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Abstract: Based on the synergistic effect of ripening and hydrogen ion etching in a hydrothermal
solution, a simple, facile, and low-cost new strategy was demonstrated to prepare multi-channel
surface-modified amorphous Fe2O3 nanospheres as anodes for Li-ion batteries in this study. Com-
pared with polycrystalline Fe2O3, the conversion reaction between amorphous Fe2O3 and lithium
ions has a lower Gibbs free energy change and a stronger reversibility, which can contribute to an
elevation in the cycle capability of the electrode. Meanwhile, there are abundant active sites and
more effective dangling bonds/defects in amorphous materials, which is beneficial to promote charge
transfer and lithium-ion migration kinetics. The Galvanostatic intermittent titration analysis results
confirmed that the amorphous Fe2O3 electrode had a higher Li+ diffusion coefficient. In addition, the
surfaces of the amorphous nanospheres are corroded to produce multiple criss-cross channels. The
multi-channel surface structure can not only increase the contact area between Fe2O3 nanospheres and
electrolyte, but also reserve space for volume expansion, thereby effectively alleviating the volume
change during the intercalation-deintercalation of lithium ions. The electrochemical performance
showed that the multi-channel surface-modified amorphous Fe2O3 electrode exhibited a higher
specific capacity, a more stable cycle performance, and a narrower voltage hysteresis. It is believed
that amorphous metal oxides have great potential as high-performance anodes of next-generation
lithium-ion batteries.

Keywords: lithium-ion battery; Fe2O3; amorphous; anode; electrochemical performance

1. Introduction

Due to their high energy/power densities and long cycle life, lithium-ion batteries
(LIBs) have been widely used in portable electronic devices and electric vehicles (EV) [1].
However, the commercial graphite electrodes with a low theoretical specific capacity
of 372 mAh/g cannot meet the requirements of high energy density [2,3]. Therefore,
various anode materials with a higher specific capacity than graphite have been explored,
such as metal [4], silicon-based materials [5,6], MXene [7], nitrides [8,9], sulfides [10],
and transition metal oxides (TMOs) [11]. Iron oxide (Fe2O3) has received widespread
attention due to its natural abundance, low price, non-toxicity, and high theoretical specific
capacity (1007 mAh/g) [12,13]. Unfortunately, similar to other TMOs, Fe2O3 also has poor
electronic conductivity, high potential hysteresis, and large volume change during the
charge/discharge process, leading to a rapid fading in capacity [14,15].

In contrast to the intercalation reaction of graphite electrodes, TMOs can interact with
lithium through the phase conversion reaction (MOx + 2xLi↔M + xLi2O). Therefore, the
feasibility and reversibility of the reaction process are dependent on the thermodynamic
and kinetic parameters of the conversion reaction. The Gibbs free energy change of the
reaction between amorphous Fe2O3 and lithium is 0.27 eV lower than that of its crystalline
counterpart. The lower the Gibbs free energy change, the stronger the reversibility of
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the conversion reaction [16,17]. Shi and Zhu combined amorphous Fe2O3 with graphene
or nitrogen-doped carbon, respectively, and the corresponding electrodes were used in
lithium-ion batteries or sodium-ion batteries to achieve a high cycle stability [18,19]. Due
to its isotropic properties, the amorphous material expands/shrinks uniformly in all di-
rections during the intercalation/deintercalation of lithium ions, so it has a higher strain
capacity [20–22]. It has been confirmed that anodes based on amorphous phases of Si,
Fe2O3, TiO2 and SnO2 could buffer the volume change and hence exhibited an improved
cycle performance [23–27]. Therefore, it is expected that amorphous materials will be
promising candidates as electrodes, due to their fast reaction kinetics, strong reversibility
and narrow potential hysteresis [28,29].

