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Abstract: In the era of aiming toward reaching a sustainable ecosystem, the primary focus is to curb
the emissions generated by non-conventional resources. One way to achieve this goal is to find an
alternative to traditional power plants (TPP) by integrating various distributed energy resources
(DERs) via a Virtual Power Plant (VPP) in modern power systems. Apart from reducing emissions, a
VPP enhances the monetary benefits to all its participants, including the DER owners, participants,
and utility personnel. In this paper, the multi-objective optimal scheduling of the VPP problem
considering multiple renewable energy resources has been solved using the multi-objective black
widow optimization (MOBWO) algorithm. Renewable resources consist of solar PV modules, wind
turbines, fuel cells, electric loads, heat-only units, and CHP units. The weighting factor method
was adopted to handle the multi-objective optimal scheduling (MOOS) problem by simultaneously
maximizing profit and minimizing emission while satisfying the related constraints. In this research,
a peak valley power pricing strategy is introduced and the optimal scheduling of the VPP is attained
by performing a multi-objective scheduling strategy (MOSS), which is day-ahead (on an hourly basis)
and 15-min based (for a one-day profile), to observe the behavior of the anticipated system with a
better constraint handling method. This algorithm is capable of dealing with a complex problem in
a reduced computational time, ensuring the attainment of the considered objective functions. The
numerical results obtained by the MOBWO algorithm after 100 independent trials were compared
with the latest published work showing the effectiveness and suitability of the developed system.

Keywords: virtual power plant; renewable energy resources; black widow optimization; multi-objective
optimal scheduling; peak valley pricing

1. Introduction

A virtual power plant (VPP) is an assembly of energy resources that are owned by a
private entity and can be interconnected for combined operation. The essence of a VPP is
that it is owned and operated independently, it can be controlled centrally and monitored
with the help of advanced software. This helps the distributed resources which are coming
from disparate locations to respond quickly to the energy supply and demand Refs. [1–4].
The goal of the VPP is to handle the energy demand of consumers communally and to
resolve the future failure of networks. A VPP consists of remote software that helps to
standardize specific energy use by linking, organizing, and controlling decentralized and
controlled charging generators.

A VPP acts as an energy hub and is capable of becoming the future of power systems.
It offers variable generation at reduced inertia levels and at the same time provides ancillary
services, including controlling the voltage imbalances, frequency regulation, and congestion
management and helps in the black start. The VPP also resolves some of the most prominent
grid-related issues, viz., improved forecasting, real-time mitigation of power quality-related
concerns, and proper balancing of the demand and supply gap. Apart from offering

Energies 2022, 15, 5970. https://doi.org/10.3390/en15165970 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15165970
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-0935-3262
https://orcid.org/0000-0002-3373-8613
https://orcid.org/0000-0002-0882-6283
https://doi.org/10.3390/en15165970
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15165970?type=check_update&version=1


Energies 2022, 15, 5970 2 of 30

technical services, a virtual power plant offers commercial services by participating in
wholesale and energy reserve markets. By enhancing the visibility of small, distributed
energy resources (DERs), they are capable of offering pecuniary services by managing spot
pricing (SP) and time of use (TOU) pricing schemes. The simple characterization of DER is
any energy resource that is connected to the grid at the distribution level, viz., fuel cells,
captive power plants, natural gas turbines, electric vehicles (EVs), and energy storage (ES).

Virtual power plants can certainly be a supporting system for implementing 5-min
bidding and can respond to various rapid and fast-moving markets through various DERs.
Some of the diverse challenges which can be answered by a VPP are listed below.

(a) A VPP diminishes the need for the conventional generation to provide the provision
of dynamic ancillary services.

(b) It controls a cluster of heterogeneous renewable energy resources (RERs).
(c) The intermittency and uncertainty caused by renewables such as solar and wind

power, which are highly weather dependent, can be reduced to a certain extent.
(d) It maintains favorable grid conditions for real-time management and supervision

in emergencies.

There are various other requirements to make the operation of VPPs more robust,
including ensuring cyber security which is a very important concern due to the involvement
of highly advanced software. Information and communication technologies (ICTs) are also
a prerequisite for reliable communication. Integrated resource planning (IRP), peer-to-peer
(P2P) transactions, net-metering policy (NM), and behind the meter (BTM) technology
are some of the regulatory mechanisms which play a key role in deciding the future of
this technology.

