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Abstract: The Cretaceous condensate gas reservoir in Yakela is in a fan delta system in which the
river channel swings frequently and the contact relationships between sandbodies are complicated
both vertically and horizontally. Therefore, making the sandbody architecture clear is becoming the
most urgent demand in locating the remaining oil. However, conventional well correlations and
fine interpretation do not apply in this area due to the large-spacing of wells and the lack of reliable
seismic data. In this paper, we analyzed the vertical characteristics of sandbody architecture including
the type and thickness of architectural elements and their contact relationships based on well data,
then simulated the lateral and planar distribution probabilities via a database containing a large
number of dimension parameters from relevant architectural elements using Monte Carlo simulation.
This simulation provides reasonable and efficient estimation of inter-well sandbody distribution. The
workflow and data we present can be applied to similar clastic reservoir modeling and simulations,
especially for areas with insufficient well and seismic data.

Keywords: sandbody architecture; Monte Carlo simulation; reservoir description; Cretaceous;
Tahe Oilfield

1. Introduction

Sandbody architecture (also known as reservoir architecture, sandbody geometry, or
reservoir heterogeneity) analysis is one essential method for clastic reservoir modeling, es-
pecially in the late stage of oil/gas field development, to locate the remaining oil/gas [1–9].
Sandbody architecture research originated from outcrop anatomies and aimed to provide
data on the background sedimentary facies, environments, and evolutions of a specific
reservoir [10–12]. With the development of subsurface techniques such as well logging,
seismic, radar, and lidar, integrated with outcrop achievements, researchers have been
marching towards realistic reconstructions of genetic stratigraphy and reservoir architec-
ture in costal/shelf and fluvial reservoirs, specifically in meandering river systems [13–22].
Meanwhile, in fan delta reservoirs, the sediment commonly consists of a high proportion
of coarse material that is seasonally transported through a series of distributary channels
of braided river, and thus is more complicated in sandbody distribution and connection
compared to marine reservoirs or fluvial systems [10]. As a result, deltaic reservoirs had not
been examined in the aspect of architecture as thoroughly as shelf reservoirs or meandering
river channels until recent years [23–25].

From previous research we can conclude the prerequisites of reservoir architecture
analysis are finely described outcrops, closely spaced wells, or seismic data with high
resolution and accuracy. Thus, it is challenging to carry out the fine characterization of
reservoir architecture in areas of widely spaced wells with no reliable seismic data.

The Yakela Cretaceous condensate gas reservoir (YKL), which has been producing
stably for over 20 years, is the largest self-contained condensate gas reservoir of Sinopec
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and one of the sources of gas transportation from the west to the east in China [26]. With
the deepening of fine development, it is urgent to make the distribution characteristics
of the reservoir clear. Unfortunately, in this area the well spacing is large (the average
distance is ~1500 m compared to 150~300 m in a fluvial reservoir), and the seismic data is
of poor quality due to the harsh operating environment (high latitude Gobi Desert) and
complicated subsurface structure (multiple severe tectonic movements in buried history).
Under these conditions, it is exceedingly difficult to estimate the reservoir architecture and
obtain a reliable reservoir model.

Here we present a feasible and reasonable workflow for reservoir architecture estima-
tion under the circumstance of lacking well and seismic data. According to Walther’s Law
of facies, which states that the vertical succession of continuous sedimentary facies reflects
lateral changes in their environment [27,28], it is possible to estimate the lateral develop-
ments from the limited data of vertical characteristics through reasonable simulation. We
first summarize the vertical distribution probabilities of the target reservoir based on cores,
well logs, and test data, and then carry out a Monte Carlo simulation using the vertical
distribution probability through a training model of reservoir architectural elements to
estimate the spatial distribution probability of the reservoir elements in the study area. The
simulation’s result is validated by the later seismic-interpretated reservoir model. This
efficient simulation can be further applied to similar fan delta reservoirs to improve or
validate the accuracy of reservoir modeling.

2. Geological Background

The Tarim Basin in northwestern China covering an area of 560,000 km2 and is the
largest petroliferous basin in China. This basin can be divided into seven structural zones,
including the Kuqa depression, the Taibei Uplift Belt, the Northern Depression Belt, the
Central Uplift Belt, the Southwestern Depression Belt, the Southeastern Uplift Belt, and the
Southeastern Depression Belt [29–32]. The Yakela gas reservoir is in the Yakela sag in the
Taibei Uplift Belt (Figure 1).
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Figure 1. Structural map of Tarim Basin and the location of the study area.