In order to improve the electrochemical performance of the Fe2O3 anode, various
strategies have recently been proposed. For instance, Fe2O3 has been compounded with
carbonaceous materials to improve the diffusion rate of lithium ions and the conductivity
of the electrode [30]. Yu et al. reported Fe2O3/graphene hybrid-based electrodes with
largely enhanced conductivity, and a high reversible specific capacity of 658.5 mA h/g was
achieved after 200 cycles at 1 A/g [31]. Another strategy is to synthesize nanostructures,
such as nanowires [32], nanorods [33], nanotubes [34], nanoplates [35], nanoboxes [36],
flower-like [37] and nanospheres [38]. The flower-like structure with a high surface area
and abundant internal space can ensure close contact between the active material and the
electrolyte and inhibit the volume change of Li+ insertion/extraction. Han et al. prepared
flower-shaped hematite (α-Fe2O3) in a hot solution, which exhibited excellent electrochem-
ical performance as a LIBs anode [39]. Ma et al. synthesized flower-like Fe2O3 by thermally
decomposing the reaction precursor of iron acetylacetonate and ethylene glycol, and the
reversible specific capacity exceeded 800 mAh/g after 40 cycles [40].

Inspired by the above statement, we attempted to design and develop a new type of
Fe2O3 nanosphere electrode, which can provide high conductivity, high specific surface
area and abundant internal space. The nanospheres were composed of amorphous Fe2O3
particles. There are a large number of active sites and more effective dangling bonds/defects
in amorphous materials, which are beneficial to promote charge transfer and lithium-ion
migration kinetics, and further contributes to an elevation in rate capacity [3,41]. With its
lower Gibbs free energy change and stronger reversibility, the amorphous electrode can also
achieve high cycling capacity and stable cycling stability. Similar to the flower-like structure,
a large number of connected channels are corroded on the surface of Fe2O3 nanospheres
to relieve the stress of volume deformation before and after lithium insertion. By a facile
and low-cost route of hydrothermal method treatment, a multi-channel surface modified
amorphous Fe2O3 nanospheres electrode was fabricated in this study. Compared with its
crystal counterpart, the multi-channel surface-modified amorphous Fe2O3 electrode had a
higher specific capacity, a more stable cycle performance, and a narrower voltage hysteresis.

2. Materials and Methods

Multi-channel surface-modified amorphous Fe2O3 nanospheres were prepared by
using a simple and low-cost hydrothermal method. A total of 0.326 g K3[Fe(CN)6] and
0.043 g NH4H2PO4 were dissolved in deionized water to form a clear solution after stirring
at room temperature for 30 min. Then, the solution was transferred to a hydrothermal
kettle for hydrothermal treatment at 200 ◦C for different times (1 h, 3 h and 6 h), with the
corresponding samples denoted as A1h, A3h, and A6h, respectively. The products were
centrifuged and washed for three times with both deionized water and ethanol. Multi-
channel surface-modified amorphous Fe2O3 nanospheres were obtained after drying in
an oven at 110 ◦C for 12 h. Similarly, polycrystalline Fe2O3 nanospheres were prepared by
the hydrothermal treatment of FeCl3 and Ni(CH3COO)2 precursor solutions for 1 h as a
comparative sample (C1h).

Crystallinity of the as-prepared samples was characterized by using X-ray diffraction
(XRD) with a Bruker-D8 X-ray diffractometer with nickel filtered copper K radiation
(λ = 1.5406 Å). Morphologies of the samples were observed by using field emission scanning
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electron microscopy (FESEM, JEOL JSM-7500F) and transmission electron microscopy (TEM,
JEM-2100P). Elemental compositions and chemical states were analyzed by using X-ray
photoelectron spectroscopy (XPS, Thermo K-Alpha). Specific surface area of the samples
was measured by using the Brunauer-Emmett-Teller (BET) method with a Micrometrics
ASAP 2420 surface analyzer.

