for the second half. Denmark and the UK have lower average prices in most hours than
the other countries. The price differences among countries are very considerable, e.g., Italy
has average values 50 to 80% higher than Denmark.
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Figure 2. The median prices for each of the 24-hourly series for each country (left plot) and the robust
estimate of the standard deviation (right plot).

Concerning the variability changes according to the hours in the different countries
(right plot of Figure 2): The differences are very pronounced in general for all countries
except Spain. The fact that the variability is not constant is very relevant when choosing
the model. This case indicates that the hourly price series does not have constant variance
and is not stationary. Following the recommendation of Tiao and Grupe [23], the use of an
ARIMA model for the hourly series is not appropriate.

Figure 3 shows the daily average price series (black-colored line) with the mean values
and the standard deviation. The difference in level between the Italian series and the
Danish or British series is observed. The existence of jumps and spikes, the lack of trend,
and the reversion effect to the mean can be seen in all the graphs. The red-colored line
depicts the smoothed series using Lowes. The value in parentheses below the standard
deviation is the measure of the dispersion of the data against the smoothed curve (red).
With respect to this indicator, the difference in behavior between the UK series and the
others is very striking.
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Figure 3. The daily average price (€) series with the mean values and the standard deviation.

The evolution of average prices over seven years shows there is no trend in any of the
series. The graphs for some countries show strong similarities, e.g., Denmark and Germany.
Furthermore, Italy and France, especially from 2016 onwards. The degree of similarity
can be measured by the correlation matrix or by the correlation matrix of the differenced
series (Table 1). The correlation between Denmark and Germany is high for both average
and incremental data. It is also high for the pairs (Denmark, UK), (France, Italy) and
(France, UK).

Table 1. The correlation matrix of the differenced series.

Den Fra Ger Ita Spa UK

Den 1 0.360651 0.781651 0.034087 −0.05867 0.388412
Fra 0.360651 1 0.175669 0.712271 0.361348 0.61889
Ger 0.781651 0.17567 1 0.078789 −0.08945 0.276344
Ita 0.034087 0.712271 0.078789 1 0.525755 0.457873
Spa −0.05867 0.361348 −0.08945 0.525755 1 0.100781
UK 0.388412 0.61889 0.276344 0.457873 0.100781 1



Energies 2022, 15, 5980 7 of 23

3. ARIMA Models and Outliers

The literature on modeling and analyzing electricity prices is abundant and growing
quickly. Most of the initial literature is in the finance area and focuses on developing
realistic spot price models, analytically tractable for the purposes of derivative pricing
and risk management. During recent decades, many statistical techniques and models
have been developed for forecasting whole-sale electricity prices, especially for short-term
price forecasting. The complexity of electricity price dynamics can be seen in [21], One
of the most complete studies on the subject. Weron [8] presents an extensive review of
the established approaches to modeling and forecasting electricity prices [8]. A variety of
methods and ideas have been tried for electricity price forecasting, with varying degrees of
success. The review article aims to explain the complexity of the available solutions, with a
special emphasis on the strengths and weaknesses of the individual methods.

This and many other articles summarize the factors influencing price behavior and
compare different approaches, such as Artificial Neural Networks, Auto Regressive Inte-
grated Moving Average Models, dynamic regressions, Support Vector Machine models,
Wavelets, and methods that combine different models. Basically, the works conclude that
time series models are the ones which generally provide better results [26,27].

Looking specifically at time series models, we can distinguish many different ap-
proaches in the literature. Hourly electricity prices for a country form a univariate time
series. The natural approach is to initially analyze the complete hourly time series with
an ARIMA model, including the different seasonalities present in the process. This is the
starting point for many authors. A single ARIMA model is not sufficient for collecting all
the peculiarities of price dynamics. Prof. Conejo et al. [26] use a different model for each
season for the PJM Interconnections (Pennsylvania-New Jersey-Maryland). As we have
anticipated in the previous sections, the time series is not stationary. The variance varies
from one hour to another, the autocorrelation structure is different for different times of the
day, and so on. Furthermore, and most important of all, this strategy provides predictions
compared to the alternative of modeling each hour independently, the discussion and
analysis carried out by [24]. In other words, the parameters associated with the dynamics
of the process are different for each hour of the day. Tiao and Groupe [23] showed that the
use of stationary ARMA models when processes are periodic leads to a loss in predictive
accuracy. In the hourly price series, there is a clear periodicity of length 24. Therefore, the
approach preferred by several authors, is to use different models for each of the 24 h in a
day [24,25,28–30].