The strata revealed in the study area include (from bottom to top) Proterozoic, Up-
per Cambrian, Lower Ordovician, Upper Devonian, Lower Carboniferous, Upper Trias-
sic, Lower Jurassic, Lower Cretaceous, Paleogene, Neogene, and Quaternary (Figure 2).
The target layer of this research is the clastic reservoir in the Cretaceous Yageliemu
Formation (K1y).
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The K1y condensate gas reservoir has a gas-bearing area of 38.6 km2. It is a normal
temperature and pressure system with deep burial depth (>5300 m), no oil ring, medium
condensate content (~234 g/m3), a large water body (~100 times), low porosity (10–15%),
and medium-to-low permeability (10–150 mD). There are, in total, 43 wells in this area,
with a minimum well spacing of 234 m and an average well spacing of ~1500 m. This well
spacing is quite large compared to the average value of 100~200 m in previous sandbody
architecture research. Regional sedimentary facies studies suggest that the K1y reservoir
can be divided into the lower transgressive lake fan delta and the upper regressive braided
river delta sedimentary systems, and that the microfacies include braided distributary
channels, distributary channels, flood plains, inter-distributary bay, and sand bars [6,33].
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3. Methodology

The overall methodology is first summarizing the vertical distribution probability of
reservoir architectural elements as a testing dataset, then building a reservoir architectural
element database as a training dataset for a Monte Carlo simulation, and finally, applying
the testing dataset in the simulation model to get the horizontal distribution probability of
the reservoir (Figure 3).
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3.1. Reservoir Data Preparation

Well data of study area include core measurements of porosity and permeability
(138 data sets), core observations (23 wells, 253 m in total), and well logs (SP, GR, AC, DEN,
R, CNL for 39 wells). We used these data to analyze the microfacies and determine the
parameters of architectural elements, including thickness, vertical contact relationships,
and horizontal distances between wells. The vertical architectural element parameters
then served as the testing dataset for the probability estimation of sandbody development
and distribution.

3.2. Building Sandbody Architectural Element Database

As the well data primarily reveal vertical distribution characteristics, we introduced
multiple analogue data to build a sandstone architecture database containing the length,
width, and thickness of sandbodies. This database served as training dataset on sandbody
development and distribution probability. The analogue data include measured dimensions
of modern sand bars, similar reservoirs, and outcrop sections.

3.2.1. Modern Sand Bars

We observed and measured the satellite images of the Yangtze River Delta in the
Google Earth satellite map (Figure 4), then analyzed the planar geometric and morphologi-
cal characteristics of the sandbars at the Yangtze River mouth. The channel at the estuary
of the Yangtze River Delta has a large amount of sediment of significant width, indicating a
fast sediment-deposition rate. The estuary sandbars are formed primarily by sedimentation
and river erosion, with few disturbances by human activities. According to the results of
measurement and statistics, the sandbars can be categorized into four shapes (Figure 5):
(1) Elongated, the sandbar is strip-shaped (the ratio of length to width greater than 3), and
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the rear of the sandbar is flat; (2) Oval, the two ends of the sandbar are approximately
arc-shaped, and the whole body looks like an oval shape; (3) Elongated cone, one end of the
sand dam is flat, and the other one is of a triangle shape. The length to width ratio of the
sand dam is greater than 3; (4) Special shapes, some of the sandbars are more complex in
shape and can be categorized to special shapes. The measurement results of the shape, area,
length, and width of each sandbar show that oval is the common shape of the sandbars, the
length of the sandbars ranges in 400–600 m, and the width is mainly distributed 50–300 m
(Table 1).
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Table 1. Detailed measurements of modern sandbars.

No. Shape Length (m) Width (m)

01 oval 1364 676
02 elongated 1879 415
03 Special shape: quadrilateral 249 198
04 Special shape: fan shape 785 510
05 oval 197 95
06 oval 836 433
07 Special shape: irregular 500 177
08 Special shape: fan shape 433 246
09 Special shape: quadrilateral 430 240

010 oval 1078 370
011 elongated cone 873 523
012 Special shape: quadrilateral 556 533
013 elongated cone 489 269
014 elongated cone 483 198
015 oval 80 24
016 Special shape: leaf shape 86 21.4
017 oval 231 55
018 elongated 151 22
019 elongated cone 741 276
020 elongated cone 438 250
021 elongated 976 309
022 elongated cone 453 229
023 elongated cone 471 224
024 elongated cone 492 269
025 elongated cone 435 168