Electrochemical measurements were performed using half-coin cells. The active
materials (80 wt.%) were mixed with conductive carbon black (10 wt.%) and sodium car-
boxymethyl cellulose (CMC,10 wt.%) in deionized water to form slurries. The slurries
were coated on nickel foam (99.5%, Alfa Aesar) as a current collector, followed by dry-
ing in a vacuum oven at 80 ◦C for 12 h to obtain electrodes. Coin cells (CR 2032) with
lithium foil as the counter electrode were assembled in a glove box filled with high-purity
Ar gas (>99.999%). An electrolyte consisting of 1 M LiPF6 in a mixture of vinyl acetate
(EC), ethylene carbonate (DEC), and dimethyl carbonate (DMC) (1:1:1 by volume) was
used with a micro-porous polymer membrane separator (Celgard 2400). The cells were
charged and discharged between 0.005 V and 3 V (versus Li/Li+) using blue electric test
system (CT2001A). Galvanostatic intermittent titration technique (GITT) was employed
by charging/discharging the cells at a current of 100 mA/g for 20 min and it took about
4 h until the cut-off voltage limits were reached. Prior to post-cycling characterization,
the cells were charged at 3 V for 48 h to ensure the full extraction of Li. The CHI660E
electrochemical analyzer was used to record cyclic voltammetry (CV) and electrochemical
impedance spectroscopy (EIS). The voltage range of CV measurement was 0.01–3 V and the
scan rate was 0.1 mV/s. The EIS measurement was conducted from 100 kHz to 10 MHz.

3. Results and Discussion

Figure 1 shows schematic diagrams describing the formation process of the multi-
channel surface-modified amorphous Fe2O3 nanospheres during the hydrothermal treat-
ment and the lattice evolution of Fe2O3 due to corrosion. Figure 2 shows the XRD patterns
of the samples A1h and C1h. The diffraction peaks of C1h are consistent with those of
α-Fe2O3 (No.33-0664), indicating that it was crystalline α-Fe2O3. In contrast, A1h had
no obvious diffraction peaks, suggesting that it was amorphous. As the hydrothermal
treatment time was extended from 1 h to 6 h, the XRD pattern of the samples remained
unchanged (Figure S1).
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Fe2O3 nanospheres during the hydrothermal reaction process. (b) Schematic diagram of the evolution
of Fe2O3 lattice due to corrosion.



Energies 2022, 15, 5974 4 of 13

Figure 3 shows the wide-scan XPS spectrum of A1h, confirming the presence of Fe
and O in the amorphous sample. Fe 2p XPS spectrum is shown as an inset in Figure 3. The
two peaks at 710.7 eV and 724.5 eV correspond to the binding energies of Fe 2p 3/2 and
Fe 2p 1/2, respectively. The two peaks are consistent with the peaks of Fe3+ [42–45].
In addition, the satellite peak at 719 eV further confirms that the cation was Fe3+ [16].
Meanwhile, there is an obvious characteristic peak of lattice oxygen (O 1s) at 530 eV, as
shown in Figure S2 [46,47]. Based on the XRD pattern in Figure 2, it is concluded that
amorphous Fe2O3 was formed in the samples (A1h) prepared by using the hydrothermal
reaction method with the precursor solution of K3[Fe(CN)6] and NH4H2PO4.
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Figure 3. XPS survey and Fe 2p spectra (inset) of the amorphous sample (A1h).