Gladyshev [31] proved that any periodic process could be written as a multivariate
stationary process of dimension equal to the length of the period (24, in this case). This
led some authors to pose the problem as a case of multivariate time series. However, in
this case, the direct application of multivariate ARIMA models requires many parameters.
For instance, the IMA(1,1), one of the simplest models, needs to estimate a 24 × 24 square
matrix plus the 24 × 24 error covariance matrix. If the day-of-the-week seasonal effect
is included, a new 24 × 24 matrix will be required, and the final multivariate model will
accumulate a huge number of total parameters. Reducing the parameter space is essential
for successfully modeling multivariate time series. The problem is solved in the time series
literature by dimension reduction using dynamic factor models [24,32,33].

The univariate periodic correlated series analysis through multivariate models is sel-
dom practical. For example, Carpio et al. [24] uses the multivariate exponential smoothing
model, which requires in total 876 parameters. Two conclusions with very relevant practi-
cal implications stand out from this article [24]: the first one, as announced by Tiao and
Grupe [23], not considering cyclostationarity and using a single stationary ARIMA model
for the whole hourly series provides very bad predictions; second, as pointed out, there is
an alternative to using a vector model, which is the use of 24 univariate models, one for
each hour of the day. This alternative is much simpler and provides predictions in the same
way as the multivariate model.
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The previous paragraphs conclude that the best way to model the evolution of elec-
tricity prices is through 24 univariate models, one for each hour of the day.

Working with 24 models introduces some complexity to the problem, but a great
advantage arises; each of the 24 models is very simple. Following the usual procedure in
analyzing other commodity prices, we will use the logarithm of the price as the variable to
be modeled. Standard analysis of each series using the Box-Jenkins methodology suggests
the ARIMA (0,1,1) model as an acceptable model to capture the price dynamics. Thus,
calling yh,t = log(ph,t) with ph,t being the price of electricity for hour h of day t, the model
can be written as:

yh,t = yh,t−1 + θhuh,t−1 + uh,t, h = 1, 2, . . . , 24 (1)

where uh,t (with h fixed) is a white noise process with variance σ2
h and θh is the model

parameter to be estimated from the data.

3.1. Detection of Outliers

As previously mentioned, electricity prices often undergo sudden changes that affect
the dynamics of the data on a transient basis. It is difficult in many cases to know the causes
of these changes. Detecting and correcting for the effect of outliers is important because
they impact model selection, parameter estimation and, consequently, forecasts. There are
several well-known computer programs specialized in the automatic detection of outliers
in time series, such as X-12-ARIMA (developed by the U.S. Census Bureau) and TRAMO
(developed by the Bank of Spain) [34]. A procedure used to detect outliers in time series is
available in the R package tsoutliers [35]. The following types of outliers are considered: AO,
additive outliers; LS, level shifts; TC, temporary changes and SLS, seasonal level shifts. The
tsoutliers package [35] implements the procedure developed by [36]. The outlier detection
procedure has been applied to each of the 24-time series for each country.

The bar chart in Figure 4 shows the total number of outliers in each country (total in
gray, downward in blue, upward in red). During the analyzed period, 7 years, the market
with the least outliers is the German market (1.02%), and the market with the highest
proportion of outliers is the Spanish market (4%). It is important to highlight the high
proportion of days affected with outliers, 4 of the six countries analyzed have over 10%
of the days with at least one outlier observation. Most outlier observations in Denmark,
Germany, France, and Spain correspond to sharp price declines. In Italy and Great Britain,
the proportion of outliers in both directions is similar. The number of outliers detected
logically depends on the criteria used to declare an observation as an outlier. The number
of outliers changes with different criteria, but the structure observed by country and time
is very similar.
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The complexity of predicting electricity prices can be deduced from the outlier analysis
performed. The existence of outlier observations seriously affects the estimation of the
model. Moreover, by their very definition, outliers are very difficult to predict. However, it
is the critical issue of price-prediction models in many cases (especially in the Spanish case).
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Many papers [37–40] use explanatory variables, such as weather conditions, daily demand
structure, and other factors to model and predict jumps in the price series. Although there
have been attempts to predict the jumps, the results achieved so far are rather limited.

3.2. ARIMA Model Estimation

Once the outliers have been eliminated, the autocorrelation function and the partial
autocorrelation function corresponding to the differentiated pricing log series of each hour
in the markets studied show that univariate IMA (1,1) is a suitable model for all the hours.
For a given hour, the optimal model (chosen following the usual model selection criteria)
has a more complex structure but is only slightly better than the IMA (1,1) model.