A case study was carried out by P. Pal et al., Ref. [5] in which a PV panel, fuel cell,
wind turbine, micro-turbine, and battery-connected energy storage system were connected
to analyze the optimal scheduling of a VPP. The setup was made in such a way that three
kinds of scenarios were considered using a beetle search antenna algorithm for optimal
dispatching. The authors compared the performance of this method with algorithms such
as particle swarm optimization (PSO) and genetic algorithm (GA). Some of the important
parameters such as load analysis on an hourly basis and dynamic pricing of the grid
were utilized and implemented for the day-ahead market strategy. S. Han et al., Ref. [6]
highlighted the benefits of a VPP considering incentive prices and load data on an annual
basis to assess the revenue generated. The profit evaluation of a VPP involves load filling
as well as load shaving. A VPP requires the lowest investment cost to achieve the same
load shaving effect when compared to gas power, coal power, pumped storage, and energy
storage as well. The operating cost for the demand response (DR) is very low compared to
an old-style power plant. The overall feasibility of the development of VPPs is verified by
conducting simulation studies from the perspective of the power grid. P. Lombardi et al.,
Ref. [7] presented an article in which a synchronized measurement was implemented in the
state estimation algorithm which could turn out to be a solution of equations strictly related
to state estimation. They selected a CHP, photovoltaic plant, and wind park to supply
energy and therefore can be called energy suppliers. An external boiler was also included in
the analysis to manage the surplus electricity. A CHP unit was included in the study as it is
a useful source by which the power load can be managed efficiently. To ensure the optimal
operation of the VPP, forecasting errors that arise due to the intermittent nature of RERs and
unpredictable weather need to be reduced as much as possible. S. M. M. Saabit et al., Ref. [8]
explored why the concept of Vehicle-to-Home (V2H) has been given more emphasis instead
of V2G and G2V. Three approaches were well-thought-out and include the grid-connected
PV with battery storage system (BSS), grid-connected battery storage systems without PV,
and just a battery storage system. The intention was to highlight the capabilities of batteries
when they are installed at retail sites and eventually set up a VPP. Two types of load profiles
were analyzed: are flat consumption and varying load profile. The Perturb and Observe
technique was employed to track the maximum power point. The settlement period of the
proposed system was estimated to be 9 years to overcome the installation cost. A hybrid
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energy generation system was used to resolve the problem of optimal scheduling which
consisted of battery-connected solar PV modules, wind farms, and thermal generators in
S. S. Reddy et al., Ref. [9]. A two-point estimation system and genetic algorithm were used
to test the efficacy of their proposed strategy. Based on the simulation studies carried out, it
could be observed that there was a marginal enhancement in the generation scheduling of
the day-ahead strategy. In Ref. [10], Y. Zhang et al., attempted to propose the scheduling
strategies of a VPP that can accommodate various development phases in the electricity
market. A bi-directional context was proposed in the paper so the VPP participates in the
electricity markets and acts only as a price-taker. Apart from raising the overall revenue,
it also focused on the objective of social welfare which can be achieved by the effective
allocation of resources.

To solve the unbalancing problem, T. Zhang et al., Ref. [11] proposed a VPP optimal
scheduling model. They studied the energy cost model of the VPP and developed an
optimal dispatch strategy in which the uncertainty of the energy prices and variable output
of RESs were included. The VPP structure comprised small-scale wind power plants,
solar PV systems, and gas turbine power plants along with energy storage systems. Few
types of VPPs, when participating in the electricity market, are briefly discussed, namely
the Joint-Venture model, Bi-lateral Transaction model, and medium-long term contract
model. They considered the overall power balance without any network constraints. A
small-scale VPP model was comprised of two DG sources and two controllable loads, and
the same was verified in MATLAB/ Simulink by Naina et al., Ref. [12]. An algorithm of an
energy management system that acts as a centralized controller operates in three modes,
i.e., grid import (operated in an off-peak hour), grid export (operated in peak hours),
and no power exchange mode (power exchange does not take place between the grid
and VPP). Three different models were included in this analysis, the main grid, dynamic
load, and distribution generation model. In this study, consecutive energy management
(CEM) is proposed to make the regular energy management system more economic by
satisfying the electric constraints of the power system. The control objective was to develop
a framework so that the VPP can contribute to the energy market and at the same time
cater to ancillary services.

A. Zahedmanesh et al., Ref. [13] discussed two hierarchies; i.e., the first involves a
daily scheduling approach while the second is reactive power compensation which is
a very crucial requirement of a power system. As per the claim, both voltage quality
and energy cost were improved by employing CEM in the analysis without violating any
electric constraints. The power of the conventional generators relies on the quantity of
energy produced by renewable energy sources. The storage facility plays a prominent
role in case the load shaving factor increases. The optimal design of the storage facility is
highly recommended by Lombardi P. et al., Ref. [14] so that the system can balance the
intermittent generation. The total demand for analysis is taken as 1 MW which is fulfilled
by conventional generators and partially by renewable energy resources such as solar and
wind. It was observed that the shaving factor has a very minimal impact on the optimum
storage capacity only if the quantity of energy generated by the RERs is high.