There were two main effects of H+ ions on the structure and morphology of the syn-
thesized Fe2O3. On the one hand, H+ ions corroded the crystal nuclei to form amorphous;
on the other hand, H+ ions corroded the surface of nanospheres into multiple staggered
channels. In a high temperature and high pressure environment in the hydrothermal
kettle, hematite nuclei formed due to the hydrolysis of the Fe3+ ions in K3[Fe(CN)6] were
easily etched by H+ ions from NH4H2PO4 [48]. The nuclei lost the periodicity of their
original crystal structure. In other words, the nuclei became amorphous, as shown in
Figure 1b, which then grew into amorphous nanoparticles. As the hydrothermal reaction
continued, the amorphous nanoparticles converged into spheres to reduce the total sur-
face energy. The surface of the spheres was smooth after reaction for 1 h, as shown in
Figure 4a. Combined with the XRD pattern (Figure S1) and the electron diffraction (SAED)
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pattern (Figure 4g) of the sample A1h, it could be determined that the sample A1h was
amorphous. In addition, the high concentration of H+ ions in the solution continued to
corrode Fe2O3 nanospheres. A few holes appeared on the surface of nanoparticles after 3 h
of hydrothermal reaction (Figure 4b). As the reaction time was increased to 6 h, the pores
on the surface of the nanospheres continued to be corroded and grew to form irregular
interconnected channels (Figure 4c). To reveal the surface characteristics of the nanospheres,
N2 adsorption–desorption measurements were performed to obtain the BET surface area
and the Barrett–Joyner–Halenda (BJH) pore size distribution profile, with the results shown
in Figure S3. The sample A3h had a pore size distribution in the range of 2–10 nm, while the
surface of the A6h sample had multiple small holes that were connected to form channels
(30–60 nm). The results were consistent with the SEM observation. Representative TEM
images of the samples reacted for different times are shown in Figure 4d–f, indicating the
hollow structure of the Fe2O3 nanospheres. With an increase in the hydrothermal treatment
time, the wall thickness of the hollow nanospheres decreased. This observation can be
understood according to the Ostwald ripening process, because the inner particles had a
higher surface energy than the outer ones [48].

Electrochemical performances of the multi-channel surface modified amorphous Fe2O3
nanospheres and the crystalline Fe2O3 nanospheres were comparatively studied, in terms
of cyclic voltammetry (CV) and galvanostatic charge/discharge curves. Figure 5 shows
the CV curves of the two samples. CV curves of the crystalline α-Fe2O3 nanospheres
were similar to those previously reported in the literature [27,49–51]. Comparatively, there
were three differences in the CV curve between the amorphous and the crystalline Fe2O3
nanospheres. Firstly, the intensity of the reduction peak of the amorphous Fe2O3 during
the first two cycles was lower than that of the crystalline Fe2O3. This may be attributed
to the long-range disorder of the amorphous state and its low reaction Gibbs free energy
change (∆G), i.e., lithium can be intercalated/deintercalated more easily in amorphous
Fe2O3. The volume change of the amorphous electrode is a gradual process, different from
the sudden change of the crystalline electrode, which is beneficial to the integrity and cycle
stability of the electrode [16]. Secondly, the main cathode peak shifted by 0.05 V in the
second cathodic scan and the magnitude of the peak shift was much smaller than that of the
crystalline Fe2O3, which may have been caused by the better reversibility of the amorphous
Fe2O3 electrode. The peak near 1.2–1.4 V may be related to the formation of solid solution
compounds, owing to the insertion of Li+ ions into the amorphous Fe2O3 [52]. Finally, the
first anodic scan of the amorphous electrode had two cathodic peaks at 1.47 V and 2.0 V,
corresponding to the oxidation of Fe(0) to Fe2+ and further to Fe3+, respectively.