As a summary of the analysis performed using the ARIMA time series models, the
graphs in Figure 5 are presented. A figure with four graphs (3 colors) is shown for each of
the six countries studied. The top line shows the standard deviation of prices (in logarithms).
This is the initial variability of each of the 24-time series. The series has been corrected by
eliminating extreme values by analyzing and identifying outliers. The variability is logically
reduced. The reduction in the standard deviation of the series due to the elimination of
outliers is the blue band. The standard deviation for each hour of the corrected series is
shown in the second line.
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The corrected series is not stationary. Statistical analysis indicates that the main
dynamics of prices largely correspond to the standard evolution of prices in other financial
markets: the random walk. According to this model, the best prediction of the price of
electricity for hour h of day t + 1 is to take the price observed for that hour on day t. If
this prediction rule is used, the standard deviations of the prediction errors are shown in
the third line (starting from the top). The reduction in standard deviation obtained after
differentiation corresponds to the red band in Figure 5. The variability with respect to the
second graph is very significantly reduced in all countries.

Finally, the lower graph shows the standard deviation of the ARIMA (0,1,1) model er-
rors for each hour (exponential smoothing). The addition of the moving average parameter
slightly improves the price predictions except for the Spanish case, where there is hardly
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any change concerning the random walk. The improvement in the models by including the
moving average parameter is the light green band and is barely noticeable in Figure 5.

The graph can be interpreted as an analysis of the variance of the series. The most
important component explaining the variability is the random walk (red band), outliers’
existence (blue band), and finally, the moving average parameter (green band).

Figure 6a shows the estimated standard deviations of the 24 models for each country.
The standard deviations are quite stable at around 0.1 for Denmark, France, UK, and
Italy. Germany has a higher variability of residuals than the previous four countries. The
standard deviation of the first 6 h for Spain is much higher than the rest.
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Figure 6b represents the estimations of the theta parameter of the IMA (1,1) model for
each hour in the six markets. Denmark, UK, Italy, and France present highly significant
theta estimates for all hours with values between 0.4 and 0.7. Germany shows theta values
around 0.6 between 6 and 20 o’clock; outside this interval, the values are lower and unstable.
The values of the theta parameter for Spain are very unstable, between −0.2 and 0.2, in
many cases not significantly different from zero. The results observed in this graph are
consistent with the sigma values represented in Figure 6a.

4. GARCH Models
4.1. Introduction GARCH Models

ARIMA models assume that the variance is constant over time. The evolution of
yt = ∆ log(ph,t) for the analyzed countries shows for all series there are periods with signif-
icant increases in variability. The variability or volatility of electricity prices is comparable
to that of other financial markets (stock, bonds) or other commodities [1]. The deregulation
has introduced new elements of uncertainty in the sector and therefore usual financial
aspects such as financial risk management, derivative contracts, or hedging have been



Energies 2022, 15, 5980 11 of 23

introduced in the industry. The variability bursts can be predicted with autoregressive
models with conditional heteroscedasticity or ARCH models, initially introduced by [41]
and extended by [42] to generalized ARCH or GARCH models.

There is no consensus in the literature on the most appropriate volatility model.
According to [43], the optimal model depends on the forecasting horizon, and the country
analyzed. As explained above, most studies differ from our approach in two aspects: they
use daily average price data, and when they use hourly data, they do so with a single
model for the 24 h of the day. Our interest in this paper is in day-ahead price predictions.
This paper has studied the performance of six classes of ARMAX-GARCH volatility models
(GARCH, eGARCH, gjrGARCH, apARCH, iGARCH, and cGARCH), and we have analyzed
their behavior from the point of view of estimation and prediction.

The GARCH models combine two equations to explain the evolution of the variable
of interest yt , representing the logarithm of electricity price for an hour h of the day t.
Equation (2) represents the ARIMA model of the variable yt. In this case, we will use the
ARIMA (0,1,1) or IMA (1,1) model, also known as exponential smoothing.

yt = yt−1 + θut−1 + ut, t = 1, 2, . . . (2)

where ut is a unbiased Gaussian-distributed random error and parameter θ is the IMA
parameter to be estimated.

The innovations ut in Equation (2) is a sequence of random variables whose variance
σ2

t is not constant. The second equation of the model, the GARCH equations, aims to
explicitly model the time varying variance process. To simplify the explanation, we begin
with the following GARCH (1,1) model:

σ2
t = ω + αu2

t−1 + βσ2
t−1 (3)

where ω, α and β are the model parameters to be estimated from the data.
In this document, the term sGARCH refers to the previous model in Equation (3),

standard GARCH. The three parameters of the model ω, α and β have to verify the following
conditions: α ≥ 0, β ≥ 0, α + β < 1 and ω > 0. The parameter α (the ARCH parameter)
represents how volatility reacts to new information ut−1, and β (the GARCH effect) capture
the degree of volatility persistence. The specification in Equation (2) is GARCH(1,1), but
this can easily be extended to GARCH(p, q). The persistence is defined by P̂ = α + β and
σ̂2 = ω/

(
1− P̂

)
is unconditional variance. A particular case of this model is the integrated

GARCH or iGARCH when α + β = 1.
When positive or negative shocks (ut−1) have different impacts on volatility, the

exponential GARCH (eGARCH) of [44] may be preferred:

log
(

σ2
t

)
= ω + α + γ

(∣∣∣∣ut−1

σt−1

∣∣∣∣− E
∣∣∣∣ut−1

σt−1

∣∣∣∣)+ β log(σ2
t−1) (4)

where ω, α, γ and β are the model eGARCH parameters to be estimated from the data.
In addition to asymmetry, the eGARCH model in Equation (4) can also accommodate
leverage, which is the negative correlation between returns shocks and subsequent shocks
to volatility.