S. Mishra et al., Ref. [15] offered an innovative business model in which consumers
could be given full control over how much power they require, giving them the liberty
to utilize power per their requirements and needs, and is known as energy-as-a-service
(EAAS). This model is empowered by peer-to-peer (P2P) energy exchange especially de-
signed for the local power markets. They also proposed a novel computation strategy in
which a comparison was made between profit-based ordering and random selection to
conclude the most preferred strategies for an energy-related transaction. A design that is
termed a smart contract was discussed which allows a particular system to be independent
and reliable for handling exchanges when multiple sectors are involved. This study aims
at a multi-stage PSO method to improve energy penetration along with small-scale signal
stability by T. K. Renuka et al., Ref. [16].
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The proposed technique was tested on the IEEE 14-bus system and the results were
validated. This bus system contained three synchronous generators and turbine gover-
nors. Real-time coordination, as well as a controller for the active supervision of real and
reactive power in all the grids, are necessary for addressing the intermittency issues and
increased penetration of renewable energy. It has been emphasized that realistic control
strategies can be obtained by optimization studies to perform an integrated operation.
O. H. Mohammed et al., Ref. [17] defined an economic problem that consists of the optimal
sizing of the system, state of charge (SOC) of the battery, and high reliability of the system.
The characteristics and advantages of the PSO are highlighted over various conventional
algorithms. The objective function consists of the total net present cost with the sole inten-
tion to optimize the generated power of a hybridized renewable energy system comprised
of PV modules, batteries, tidal, and wind turbines. The important aspects of the batteries
such as the floating charge voltage and their maintenance are considered to achieve the
desired optimization. The problem that is being explored in this study is more economical
and converted into a multi-objective problem in which the purpose is to minimize the cost
of energy and the total net present cost (TNPC) of the system without compromising the
flexibility and versatility of the hybrid energy system.

Pio Lombardi Ref. [18] optimized a multi-criterion-based VPP that was autonomous.
This study involved three main criteria, i.e., service reliability, the cost associated with
the system, and the quantity of pollution. In the desired load management program, the
VPP comprised a wind farm, PV plant, and CHP in which the prime movers were a gas
turbine, active consumers, and a battery switch station. In addition, the authors performed
a sensitivity analysis to verify that the optimal solution is robust. The autonomous VPP
is economically competitive as the total cost generation is less than that compared to
traditional power systems. M. F. Dehghanniri et al., Ref. [19] examined the involvement of
a VPP in the real-time market, day-ahead market, and reserves. The sources considered
were wind turbines, combined heat and power, diesel generators, and electric vehicles, with
electrical and thermal as their two storages. To maximize the profit, two-stage planning
was used. In the first stage, optimization of DA and reserves was accomplished, followed
by optimizing the real-time market. The simulation was carried out on an IEEE 21 bus
network to assess the performance evaluation of the VPP. They emphasized two important
parameters, namely, the inclusion of EVs and the price sensitivity of the load. An artificial
neural network was used for forecasting the data and planning the required number of EVs
required for day-ahead scheduling.

M. Khandelwal et al., Ref. [20] dealt with the impact of locational marginal prices on a
VPP in terms of resource allocation by satisfying the constraints related to network flow
within the limits. To enhance the profit by a considerable margin, technical and market
aspects were discussed. The problem formulation of profit was created in such a way
that it was the difference between the cost of energy and revenue from market trading.
To analyze the impact of aggregation, 24-h scheduling was considered. M. Gough et al.,
Ref. [21] focused on the technical and grid-related constraints. They developed a VPP that
dealt with technical details rather than commercial or financial outcomes. The impact of
voltage profile, power losses, and network congestion was analyzed along with the thermal
relief of the consumers. The obtained profit was split into two parts, namely, revenue
from the electricity sold to commercial clients and the cost of functioning the technical
VPP in consideration of both economic and technical constraints. S. Hadayeghparast et al.,
Ref. [22] projected a typical model for optimizing a VPP’s day-ahead scheduling, consisting
of power dispatching and unit commitment (UC). The multi-objective approach deals with
capitalizing on the day-ahead net daily turnover of the VPP and curtailing the pollutants
and daily emissions. In this study, the VPP was assumed to control all resources in the local
network, including loads and DERs. The scenario-based approach was used for modeling
the uncertainty of the market price, solar radiation, and electrical load.

Based on the critical review carried out in the literature survey, it was found that
the problem statement requires an advanced meta-heuristic technique that can handle
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the objective function in a simpler yet efficient way by reducing the complexities which
are unavoidable due to the non-linear nature of the problem when solved by established
techniques such as PSO, GA, etc. The below-mentioned points are anticipated as research
gaps that were not given the attention they require in the explored literature.