3.2.2. Similar Reservoir—Triassic Fluvial Reservoir of Block 1 in Tahe Oilfield

The stratigraphic structure and lithological properties of the K1y reservoir are
similar to the braided river delta deposition of the Lower Triassic reservoir of Block 1 in
Tahe Oilfield. The Lower Triassic reservoir in Block 1 uses fine seismic interpretation
and well logs to discriminate the sandbody boundary. The sandbars in Block 1 are
mainly spindle-shaped, with lengths ranging from 200–500 m and widths ranging from
200–400 m (Table 2).

Table 2. Interpreted dimensions of sandbars in Block 1.

No. Shape Length (m) Width (m) Thickness (m)

1 elongated cone 672 321 8.1
2 elongated cone 516 263 7.44
3 elongated cone 381 230 4.86
4 elongated cone 423 209 5.56
5 elongated cone 500 272 7.15
6 elongated cone 429 231 6.8
7 elongated cone 428 207 8.86
8 elongated cone 428 209 5.92
9 elongated cone 536 330 7.92
10 elongated cone 731 361 8.7
11 elongated cone 611 269 8.38
12 elongated cone 780 307 10.42
13 elongated cone 540 254 8.32
14 elongated cone 492.75 238.5 5.28
15 elongated cone 425 329 9.5
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Table 2. Cont.

No. Shape Length (m) Width (m) Thickness (m)

16 elongated cone 565 287 5.06
17 elongated cone 465 267 8.22
18 elongated cone 517 258 6.2
19 elongated cone 503 315 8.22
20 elongated cone 482 252 4.96
21 elongated cone 427 248 8.52
22 elongated cone 329 212 7.44
23 elongated cone 780 407 10.42
24 elongated cone 540 354 8.32
25 elongated cone 659 392 9.28
26 elongated cone 515 396 10.96
27 elongated cone 641 459 12.18
28 elongated cone 662 297 10.34
29 elongated cone 578 383 11.05
30 elongated cone 499 343 10.06
31 elongated cone 573 357 10.92
32 elongated cone 694 421 13.32

3.2.3. Outcrop Sections

We employ a set of sandstone architecture parameters based on field measurements of
the Jurassic delta front outcrops in Yichang (central China), which had a complete exposure
due to construction digging and thus can be tracked horizontally and vertically (Figure 6).
The thickness of the sandbar of the delta front ranges from 1.5–2.1 m with an average
value of 1.7 m, the width 11–22 m averaged at 17 m, and the width-to-thickness ratio
is 7.5–12, averaged at 9.6 (Table 3). In addition, we summarized outcrop measurements
from previous published articles to have more references for the lateral development
characteristics of sandbodies.
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Table 3. Measurements of Jurassic delta from outcrop sections in Yichang.

Sandbody Type Shape Width (m) Thickness (m)

River mouth bar
convex lenticular

(both top and bottom surfaces)

11.2 1.5
18.2 2.1
16.9 1.4
22.4 2.1
16.8 1.82

Subaqueous distributary
channel

concave lenticular
(bottom surface)

7.6 1.4
22.4 2.8
16.1 2.1

7 0.9
8 1.2

19 2
23 4.5

distributary channel Top surface flat, bottom surface
convex

110 1.5
82 3.7
155 3
115 5.8
89 4
88 3.3

3.3. Monte-Carlo Simulation

In this study, we used the Monte Carlo method to simulate the probability distributions
of the reservoir dimensions and the contacting relationships based on Walther’s Law,
i.e., the lateral extension and connection of sandbodies can be estimated through the
vertical development characteristics. Monte Carlo simulations are used to model the
probability of different outcomes in a process that cannot easily be predicted due to the
intervention of random variables. It is also referred to as a multiple probability simulation.
The essential idea of the Monte Carlo method is using randomness to solve problems that
might be deterministic in principle [34]. The basis of a Monte Carlo simulation is that
the probability of varying outcomes cannot be determined because of random variable
interference. Therefore, a Monte Carlo simulation focuses on constantly repeating random
samples to achieve certain results.