The gjrGARCH [45] models positive and negative shocks on the conditional variance
asymmetrically using dummy variable It that takes value 1 for ut < 0 and 0 otherwise:

σ2
t = ω + αu2

t−1 + γIt−1u2
t−1 + βσ2

t−1 (5)

where ω, α, γ and β are the model gjrGARCH parameters to be estimated from the data.
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The variance exponent in Equation (5) is 2, some authors prefer to replace it by δ a
new parameter that is estimated from the data, giving rise to the asymmetric power ARCH
model (hereinafter referred as apARCH) of [46]:

σδ
t = ω + α(|ut−1| − γut−1)

δ + βσδ
t−1 (6)

where δ > 0, and ω, α, γ, δ, and β are the model parameters to be estimated.
The Component GARCH model of [47] decomposes the conditional variance into a

permanent and transitory component. Letting qt represent the permanent component of
the conditional variance, the model can be written as:

σ2
t = qt + α

(
u2

t−1 − qt−1

)
+ β

(
σ2

t−1 − qt−1

)
(7)

qt = ω + ρ qt−1 + φ
(

u2
t−1 − σ2

t−1

)
(8)

where ω, α, β, ρ, and φ are the model cGARCH parameters to be estimated from the data.

Results

The parameters of all GARCH-type models are estimated using Maximum Likelihood
since it is generally consistent and efficient and provides asymptotic standard errors that
are valid under non-normality. The conditional log-likelihood is given by:

log (L(θ1, θ2, . . . , θk)) = ∑T
t=1

(
log

(
f
(

ut

σt

))
− log(σt)

)
(9)

where f (·) is the conditional probability density function and θi, i = 1, . . . , k are the model
parameters. For each model, the innovation process ut is allowed to follow one of the
following three distributions: the Normal Distribution, the Student’s t Distribution, and
the Generalized Error Distribution. In our analysis, we used Student’s t-distribution as the
most appropriate; the results do not change significantly when using one of the other two.

4.2. sGARCH Models

In the GARCH-type models, the variance of the residuals is not constant; however,
we believe it is useful for calculating the mean squared error (MSE) of the residuals as a
measure of goodness of fit and compare the result with that obtained in the homoscedastic
IMA (1,1) model. In the latter case, the MSE is an estimator of the constant variance of the
model. Figure 6c show the curves for each country. For all countries and hours, the MSE of
the GARCH model is higher than that of the ARIMA model. This is logical and expected
because in the first model (ARIMA) the estimation was performed after a previous cleaning
of outliers while in the second model (GARCH) the original data were used.

The estimates of parameter θ for the two models are plotted in Figure 6d. As can be
seen, the θ estimates for the GARCH model are more stable, taking a value close to 0.6 for
all hours in all regions. From a conceptual point of view, the second model (GARCH) is
more appropriate because the ARIMA model has been inadequately estimated to a series
that is not homoscedastic. We will see later which of the two options is better from a
predictive point of view.

Figure 7 shows the values of the estimates of the two parameters of the sGARCH equa-
tion. The α parameter represents the effect on volatility of new information (innovation). It
measures changes in variance in the short run. In general, the estimated values are high
compared to those corresponding to other financial markets, according to [48], one of the
basic references in risk analysis, values of α above 0.1 correspond to very nervous or jumpy
markets. The opposite happens with the β parameter, in financial markets it is usually in
the range of 0.85 and 0.98 [48], in the case of electricity prices it is clearly lower.
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Figure 7. The values of the estimates of the two parameters of the sGARCH equation.

Considering the restrictions of the parameters in (3), high values of α are associated to
low values of β, and in this case volatility is very “volatile” and the observed series presents
many spikes. The sum α + β measures the rate at which the shock of volatility dies over
time. Persistence of volatility occurs when α + β = 1 (iGARCH), thus σ2

t is non-stationary
process and the unconditional variance become infinite.