• To ensure efficient management of the grid, sources such as fuel cells and CHP can be
considered for optimal scheduling to reduce the cost of power generation along with
emissions in a VPP system.

• To handle a non-convex problem such as VPP efficiently, advanced, and recently de-
veloped soft computing (SC) techniques can be implemented or modified by choosing
related constraints.

• To incentivize the participants, peak-valley pricing mechanisms with the incorporation
of (15 min) interval scheduling is introduced and compared with day-ahead scheduling.

In Table 1, various control methods, mostly used in the work reported in the literature,
to carry out optimization are listed. MOBWO is the only technique, to the best of our
knowledge, that is not being employed to carry out the intended VPP problem. The control
method is mentioned for the existing studies along with its characteristics and the nature
of the problem. The limitations of the existing work and advantages of the anticipated
MOBWO algorithm, along with the improvements, are highlighted over other techniques.

Table 1. Control methods employed for optimal scheduling purposes.

Refs. No. Nature of Problem Control Method Features of Control Method

[22,23] Heuristic PSO/MOPSO
Fewer parameters.

Ease of implementation.
Local entrapment.

[24,25] Stochastic ABC Poor in exploitation stage.
Limited population diversity.

[26,27] Computational ANN More precise predictions.
Good computational efficiency.

[28,29] Heuristic GA Can determine multiple
solutions simultaneously.

[30,31] Meta-heuristic ACO Can discover good
solutions rapidly.

[32,33] Mathematical Fuzzy Logic Improved prediction accuracy.
Use of Fuzzy sets.

[34,35] Mathematical Game Theory Computational load increases as
the no. of participants increases.

This paper Meta-heuristic BWO/MOBWO

High searching accuracy.
Better updating strategy.

Converge to the global optimum in
lesser iterations.

Virtual power plants are gaining interest very rapidly in the new era of energy manage-
ment to have better management of the associated resources in modern electrical systems.
Even though a lot of researchers are showing interest in exploring the domain of VPPs to
know their feasibility and economic viability, all the studies related to optimal scheduling,
which were carried out previously, were only day-ahead types, and emission was not given
the kind of attention it requires, especially in today’s scenario in which a considerable
reduction in emissions is needed to contribute towards sustainable living. This study deals
specifically with the optimal scheduling of a VPP considering both day-ahead scheduling
and 15 min scheduling which shows close resemblance to the real-time scenario.

In this article, an attempt has been made to carry out multi-objective optimal schedul-
ing and the key features of this research work are highlighted below:

• One centrally controlled VPP system comprised of multiple resources including solar
PV modules, WT, fuel cells, electric loads, heat-only units, and CHP units has been
attempted to solve the multi-objective optimal scheduling problem.
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• The multi-objective optimal scheduling of the VPP considering renewable resources
has been solved using the weighting factor method to simultaneously maximize profit
and minimize emissions.

• Peak valley’s power pricing strategy is introduced in the multi-objective optimal
scheduling of the VPP problem.

• The new price-based multi-objective black widow optimization (MOBWO) is presented
and implemented by considering constraint handling.

• Statistical analysis was performed for both single and multi-objective optimal schedul-
ing of the VPP problems and quality solution sets were obtained from the MOBWO
algorithm after 100 different independent trials.

• Pareto optimal solutions were obtained specifically for multi-objective optimal schedul-
ing of the VPP problem for the maximization of profit along with simultaneously
minimizing the emissions for both scenarios I and II, respectively.

• Results obtained by the proposed MOBWO algorithm were also compared with the
latest published works.

The organization of this research article is as follows:
Section 2 deals with the basic concepts, challenges, and framework of VPP. Section 3

presents problem formulation which comprises the objective function, followed by the
constraint handling. The optimization algorithm-related explanation is then discussed in
Section 4. The implementation part of the case studies along with simulation outcomes is
presented in Section 5, and, lastly, concluding notes followed by future work highlights are
given in Section 6.

2. VPP Concept

A VPP facilitates the synchronization of power generation and uses more efficiently.
It provides a sustainable supply and demand adjustment mechanism with a high level of
precision and encourages the storage of electricity that generates the capacity for the usage
of renewable energy in the power division. As a result, there is a significant potential for
the VPP to link operating technologies with communications infrastructure and external
data properties, thus collecting the forecasting data from scattered entities. In addition, the
VPP can provide deep insights into the results by offering smoother and quicker decision-
making and taking real-time action to enhance performance. The framework of the VPP
followed is depicted in Figure 1.
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Several challenges involved when considering a VPP can be categorized in terms of
technical, commercial, and regulatory restrictions, followed by environmental concerns
which are often ignored and not given the importance that it deserves. In Figure 2 some of
the most prominent challenges of the VPP are highlighted.
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The crux of a VPP is that it is not restricted geographically, unlike a Microgrid. A VPP
is more concerned with flexible resources and indulges in power trading in the energy
market and their mode of interconnection is always grid-connected Ref. [36].