A Monte Carlo simulation takes the variable that has uncertainty and assigns it a
random value. The model then runs, and a result is provided. This process is repeated
again and again while assigning the variable in question many different values. Once
the simulation is complete, the results are averaged together to provide an estimate. This
method has been used in reservoir engineering calculations such as oil reserve estima-
tion [35–37], and we believe more applications of the Monte Carlo simulation can be made
as big data technology develops. The Monte Carlo simulation program we use is the
embedded program in MATLAB. The data settings can be seen in Table 4. We carried out
testing runs using the thickness data of Block 1 to simulate the length and width, and the
result matched 86.25% of the original ones, suggesting this simulation has a good fit and
can be employed to estimate the spatial extensions of YKL sandbodies.

Table 4. Settings of the Monte Carlo simulation.

Parameters Setting

Input

Thickness, contact code of YKL sandbodies Original frequency distribution from well data

Length and width of modern sandbar Statistics from real data and forms the
relationships of the three dimensions of
sandbodies

Length, width, and thickness of analogue
reservoir Block 1
Thickness and width of outcrops

Output Length and width of YKL sandbodies

Number of runs 1 × 106
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4. Results
4.1. Architectural Elements Identification in Wells

As in previous research, the architectural elements developed in K1y of the study area
include distributary channel, channel side, sandbar, interdistributary bay in delta plain,
and subaqueous distributary channel, subaqueous channel side, subaqueous sandbar, and
subaqueous interdistributary bay in subaqueous delta front, among which the subaqueous
distributary channel is the most common element. Our work in this study was to establish
the well logs interpretation from the lithofacies observed from cores (Table 5) and apply
them to identify these architectural elements in each well. An example of architectural
element determination can be seen in Figure 7.

Energies 2022, 15, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 7. Bounding surfaces’ discrimination and sandstone architectural element determination of 
a typical well in Yakela area. 

4.2. Vertical Distributional Characteristics of Architectural Elements 
We summarized the thickness portions of each architectural element and their verti-

cal contact relationships in all the wells. These vertical distributional characteristics then 
served as a testing dataset for sandbody horizontal development estimation. 

4.2.1. Thickness Portions of Architectural Elements 
The probability distribution of the thickness portions of each architectural element in 

all the wells is shown in Figure 8. For the architectural elements of the fan-shaped delta 
plain, the distributary channel, channel side, sandbar, and interdistributary bay account 
for 38%, 21%, 12%, and 29%, respectively, making their ratios  Distributary channel: 

Figure 7. Bounding surfaces’ discrimination and sandstone architectural element determination of a
typical well in Yakela area.



Energies 2022, 15, 5971 10 of 17

Table 5. Lithofacies and well log interpretations of architectural elements.

Architectural Element Lithofacies Well Log Facies

Fan delta plain

Distributary channel Fining upward Low amplitude bell
shaped/cylinder shaped
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4.2. Vertical Distributional Characteristics of Architectural Elements

We summarized the thickness portions of each architectural element and their vertical
contact relationships in all the wells. These vertical distributional characteristics then
served as a testing dataset for sandbody horizontal development estimation.

4.2.1. Thickness Portions of Architectural Elements

The probability distribution of the thickness portions of each architectural element in
all the wells is shown in Figure 8. For the architectural elements of the fan-shaped delta
plain, the distributary channel, channel side, sandbar, and interdistributary bay account for
38%, 21%, 12%, and 29%, respectively, making their ratios Distributary channel: sandbar:
channel side: interdistributary bay ≈ 4:2:1:3. Among the architectural elements of the front
edge of the underwater fan-shaped delta, the distributary channel accounts for 42%; and the
sandbar, channel side, and interdistributary bay take up 29%, 13%, and 16%, respectively.
The ratio of subaqueous distributary channel: sandbar: channel side: interdistributary
bay ≈ 4:3:1:2.

4.2.2. Vertical Contact Relationships and Their Portions

Three vertical contact (stacking) relationships of architectural elements were recog-
nized in K1y reservoir: continuous stacking, intermittent stacking, and erosional stacking.
Continuous stacking is the smooth vertical stacking through which sandbodies form a com-
pete rhythm without mudstone interlayers. Intermittent stacking is similar to continuous
stacking but with mudstone interlayers. Channel sedimentation maintenance complete
sequence, with sandstones separated by sandbodies, and erosion superposition. Erosional
stacking, also known as down-cut superposition, is the downward intrusion of a late-stage
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channel into an early-stage channel, resulting in superimposition of different sandbodies.
The erosional stacking in appearance is similar to a single sandbody, whereas it often has
multi-rhythmic combinations.
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Figure 8. Probability distributions of architectural elements in all wells showing best estimate (P50),
high estimate (P10), and low estimate (P90). The delta plain elements are on the left and the corre-
sponding subaqueous delta front elments are on the right. (a): distributary channel; (b): subaqueous
channel; (c): sand bar; (d): subaqueous sand bar; (e): channel side; (f): subaqueous channel side;
(g): interdistributary bay; (h): subaqueous interdistributar bay.