The left plot in Figure 8 plots ω̂, the ordinate at the origin of the eGARCH equation.
For all markets, these are low values and therefore their contribution to the total volatility
is insignificant. The right plot in Figure 8 depicts α̂ + β̂, the estimated persistence. The
values for Spain add up to 1 for 24 h, and those for Denmark at all hours except 8, 9 and
10 am. Germany is similar to Denmark. Countries France, UK, and Italy have values less
than 1 for most hours. When the sum α̂ + β̂ is 1 the GARCH model becomes iGARCH. This
explains the higher variance of the Spanish and German prices.
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4.3. Comparison of GARCH Models

A significant result in comparing the GARCH models is that the estimated residuals
in all of them are very similar. Table 2 shows the MSEs of the six models for all countries.
Each MSE has been obtained as the average of the MSEs corresponding to the 24-hourly
models. As can be seen in the table for each country, the six models have very similar MSE
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values. As indicated with the ARIMA models, the country with the highest MSE is Spain,
followed by Germany.

Table 2. The MSEs of the six models for all countries.

Den Fra Ger Ita Spa UK

sGARCH 0.098841 0.11529 0.219578 0.145505 0.41604 0.121573
iGARCH 0.098849 0.115289 0.219584 0.145509 0.41604 0.121577
eGARCH 0.099824 0.115337 0.220317 0.145483 0.417037 0.121597
gjrGARCH 0.099503 0.115376 0.220105 0.145519 0.416976 0.121591
apARCH 0.100431 0.11536 0.220421 0.145456 0.417835 0.121576
csGARCH 0.098862 0.115299 0.219374 0.145589 0.41561 0.121573

Figure 9 shows the changes in the parameter estimate according to the different models
for each country. The largest differences appear in Spain and the first hours in Denmark
and to a lesser extent in France. In all three cases, the differences appear between the
three models eGARCH, gjrGARCH, and apARCH that consider the asymmetric effect of
innovations on volatility and the other three models (sGARCH, iGARCH, and cGARCH)
that do not include this effect. We will see the differences below when dealing with the
asymmetry effect in volatility modeling.
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5. Asymmetry

The eGARCH, gjrGARCH and apARCH models are important in capturing asymmetry,
which is the different effects on conditional volatility of positive and negative shocks
of equal magnitude. The parameter associated with asymmetry in the gjrGARCH and
apARCH models is γ and the symmetry contrast with these models is γ = 0.

In the gjrGARCH model in Equation (5), positive shocks, ut−1 > 0 has an impact on
volatility of α while negative shocks have an impact of α + γ. In this case, γ is positive, so
negative shocks ut − 1 < 0 increases volatility. In Denmark and Germany this happens
at night, while in Spain it occurs at practically all hours and with greater intensity in the
central hours of the day.

In the eGARCH model in Equation (4), positive shocks ut−1 > 0 have an impact on
(log) volatility equal to α + γ, while negative shocks ut−1 < 0 have an impact equal to
−α + γ. Symmetry occurs (equal impact) if α = 0. Therefore, the symmetry contrast in
the eGARCH model is α = 0. According to [49], the condition given in the literature for
asymmetry in eGARCH focuses on the incorrect parameter, γ, rather than α the correct pa-
rameter. Significant α values are negative, implying that negative shocks increase volatility.
This result is consistent with the effect detected with the gjrGARCH model.

The apARCH model, as the gjrGARCH model, captures asymmetry in return volatility
when γ 6= 0. Considering that −1 < γ < 1, when γ > 0 volatility tends to increase more
when shocks are negative, as compared to positive shocks of the same magnitude. The
opposite happens with negative γ. The interpretation of the values in this case is more
complex due to the presence of the ∆ exponent.

Figure 10 shows the plots of the γ estimates for the gjrGARCH and apARCH models,
and the α parameter (with sign changed) for the eGARCH model. It is interesting to
see in Figure 10 that the asymmetric effects have the same sign in all three models. The
asymmetry effect identified by the apARCH model is more pronounced, however, the
comparison of the specific values is difficult because each model treats volatility with a
different transformation.
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To conclude our review of the GARCH models studied, we will add some comments
on the results of the component GARCH model (cGARCH) by [47]. The cGARCH model
decomposes the total conditional variance into permanent and transitory variance compo-
nents. This component GARCH model is widely used in finance. The approach is relatively
different from the others. The inclusion of the permanent component of volatility adds
flexibility to the model. Our interest is to test whether this flexibility improved the model’s
predictive ability versus the standard GARCH model (a particular case). The results of the
two models are similar, so we can say that the cGARCH model does not add any advantage
to the standard model.

6. Out-Of-Sample Forecasts

In this section we are going to analyze the out of sample price forecasts. The out-
of-sample forecasts involve predictions of observations that have not been used when
estimating the model.