Methodology

The process flow followed is demonstrated in Figure 3 in which the detailed organi-
zation is sequenced to make it easy for the readers looking for optimum operation and
scheduling of a virtual power plant considering multi-objective profit maximization and
emission minimization. The optimization is carried out with respect to the constraints
handling which also includes the technical constraints of the associated resources. The
methodology starts with the selection of resources, i.e., solar PV, wind, and combined heat
and power, which comprise heat-only units, followed by the fuel cell. The next step after
selecting appropriate resources for the optimal scheduling of the virtual power plant is the
collection of data in which raw data are obtained for renewable sources such as wind and
solar power and a few secondary data taken from the literature. The next step is to set up
the computational framework in which a suitable selection of an advanced meta-heuristic
technique is performed, keeping the requirements into consideration. In the next stage, a
scheduling strategy is adopted in which two scenarios are considered.

In scenario I, day-ahead scheduling, i.e., 24 h, is performed followed by a 15-min inter-
val which is scenario II. The multi-objective case is performed for both scenarios I and II.
Based on the optimization algorithm, a detailed statistical analysis has been accomplished
and highlighted in tabular form and the same is compared with another optimization
technique. The superiority and effectiveness of the same are evident in the form of numeri-
cal results. The convergence characteristics are displayed for all three cases, respectively,
and the two scenarios are followed by the Pareto graph which helps the VPP operator in
deciding the best available trade-off in terms of monetary advantages as well as emission
considerations that helps in achieving the sustainable development goals which is one of
the sole purposes of a VPP.
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In Figure 4, a pictorial representation of the envisioned system under study is rep-
resented in which renewables and co-generation units are considered. The resources
associated with the current VPP system under study are solar photovoltaics (PV), wind
turbine (WT), fuel cell (FC), combined heat and power (CHP), and electric load (EL), fol-
lowed by connecting the energy market (EM) and electricity price (peak valley) to the VPP
operator. These resources are used to supply the electricity to the consumers of VPP based
on the transactions between the energy market and the VPP operator. The energy market,
which is indeed an integral feature of the VPP, is also associated to make the delivery of
peak valley electricity pricing when applicable.
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3. Problem Formulation
3.1. Objective Function

The objective function is segmented into two categories. The first deals with the
maximization of the net profit and is followed by the minimization of total emissions
generated by the associated resources, specifically with CHP and heat-only units.

3.1.1. Net Profit

The running costs of the system consists of power acquisition costs from the main
grid, power selling costs to the main grid, and costs associated with wind generators, solar
power, and fuel cells. The installation cost of the wind turbine and the photovoltaic array
is not considered. The objective function is categorized into two segments, i.e., the main
objective function deals with the maximization of net profit followed by the other objective
function which is emission minimization.

Net Profit =

maximization
Ns

∑
s=1

πs× Σt
t=1

{
−

Np
Σ

p=1

{
cchp + chou

}{
ρem × cph + cse

} Np
Σ

p=1

{
(1× cph) + (1× phou)− cens

}}
(1)

where:

p and s are set of plants and scenarios, t is time ranges from 1 to 24 in Day-ahead
scheduling, followed by 1 to 96 in 15-min scheduling.

cph and cse are the tariffs for purchasing and selling power from the grid system.
πs is the probability of scenarios.
p

em is the energy market price; cens is the cost of energy not served.
cchp and chou are the cost function of CHP and heat-only units.
p

hou is the price of heat-only units.
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3.1.2. Emission

Along with the main objective function of net profit represented in the above
Equation (1), the emission is also considered as a supportive objective function in which
minimization of the day-ahead emission is carried out to see the effect of the statistical
analysis performed in Section 5.

Emission = minimization
Ns

∑
s=1

πs× Σt
t=1

{
Np
Σ

p=1

{
echp + ehou

}
×
{

eph + ese

}}
(2)

where:

echp and ehou are the emissions by CHP and heat-only units, respectively.
eph and ese are the emissions by the grid system.

The total emissions by CHP and heat-only units, and the purchase and selling
power coming from the main grid system can be evaluated by the below-mentioned
Equations (3)–(5).

e_chp = (NOchp
x + SOchp

2 + COchp
2 )× Pchp

t,p (3)

e_hou = (NOhou
x + SOhou

2 + COhou
2 )× Hhou

t,p (4)

e_ph + e_se = (NOph+se
x + SOph+se

2 + COph+se
2 )×max{−Pph+se

t,p , 0} (5)

In the aforementioned Equation (5), the measure of emissions related to the grid
system is considered only when the electricity is purchased from the power market.