Galvanostatic charge/discharge measurements were conducted at a current density of
100 mA/g in the voltage range of 0.005–3.0 V. As shown in Figure 6a,b, the first discharge
specific capacity of the amorphous electrode (A6h) was 1187.3 mAh/g. The value of the
crystalline electrode (C1h) was slightly higher (1305 mAh/g). The large irreversible capacity
of the two samples in the first cycle was a common phenomenon, which is related to the
decomposition of electrolyte and the formation of SEI layer [48]. The specific capacity of
the crystalline sample decreased rapidly, while the value of the amorphous one was much
stable. The values were 817 mAh/g, 815.5 mAh/g, 818.8 mAh/g, and 822.2 mAh/g in the
four cycles. Figure 6c shows the cycle performances of the amorphous and the crystalline
Fe2O3 electrodes. Comparatively, the amorphous electrode had a higher cycle stability,
with the specific capacity remaining at 875.2 mAh/g after 70 charge-discharge cycles. At
the same time, the Coulombic efficiency was close to 100%. Moreover, the cycle specific
capacity increased slightly, corresponding to a growth rate of 7.12%. The increase in the
specific capacity of the amorphous electrode can be ascribed to the reversible formation
of polymer gel-like film and the larger electrochemically active surface area of the Fe2O3
shell [2,53,54]. With further cycling, the capacitive-like storage effect was strengthened,
which is advantageous for high power applications [55]. In addition, the amorphous Fe2O3
electrode (A6h) with multi-channel microstructure provided more active sites and space for
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lithium intercalation, thus promoting the interfacial lithium storage of the active materials,
which also contributed to the high specific capacity [11,56].

In order to further identify the difference in lithium-ion storage performance between
the amorphous and the crystalline Fe2O3 electrodes, rate performance tests were performed,
with the results shown in Figure 6d. When the current density was increased from 100 to
2000 mA/g, the average discharge capacities of the amorphous electrode (A6h) and the
crystalline one (C1h) decreased from 849.7 to 478.0 mAh/g and from 829.7 to 44.6 mAh/g,
respectively. As the current density was restored to 100 mA/g, the specific capacity of the
amorphous electrode quickly recovered to 783.3 mAh/g, which was much higher than that
(544.2 mAh/g) of the crystalline electrode. The corresponding charge/discharge curves
at different current densities are shown in Figure 6e,f, respectively. As the current density
increased from 100 to 2000 mA/g, the discharge voltage plateau of the amorphous electrode
(A6h) only slightly decreased, indicating that it had a relatively low polarization [57]. The
outstanding rate performance is attributed to the well-distributed multi-channel structure,
which offered a large electrode/electrolyte interface area and shortened the transport path
of electrons and ions.
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Notably, the discharge/charge voltage curves of amorphous and crystalline Fe2O3
electrodes during different cycles are shown in Figure S4. During the cycle, the discharge
platforms of the amorphous Fe2O3 electrodes were stable, indicating their low polarization
and potential hysteresis [52]. The low potential hysteresis is linked with its faster kinetics
and higher energy efficiency, which is an important factor for the practical applications [58].
In order to confirm this result and understand the ion diffusion kinetics, the galvanostatic
intermittent titration (GITT) measurement was utilized to analyze the lithium ions transport
kinetics of the electrode. Figure S5 shows the potential change of the sample as a function
of time. The cells were repeatedly subject to a current pulse of 100 mA/g for 20 min
and then relaxed for 240 min. The long relaxation time was used to full relaxation of
lithium diffusion to reach equilibrium potential and minimize the self-discharge of Fe2O3
during the test. The discharge/charge curves of the amorphous and crystalline electrodes
showed similar trends. Current pulse step polarization curves of the amorphous and the
crystalline Fe2O3 electrodes at different potentials are shown in Figure 7a,b, respectively.
According to the polarization curves, when the cells went to a higher voltage upon charging,
it took more time to relax the pulse to reach a stable state (Figure 7(a2,b6)). Similarly,
when the cells were discharged at a lower voltage, the pulse relaxation would be delayed
(Figure 7(a3,b7)). These phenomena indicate that the lithium diffusion coefficient will
change with the change of potential. Overpotential refers to the voltage difference between
the equilibrium potential at the end of relaxation and that at the end of the current pulse
(≈ ∆Eτ − ∆Es, ignoring IR drop) [59]. The overpotential during charging is greater than that
during discharging. As clearly seen in Figure 7a,b, the voltage hysteresis of the amorphous
electrode was significantly less pronounced than that of the crystalline electrode. The
difference in polarization may be attributed to their difference in kinetics [60].