In this section, data from 2013 to 2018 has been selected to estimate the models
and 2019 hourly prices have been reserved to assess the accuracy of the predictions. In
this exercise, an attempt has been made to recreate the real situation faced by market
participants every day, the need to predict the 24 next day’s prices. Eight models have
been used: the homoscedastic IMA (1,1) model, the best ARIMA model selected using the
auto.arima function of the forecast package in R, and the six GARCH models described in
the previous sections. The comparison is performed in two different situations: (A) with
the real data including atypical observations and (B) with the outlier-free data identified
with the tso function employed in Section 3 of this article.

There is no standard measure of forecasting accuracy. Some commonly used measures
based on relative errors are misleading when applied to electricity prices. In particular,
when electricity prices drop to zero, relative errors become very large regardless of the
true absolute error. Alternative normalizations have been proposed in the literature. For
instance, let yi,t and ŷi,t be the observed and predicted hourly price for the hour h of the
day t; and y the mean price for the week, the Mean Week Error MWE is defined as

MWEs =
1

120
∑5+s

t=s+1 ∑24
i=1|yi,t − ŷi,t|

y
, s = 1, . . . , 30

The mean weekly error (MWE) is a simple and “easy to interpret measure” to compare
the accuracy of different models.

Table 3 provides the mean weekly mean errors for 2019 applied to the original obser-
vations (without removing outliers).

Table 3. MWE for original observations of 2019, without removing outliers.

Den Fra Ger Ita Spa UK

IMA (1,1) 0.171182 0.134041 0.133242 0.095868 0.101474 0.098577
ARIMA 0.178434 0.131107 0.132771 0.09362 0.097712 0.097419

sGARCH 0.060877 0.070303 0.130408 0.093386 0.09662 0.091322
eGARCH 0.060949 0.070297 0.130378 0.09337 0.096513 0.091365

gjrGARCH 0.061093 0.070315 0.130327 0.093391 0.096529 0.091358
apARCH 0.061252 0.070314 0.130307 0.093374 0.09662 0.091348
iGARCH 0.060875 0.07032 0.130419 0.093383 0.096619 0.091318

csGARCH 0.060789 0.070293 0.130433 0.093375 0.096431 0.091324
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The following conclusions can be drawn from this table:

• Robustly estimated ARIMA models have much higher prediction errors than
GARCH models;

• The error level of all GARCH models (for the same country) is very similar. The
same happens when comparing the IMA (1,1) model and the best ARIMA model.
(Figure 11);

• The markets with the highest errors are Denmark, Germany and France when using the
ARIMA models. Denmark and France improve a lot with GARCH models. Denmark
and Germany are the two markets with the highest percentage of outliers in 2019
(Table 3);

• In view of the table, the standard GARCH model (sGARCH) is the simplest and most
recommended alternative.
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Table 4 makes the same comparison if the models were to predict prices without
anomalous data (a situation that is unrealistic but provides information on the sensitivity
of the models). In this case the ARIMA and GARCH models provide very similar results.
The simplest and most recommended model would be the IMA (1,1) model.

Table 4. MWE for a situation that is unrealistic but provides information on the sensitivity of the
models (2019).

Den Fra Ger Ita Spa UK

IMA (1,1) 0.046258 0.063966 0.102891 0.083734 0.089806 0.086515
ARIMA 0.046461 0.062678 0.103183 0.082782 0.089062 0.085659
sGARCH 0.046364 0.063173 0.102148 0.083211 0.087178 0.085626
eGARCH 0.046482 0.063166 0.102140 0.083234 0.087261 0.085673
gjrGARCH 0.046500 0.063162 0.102144 0.083225 0.087222 0.085659
apARCH 0.046591 0.063163 0.102122 0.083238 0.087327 0.085675
iGARCH 0.046359 0.063179 0.102139 0.083213 0.087178 0.085622
csGARCH 0.046392 0.063161 0.102164 0.083213 0.087117 0.085651

A comparison between countries provides very different results. Denmark and France
are the countries with the lowest prediction errors. Germany remains the most difficult
to predict.

The analysis provides very interesting and useful results: when choosing a time series
model to predict the hourly prices of the daily electricity market, GARCH models are very
useful and recommended over the classic ARIMA models.

Figure 12 illustrates the behavior of the method using 24 IMA (1,1) x GARCH (1,1) mod-
els to predict two-week (Monday through Friday) of March 2019 prices in the six markets.
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Observed prices are shown in black and predictions in red. In the header of each graph
the MWE for the period is provided. It can be seen that the procedure is able to adapt to
daily seasonality.

Energies 2022, 15, x FOR PEER REVIEW 19 of 24 
 

 

 
Figure 12. behavior of the method to predict two-week (Monday through Friday) of March 2019 
prices in the six market. 