3.1.3. Multi-Objective Framework

The objective function of the multi-objective optimal scheduling of the VPP problem
is to handle objectives, namely, the maximization of profit and simultaneous minimization
of the emission in such a way as to obtain the best compromise solution. Multi-objective
optimal scheduling of the VPP problem is solved by using the weighting factor method
and the mathematical expression is given by:

Fitness = w× Net Pro f it + (1− w)× Emission (6)

where:

w is considered as 0.5 for giving equal weightage to both objectives.

3.2. Constraints Handling
3.2.1. Power Balancing

The electrical power balance is represented in Equation (7) in which Peqv
s,t,p depicts the

equivalent electrical output power of each plant.

Peqv
s,t,p = Pi

ex + Pi
f l + Pi

wt + Pi
pv − Pi

el (7)

where:

Peqv
s,t,p is equivalent to power scenario s, time t, and plant p.

Pi
ex is the exchanging power between the main grid and the CHP system at interval

i (MW).
Pi

f l is the power of the fuel cell at interval i (MW).

Pi
wt is the power of the wind turbine at interval i (MW).

Pi
pv is the power of the solar photovoltaic at interval i (MW).

Pi
el is the electrical load at interval i (MW).
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3.2.2. Heat Balancing

Constrictions related to the heat balancing equation must satisfy the waste heat and
gas boiler.

Pi
f l ∗ ri

f l ∗ ηhr_bl + Pi
gb − Pi

th = 0 (8)

where:

ri
f l is the ratio of heat to the electricity of the fuel cell at interval i (MW).

ηhr_bl is the efficiency of the heat rate boiler (MW).
Pi

gb is the power of a gas boiler at interval i (MW).

Pi
th is thermal power balance at interval i (MW).

3.3. Power Switching between Main Grid and CHP Units

The operational constraints between the CHP and main grid are expressed in the
following equation. The switching power which takings place between these two is within
the permitted limits.

Pmin
ex ≤

∣∣∣Pi
ex

∣∣∣ ≤ Pmax
ex (9)

where:

Pmin
ex is the minimum exchange of power between the main grid and the CHP system.

Pmax
ex is the maximum exchange of power between the main grid and the CHP system.

3.4. Constraints of Waste Heat and Gas Boiler

The waste heat and gas boiler are able to generate power in their precise
electrical capacity.

Pmin
bl ≤ Pi

f l ∗ ri
f l ∗ ηhr_bl ≤ Pmax

bl (10)

Pmin
gb ≤ Pi

gb ≤ Pmax
gb (11)

where:

Pmin
bl is the minimum limit of the waste heat boiler.

Pmax
bl is the maximum limit of the waste heat boiler.

Pmin
gb is the minimum limit of the gas boiler.

Pmax
gb is the maximum limit of the gas boiler.

3.5. Fuel Cells

The efficacy of fuel cells can be expressed in the part-load ratio (PLR). The modeling
is adapted from Ref. [37]. The mathematical formulations associated with the function of
PLR are defined in Equations (12)–(14). The fuel cell units are capable of supplying part of
the demand load in the form of electrical energy.

When PLR_i < 0.05
ηi

f l = 0.2716; ri
f l = 0.6816 (12)

When PLR_i ≥ 0.05

ηi
f l = 0.9033PLR5

i − 2.9996PLR4
i + 3.6503PLR3

i − 2.0704PLR2
i + 0.4623PLR1

i + 0.37 (13)

ri
f l = 1.0785PLR4

i − 1.9739PLR3
i + 1.5005PLR2

i − 0.2817PLR1
i + 0.6838 (14)

where:

ηi
f l is the fuel cell efficiency at interval i (p.u.) and

ri
f l is the ratio of heat to the electricity of the fuel cell at interval i (MW).
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Ramp Rate Limit of Fuel Cell

The power generated by the Pi
f l unit is not allowed to exceed the power generated in

the previous interval Pi−1
f l by more than a specific amount.

∆Pf l_down.T ≤ Pi
f l − Pi−1

f l ≤ ∆Pf l_up.T (15)

where:

∆Pf lup T is the up-ramp limit and ∆Pf l_down is the down-ramp limit of the fuel cell.
Pi

f l is the power generated by the fuel cell at interval i (kW).

Pi−1
f l is the power generated by the fuel cell at the previous interval (kW).

3.6. CHP Units

To achieve optimal scheduling, two categories of CHP units having diverse feasible
regions of operation (FOR) have been considered Ref. [38]. Equations (16) and (17) represent
the maximum electric and thermal output power constrictions of the CHP unit.

0 ≤ Pchp
t,p ≤ Pchp

p,A ×Vchp
t,p (16)

0 ≤ Hchp
t,p ≤ Pchp

p,B ×Vchp
t,p (17)

where:

Pchp
t,p is the electrical output power of the CHP and

Vchp
t,p is the commitment status of the CHP.