Calculated from the probability statistics of vertical contact relationships (Table 6),
the ratio of continuous stacking: erosional stacking: intermittent stacking ≈ 4.5:4.3:1.2,
indicating the most common vertical contact relationship of architectural elements is
continuous stacking, while the intermittent stacking is rare. Further we summarized and
compared the probabilities of all possible vertical combinations of any two architectural
elements (Figure 9). The results show that distributary channel–distributary channel and
distributary channel–sandbar are the most-common vertical combinations in both the delta
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plain and the subaqueous delta front, which means above and beneath a distributary
channel would probably be a distributary channel or a sandbar. This is also one important
rule for lateral contact relationship estimation following Walther’s Law.

Table 6. Probability statistics of vertical contact relationships of architectural elements.

Vertical Contact
Relationship

Accumulative Probability

P10 P90 P50

Continuous stacking 0.33 0.58 0.45
Erosional stacking 0.29 0.48 0.43

Intermittent stacking 0.01 0.24 0.12
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4.3. Probability Simulation of Sandbody Dimensions

The simulated probability of the horizontal (inter-well) extension of the sandbodies
using the vertical distribution of the sandbar and channel side (two major reservoir types)
is shown in Figure 10. The thickness of the sandbar is mainly distributed in the range
of 1–5 m. The simulated width is mainly distributed in the range of 100–300 m and the
simulated length ranges of 100–500 m (Table 7). For subaqueous sandbar, the thickness
primarily ranges 2–5 m, and the simulated width and length probably ranges 100–300 m
and 100–500 m, respectively. The simulated shape of the sandbars is mostly oval to elongate
coned. The thicknesses of both the channel side and subaqueous channel side evenly
distribute in the range of 1–4 m. The simulated width is limited to the range of 100–200 m,
and the simulated length ranges 100–400 m. The shapes are elongated.

Table 7. Statistics of simulation results.

Name Count Mean Error Convergence

Sandbar
Length 468,593 252 3.55 converged
Width 586,463 391 2.56 converged

Subaqueous sandbar Length 732,581 206 1.51 converged
Width 696,534 352 2.64 converged

Channel side
Length 259,867 188 3.03 converged
Width 452,898 267 2.71 converged

Subaqueous channel side Length 554,396 145 2.89 converged
Width 359,122 229 3.62 converged
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4.4. Simulated Reservoir Distribution Characteristics 
4.4.1. Lateral Extension 

Figure 10. Thickness and simulated lateral dimension of architectural elements. The red line shows
the accumulative probability. (a): thickness probabity of sandbar; (b): width probability of subaque-
ous sandbar; (c): length probability of subaqueous sandbar; (d): thickness probabity of subaqueous
sandbar; (e): width probability of subaqueous sandbar; (f): length probability of subaqueous sandbar;
(g): thickness probabity of channel side; (h): width probability of channel side; (i): length probabil-
ity of channel side; (j): thickness probabity of subaqueous channel side; (k): width probability of
subaqueous channel side; (l): length probability of subaqueous channel side.

4.4. Simulated Reservoir Distribution Characteristics
4.4.1. Lateral Extension

Based on the simulated dimensions of sandbodies, we connected main production
wells to form skeleton well sections. Viewed from the well sections, the subaqueous distribu-
tary channel of Lower K1y is thicker in two directions, and the range of the interdistributary
bay is small. The subaqueous distributary channel and sandbar are the main elements; in
Middle K1y the lake basin continued to expand, with strip-shaped and lens-shaped sandbar
deposits developed. In Upper K1y water energy weakened but was relatively stable, so
this horizon is dominated by fine-grained distributary channels, sandbars and channel
sides. The distributary channel of the lower member of K1y is thicker in the south and
north than in the center, and sandbars are wide in this member. The sandbars in the middle
member are narrow and shaped lenticularly on sections, and the interdistributary bay and
channel side develop on both sides of distributary channel, indicating the expansion of the
lake basin. In the upper member, the grain size of the subaqueous distributary channel,
sandbar, and channel side are smaller than that in the middle and lower member, indicating
the weakening of water energy (Figure 11). The distributary channel and sandbar are the
predominant architectural elements of sandbodies, making favorable reservoir property in
this area.
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4.4.2. Planar Distribution