7. Discussion 
In this paper we have analyzed the evolution of hourly electricity prices in six 

European countries. All countries use the same pricing rule (uniform price auctions) and 
are part of SDAC which coordinates pricing and energy allocation simultaneously in most 
European countries. The existence of the SDAC mechanism conditions and tends to 
equalize prices in each national market, although the distances between countries, 
interconnection capacity restrictions, differences in energy demand and in the structure 
of the power generation system in each country cause the evolution of prices in many 
areas to vary independently. 

The study has several objectives. The first is to see how the pricing mechanism affects 
the temporal evolution of prices in each country. The answer to this question is evident: 
all the countries present series with a similar behavior (in general terms), with daily 

Figure 12. Behavior of the method to predict two-week (Monday through Friday) of March 2019
prices in the six market.

7. Discussion

In this paper we have analyzed the evolution of hourly electricity prices in six Euro-
pean countries. All countries use the same pricing rule (uniform price auctions) and are part
of SDAC which coordinates pricing and energy allocation simultaneously in most European
countries. The existence of the SDAC mechanism conditions and tends to equalize prices in
each national market, although the distances between countries, interconnection capacity
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restrictions, differences in energy demand and in the structure of the power generation
system in each country cause the evolution of prices in many areas to vary independently.

The study has several objectives. The first is to see how the pricing mechanism affects
the temporal evolution of prices in each country. The answer to this question is evident: all
the countries present series with a similar behavior (in general terms), with daily periodicity,
high volatility and abrupt changes in the price level with reversion to the mean. The global
comparative analysis among the six countries shows similarities and differences that will
be detailed below. The dynamics are very well reflected in all cases by a random walk with
a high presence of outlier observations. There is no evidence to conclude that any country
behaves radically different from the rest, which was one of the key questions of the study.

In summary, we can highlight the following characteristics of the evolution of prices:

1. In all countries it is graphically verified that the price profile reproduces the demand
profile (see Figures 2 and 12);

2. Electricity prices usually undergo sudden changes that affect the dynamics of the data
in a transitory way. In many cases it is difficult to know the causes of these changes.
Detecting and correcting for the effect of outliers is important because they affect
model selection, parameter estimation and, consequently, forecasts. There are several
well-known computer programs specialized in the automatic detection of outliers in
time series in this paper the R tsoutliers package has been used [35]. All countries
have a high percentage of outliers (see Figure 4). Spain and Germany stand out with a
much higher proportion, in the case of Spain the outliers correspond mostly to sudden
price decreases;

3. The ARIMA model that best fits the evolution of prices in the six countries is an
IMA (1,1). The inclusion of more parameters hardly shows any improvement. The
moving average parameter of the IMA (1,1) model explains a very low percentage of
variability in all hours and for all countries. The most important component in the
predictive model is the random walk (see Figure 5);

4. GARCH models significantly improve the ARIMA models in all countries. The
estimates of θ (moving average) for the GARCH model are more stable, taking a value
close to 0.6 for all hours in all countries. From a conceptual point of view, this result
shows that the series are not homoscedastic. The GARCH model obtained after the
analysis coincides with those recommended by other authors in the analysis of daily
average prices [8];

5. The values of the estimates of the two parameters of the sGARCH equation (see
Figure 6) correspond in all cases to markets with large fluctuations (values of α greater
than 0.1) and frequent changes in volatility. The estimated values are high compared
to those corresponding to other financial markets. The opposite occurs with the β
parameter, in financial markets it is usually in the range of 0.85 and 0.98 [31], in the
case of electricity prices it is clearly lower. All this is consistent with time series with
sudden jumps;

6. The sGARCH model is the simplest of all the models used to consider the heteroscedas-
ticity of the series. The other models hardly improve on the standard sGARCH model,
which leads us to conclude that it is not important to include the parameter that
measures the asymmetry. This can be affirmed with nuances for the six countries;

7. An analysis of the prediction errors of the estimated models using out-of-sample
observations has been performed. ARIMA models have much higher prediction
errors than GARCH models. The level of error of all GARCH models (for the same
country) is very similar. The same occurs when comparing the IMA (1,1) model and
the best ARIMA model (Figure 10). The markets with the largest errors are Denmark,
Germany and France when using the ARIMA models. Denmark and France perform
a lot better with the GARCH models (Importantly, Denmark and Germany are the
two markets with the highest percentage of outliers in the evaluation window, 2019).
In view of the results (see Table 3), the standard GARCH model (sGARCH) is the
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simplest and most recommended alternative for all countries to make hourly forecasts
in the daily electricity market.

This paper describes the main characteristics of hourly electricity prices in six European
markets. It can be concluded that globally the behavior of the six markets is similar.
Deciding whether the current system used by European countries (uniform price auctions)
is the most appropriate is a very difficult question to answer empirically with current
information. We hope that the results of this article will be useful to complement the
theoretical studies on the different types of auctions in the financial and electricity markets.