The feasible regions of operation (FOR) are shown in Figure 5. In the Type 1 CHP unit,
FOR is a convex type which is followed by a non-convex FOR as shown in Type 2.
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3.7. Solar PV Modules

The output of the photovoltaic modules is affected largely by solar radiation, charac-
teristic of the module, followed by the ambient temperature of the specific location Ref. [39].
The availability of solar power is plentiful in the daytime, which can be seen in Figure 6,
in which the peak ranges from 11 a.m. to 3 p.m. Usually, it follows the beta probability
distribution function (PDF).

Certain parameters influence the output power of PV modules. The fill factor (FF) is
the measure of the efficiency of a photovoltaic module. The ideal FF of a solar cell is around
0.7. It is defined as the maximum power obtainable from the solar module to the actual
power obtained and it is expressed in Equation (18).

FF =
VMPP × IMPP

VOC × ISC
(18)
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The characteristics of the module are represented below:

Ppv
s,t,p(sors,t) = Npv

p × FF×Vs,t × Is,t (19)

Vs,t = VOC − KV × TCs,t (20)

Is,t = sors,t × [Isc + Ki × (TCs,t − 25)] (21)

where:

Ppv
s,t,p is output power, Npv

p is the number of PV modules, and sors,t is the solar
radiation (KW/m2).

VOC is the open-circuit voltage and Isc is the short circuit current.
Ki is the current temperature and KV is the voltage temperature coefficient.
TCs,t is the solar cell temperature and FF denotes the Fill Factor of the PV module.

3.8. Wind Turbine

Wind power follows the Weibull PDF due to its ability to represent the variation in
wind speeds. The forecasting curve of wind power generation with respect to time is shown
in Figure 7. The primary problem with wind power is the rapid fluctuation due to varying
climate conditions.
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The power from the wind turbine is calculated from Equations (22)–(25). The modeling
of the wind turbine is referred to from Ref. [40].

Pwt
s,t,p(vs,t) = Nwt

p × {0, vs,t < vc
in}{0, vs,t > vc

out} (22)

Pwt
s,t,p(vs,t) = Nwt

p ×
{

Pwt
rated ×

(
vs,t − vc

in
vrated − vc

in

)3
}

(23)

Pwt
s,t,p(vs,t) = Nwt

p × {vc
in ≤ vs,t ≤ vrated} (24)

Pwt
s,t,p(vs,t) = Nwt

p × {vrated ≤ vs,t ≤ vc
out} (25)

where:

Pwt
s,t,p is the output power of the wind turbine (MW).

Pwt
rated is the nominal power of the wind turbine (MW).

Nwt
p is the number of wind turbines.

The crucial parameters considered to evaluate the intended objective function are
listed in Tables 2–6 and referred from [22,40–43].

Table 2. Emission factors related to SO2, NOX, and CO2.

Emissions Heat-Only Unit CHP Unit

SO2 0.0027 0.0036
NOX
CO2

0.3145
401.43

0.1995
723.94

Table 3. Parameters for the wind turbine.

Pwt
rated (MW) vc

in (m/s) vc
out (m/s) vrated (m/s) Nwt

p

150 3.5 25 13.5 3

Table 4. Parameters for solar PV.

VOC (V) ISC (A) Ki (I/◦C) KV (V/◦C) NOT (◦C) IMPPT (A) VMPPT (V) Npv
p

21.98 5.32 0.003 0.0144 43 4.76 17.32 2240

Table 5. Parameters for heat-only units.

Hhou
max,p (MWth) ap ($/MWth2) bp ($/MWth) cp ($)

1.2 0.052 3.0651 4.8
Where ap, bp, cp are the cost coefficients of heat-only units.

Table 6. Parameters of the CHP unit.

gp ($/MW2) hp ($/MW) ip ($) jp ($/MWth2) kp ($/MWth) ip ($/MW.MWth) Csu
p ($) Csd

p ($)

0.0345 44.5 26.5 0.03 4.2 0.031 20 20

Where gp, hp, ip, jp, kp, ip are the cost coefficients of CHP units and Csu
p and Csd

p are the startup and
shutdown costs.

The complete procedure adopted for solving the optimization problem is mentioned
in Figure 8. All the mathematical equations involved in this study are highlighted in
the flowchart.
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There are uncertain factors that affect the stability of the VPP system due to the uncer-
tain nature of renewable energy generation, fluctuation in market prices, and varying load
demand. These three aspects are crucial in overcoming the barrier caused by these uncer-
tainties and can be managed by incorporating methods, viz., the Monte Carlo simulation
(MCS), robust optimization (RO), and auto-regressive integrated moving average (ARIMA)
probabilistic and possibilistic methods to name a few Ref. [44]. The focus on carrying out
the uncertainty aspect is out of scope for the current work, and it is left for future work.