The planar distribution characteristics vary in each layer of K1y, but the common
rule is that the sandbodies have the axis of south–north (the regional depositional source
direction), thus reservoir heterogeneity is strong in the west–east direction and in the
eastern part the distributary channels is narrower comparing to those in the western
part. Taking Layer 13 (the top layer of the lower member) for example, the subaqueous
facies distribute in the southern part, where subaqueous sandbars are scattered and the
subaqueous interdistributary bays are developed. In the northern part, the sandbars and
channel sides are densely distributed, whereas interdistributary bay is rare (Figure 12).
The area between S83 and YK9X dominantly developed subaqueous distributary channels,
sandbars, channel sides, and interdistributary bays, indicating that the reservoir has good
properties. Despite the producing wells, there are still good reservoirs yet to be explored.
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5. Discussion
5.1. Validation of Sandstone Architecture Probability Simulation

New seismic data on the study area had been acquired one year after our work. Since
the total thickness of K1y ranges 28~47 m, which is within or slightly thicker than a seismic
wavelength, we still cannot get the fine description of reservoir distribution from the seismic
interpretation. We tried to build the facies model through the comprehensive analysis of
the amplitude, stacking velocity and other attributes, and adopted geobody interpretation,
but it is not possible to specify the attributes to the meter-scale layers. We can check the
area ranges of sandbodies and compare them with our simulated ones. We can see from
the comparison of the model-extracted facies map and our simulated reservoir distribution



Energies 2022, 15, 5971 15 of 17

map that our simulation results show a reasonable area coverage of sandbars comparing
with the facies model (Figure 13).
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5.2. Applicability of Reservoir Distribution Probability Simulation

As Miall commented in 2006 [6], a continuing effort to develop numerical simulation
as the basis for reservoir engineering models is present. Common data on oilfields, such
as cores and well logs, are the most direct data we can get for underground, but they
are not enough for constraining reservoir models, especially the lateral extension of the
reservoir. Hence, analogue and numerical simulation have long been the approaches for
reservoir modeling. With the fast development of computer science and technics, we now
are able to use big data and numerous simulation methods. What we need is more data,
various detailed data of reservoir type, lithology, microfacies and their dimensions, etc.
Our work is one effort towards big data and random simulation, and the result has been
approved to some extent. We examine this approach to be the most appropriate method, at
present, for reservoir distribution estimation in large well-spacing oilfields without proper
seismic data.

5.3. Limitation of Probability Simulation

The limitations of our work include: (1) The study area is small, and the sedimentary
circle is mid-term to ultrashort term, thus the application of this method to bigger environ-
ments needs further validation; (2) We have simulated the connection relationships between
different architectural elements, whereas the specific or detailed connection patterns are not
as delicate. It is our hope that we can visit more outcrops and obtain more high-resolution
seismic profiles to enlarge our reservoir architecture database, then with the help of big
data and random simulation, we can be more confident in reservoir architecture analysis
and modeling.
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6. Conclusions

Architectural elements and their contact relationships in a sandstone reservoir can be
determined by core, well logs, and seismic profiles in the areas with sufficient well logging
and high-resolution seismic data. However, for the widely spaced well areas without
adequate seismic data, the study of reservoir architecture remains difficult. We have made
progress in the area of Yakela using Monte Carlo simulation. The major conclusions include:

(1) Well data in Yakela area provides the basic parameters of architectural elements and
their contact relationships, based on which we obtained the statistical frequency
of vertical developments of sandbodies and then used them as a testing dataset
(variables) in the simulation of sandbody architecture.

(2) We measured the sandbody dimensions of a modern sandbar, a similar reservoir, and
outcrops and formed a comprehensive database. This database serves as a training
dataset in the simulation of sandbody architecture.

(3) We simulated the horizontal development probability of sandbodies in Yakela area
from the testing dataset and built the reservoir model to locate favorable reservoir
targets. This model fits well with the later seismic interpreted reservoir distribution,
suggesting that our simulation is efficient and reliable.

(4) It is of great significance to build a reservoir database with detailed dimensions and
parameters of reservoir architectural elements (specific sandbodies). The larger the
database is, the more powerfully those new technologies such as big data and deep
learning can perform.
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