In order to better understand diffusion kinetics of Li+, galvanostatic intermittent
titration (GITT) data were used to derive the diffusion coefficients (DLi+, cm2/s) of the
Fe2O3 electrodes, which can be estimated by using the Fick’s law [55]:

DLi+ =
4

πτ

(
mbVM
MbS

)2( ∆Es

∆Eτ

)2
(1)

where τ is the constant current pulse time; mb, VM, Mb are the mass loading, molecular
weight, molar volume of the active material, respectively, S is the effective area between
the electrode and electrolyte, ∆Es and ∆Eτ represent the change of steady-state voltage
and the total change of cell voltage during pulse subtracting the IR drop. DLi+ values of
the amorphous and the crystalline Fe2O3 electrodes are shown in Figure 7c,d, respectively.
It can be seen that the DLi+ values in the two electrodes range from 1013 to 1010 cm2/s,
in agreement with the reported data of α-Fe2O3 nanoparticles (1014–1011 cm2/s) [61] and
α-Fe2O3 electrode (9.96 × 1013 cm2/s) [62]. It is worth noting that the amorphous electrode
showed a higher DLi+, mainly because of the lack of grain boundaries, thus shortening the
diffusion pathways and reducing the diffusion resistance.

Reaction kinetics of the amorphous and the crystalline Fe2O3 electrodes were also eval-
uated by using electrochemical impedance spectroscopy (EIS). All Nyquist plots exhibited
a recessed semicircle in the high-frequency region and a sloping line in the low-frequency
region, which correspond to the charge transfer resistance and the diffusion impedance
of Li+, respectively. As shown in Figure 8, the semicircular diameter of the amorphous
Fe2O3 electrode in the high frequency region is much smaller than that of the crystalline
Fe2O3 electrode. Therefore, amorphous Fe2O3 greatly ensures a rapid charge transfer due
to its amorphous nature, which facilitates faster lithiation/delithiation kinetics [29]. The
EIS results are consistent with the cycle performances (Figure 6c) and the rate performances
(Figure 6d).
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insets show polarized curves for current pulse steps derived from the GITT data at different potentials
in the discharge and charge processes. (c,d) Li+ diffusion coefficients of the electrodes during the
discharge/charge process at various voltages derived from the GITT data: (a) A6h and (b) C1h.
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4. Conclusions

In summary, a simple, facile, and low-cost new strategy was demonstrated to design
and fabricate multi-channel surface-modified amorphous Fe2O3 nanospheres as anodes
for Li-ion batteries in this study. When NH4H2PO4 existed in the precursor solution, H+

in the solution corroded the hydrolyzed hematite nuclei into amorphous Fe2O3. Based
on the synergistic effect of ripening and hydrogen ion etching, multi-channel amorphous
Fe2O3 nanospheres could be formed by prolonging the hydrothermal treatment time. Ac-
cording to the test results of the crystalline state and microstructure of the material, it was
found that surface structure of the amorphous Fe2O3 nanospheres can be controlled by
adjusting the reaction time. Owing to the isotropic nature and the lack of grain boundaries,
the amorphous Fe2O3 electrode facilitated high lithium-ion insertion and withstood high
strains. The multi-channel surface-modified structure of the amorphous Fe2O3 electrode
not only ensured close contact between the internal active materials and the electrolyte, but
also effectively alleviated the volume change during the intercalation/deintercalation of
lithium ions. The multi-channel surface-modified amorphous Fe2O3 nanospheres electrode
exhibited excellent cycle stability (875.2 mAh/g after 70 cycles at 100 mA/g) and superior
rate performance (56.3% capacity retention from 0.1 to 2.0 A/g) and narrow voltage hys-
teresis. The amorphous Fe2O3 electrode exhibited faster electrochemical reaction kinetics, a
higher Li+ diffusion coefficient, and a lower overpotential, as compared with its crystalline
counterpart. The results in our present study can be used as a reference for the synthesis of
amorphous transitional metal oxides (TMOs) as anodes of LIBs for practical applications.
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