8. Conclusions

In this work, the dynamics of hourly electricity prices in the six most-representative
European countries have been described from a time series point of view. The analysis
performed can help electric energy market agents select the model for making hourly
predictions in the daily market.

As a first conclusion, an important recommendation is to independently analyze each
of the 24-hourly time series. There are many motives in favor of this strategy. The first
is that it is the method which provides better predictions. From the statistical point of
view, the reason for the decomposition into hourly models versus the analysis of the global
hourly series is the strong daily seasonality of the hourly process that causes periodic
changes in the mean and the correlation structure of the process and makes the series non-
stationary. Several references supporting this recommendation are provided in this paper.
The seasonality of electricity prices is fundamental because the driving force that determines
their evolution is the demand, and this is conditioned by the social and economic activities
of the users that generate daily, weekly, and annual cycles. Supply characteristics also play
an important role in price dynamics and explain their high volatility. For low levels of
demand, generators supply electricity using plants with low marginal costs; as greater
amounts of energy are needed, new generators with higher marginal costs enter the system.
The relative insensitivity of demand to price fluctuations, and supply constraints at peak
hours, make electricity prices in the day-ahead market extremely volatile.

Electricity prices often undergo sudden abrupt changes that affect the dynamics of
the data on a transient basis. The evolution of electricity prices in six European Union
countries, Denmark, France, Germany, Italy, Spain, and the United Kingdom, has been
analyzed and compared. There are strong similarities with most of the daily electricity
markets in Western countries. Further analysis reveals important differences among them.
For example, the level of outlier prices is very different, especially their distribution over
24 h of the day. Spain has a high percentage of outliers evenly distributed among the 24 h
of the day. Denmark and Germany have them concentrated in the evening hours. France
and Italy have a much lower percentage of outliers, and they tend to be concentrated in the
middle hours of the day. The United Kingdom has a very particular distribution of outliers
throughout the day. In the UK, sharp price drops appear in the early morning hours (from
2 to 6 a.m.) and high outliers from 9 a.m. to 10 p.m.

Statistical analysis of the time series indicates that the main price dynamics largely
correspond to the standard evolution of prices in other financial markets: the random walk.
According to this model, the best prediction of the price of electricity for hour h of day t + 1
is to take the observed price for that hour on day t. The predictions made using the random
walk are slightly improved using the exponential smoothing model. This statement is
common for all countries and hours.

ARIMA models assume that the variance is constant over time. However, there
are periods with significant increases in variability in any price series. These changes in
variability have been analyzed with the six different GARCH models (sGARCH, iGARCH,
eGARCH, gjrGARCH, apARCH, and cGARCH). These models reveal interesting and
differential characteristics of the different countries, which reinforce the results obtained
with the descriptive statistics of the series and the outlier analysis.
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Finally, the prediction errors of all models have been analyzed using out-of-sample
data. An attempt has been made to recreate the real situation faced by market participants
every day, the need to predict the one-day-ahead prices. Data from 2013 to 2018 has been
selected to estimate the models and 2019 hourly prices have been reserved to assess the
accuracy of the predictions.

The results obtained indicate that the ARIMA models have much higher prediction
errors than the GARCH models, that all GARCH models provide very similar predictions,
and that, therefore, the standard model (sGARCH) is recommended as a simpler and more
accurate alternative.

Future research will focus on: (i) modeling and analyzing the rest of the European coun-
tries; (ii) modeling and analyzing the dynamics of most-representative non-European elec-
tric power systems; (iii) analyzing the impact of COVID and their effects over the electricity
prices; and (iv) analyzing the impact of the most-recent political and economic events.
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of the manuscript.
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Nomenclature

Acronyms:
AO Additive outliers
apARCH Asymmetric Power ARCH
ARCH Autoregressive conditional heteroskedasticity
ARIMA Autoregressive integrated moving average
ARMA Autoregressive moving average
ARMAX Autoregressive moving average with exogenous variables
cGARCH Component GARCH
eGARCH Exponential GARCH
GARCH Generalized autoregressive conditional heteroskedasticity
gjrGARCH Glosten-Jagannathan-Runkle GARCH
iGARCH Integrated GARCH
IMA Integrated moving average
LS Level shifts
MSE Mean squared error
MWE Mean Week Error
NEMO Nominated Electricity Market Operator
SDAC Single day-ahead coupling
sGARCH Standard GARCH
SLS Seasonal level shifts
TC Temporary changes
Parameters and variables:
ph,t price of electricity for hour h of day t
yh,t response variable, computed as the logarithm of ph,t
uh,t non-biased Gaussian-distributed random error
σ2

h variance of uh,t
θh parameter of the Moving Average model
ut innovation process
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