4. Optimization Algorithm

The nature-inspired algorithms are the best way to solve the selected non-convex
type problems that come with lesser mathematical complexities and an efficient way to
ensure the reachability of a global optimum value. To carry out the intended optimization,
the MOBWO was selected over other algorithms due to its unique ability to overcome
the local optima trap. It offers numerous search agents to estimate the global optimum,
which is remarkable in this recently developed highly advanced optimization technique.
The two most important aspects of every optimization are exploration and exploitation.
Producing numerous offspring enhances the exploration of search space, followed by
omitting the unfeasible solutions to move toward the best possible solution. The resulting
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early convergence is certainly a trait of selected optimization which is missing in most of
the well-established nature-inspired techniques such as PSO and GA.

The system is initialized with a population of random spiders and searches for global
optima by updating the population. The BWO algorithm attempts to solve an objective
function by generating a mutation population (mute pop) and mutation variables (mute
vars) Ref. [45]. The BWO concept consists of terminologies in which the search agents in
the form of the widow are assumed to solve any specific problem in the same way that
the crossover and mutation operator does in GA, followed by the population of particles
in PSO.

4.1. Population Initialization

The array of the search agent is 1×Mvar and the dimensional value is Mvar in the
optimization problem expressed in Equation (26).

Searchagents = [k1, k2, k3 . . . kM var] (26)

where:

k1, k2 . . . km are the floating numbers in the form of variables.

A fitness search agent in the form of the widow is determined using the fitness function
M expressed in Equation (27).

Fitness = f (Searchagents) (27)

4.2. Procreation, Cannibalism, Mutation

The BWO algorithm starts with selecting the parents which is known as the procreate
stage. This step is very much necessary to start the exploration in the search area to avoid
the local optima trap. To reproduce in BWO algorithms, the array referred to α is created
and consists of random numbers which contain the offspring produced by Equation (28) in
which x1, x2 denote parents and O1, O2 refer to the offspring.

O1 = α× x1 + (1− α)× x2 and O2 = α× x2 + (1− α)× x1 (28)

where:
O1 and O2 are the offspring.
x1 and x2 are the parents.
α is the array matrix.
The process is repeated for MVar two times, in which duplication should be avoided to

enhance the accuracy of the fitness value among the pairs. The next step is the cannibalism
rate which ensures better performance for the exploitation and guarantees faster conver-
gence at the same time for BWO. Every operator corresponds to a contender solution to
the given problem. The mutation stage is considered to bring the balance between both
exploration and exploitation.

The performance of a BWO depends on its parameters such as reproduction rate (RP),
cannibalism rate (CR), mutation rate (MR), and, of course, the lower bound (LB) and upper
bound (UB). Appropriate selection of the controlling parameter, which is the cannibalism
operator, may ensure superior performance of the exploitation stage by disregarding the
unfitting individuals from the population, resulting in a lesser number of iterations to reach
the optimum solution. The flowchart of the proposed MOBWO algorithm is shown in
Figure 9 and an effort has been made to simplify the process of obtaining the optimum
value by minimizing the complications associated with this algorithm. The MOBWO is
carefully chosen to carry out the numerical analysis in this research as it is a recently
developed meta-heuristic technique with a unique ability to handle the multi-objective
problem with reduced complications, improved convergence characteristics, and better
computational efficiency. Every possible effort has been made while developing the code
to avoid local entrapment to reach the global optimum reasonably.
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5. Results

During the off-peak periods, the VPP obtains power from the energy market as a
purchaser when electricity prices are on the lower side; when prices are high, the VPP
trades electricity to the energy market. When electricity costs are cheaper, buying energy
from the wholesale market is more profitable than making electricity which is also an
attractive feature of CHP units. By enabling these units, the demand and supply gap can
be balanced with great ease, especially when the power from solar and wind units cannot
be extracted at night-time.

In this study, three cases have been considered to evaluate the feasibility of the virtual
power plant.

1. Case I: Single-objective scheduling for profit maximization.
2. Case II: Single-objective scheduling for emission minimization.
3. Case III: Multi-objective scheduling for profit/emission, i.e., maximization followed

by minimization.

To ensure security and continuity of power supply, the balance between load and
power generation must be synchronized. The large presence of renewables, especially
intermittent and highly volatile sources, i.e., solar and wind energy, makes this more
complex. The surplus power in the network can be utilized in peak times when the
electricity price is higher. This excess power can be stored in energy storage systems (ESSs),
viz., battery storage or electric vehicles, and can be made available as and when needed
through the VPP operator at a higher price that opens the option of attaining a higher
economic benefit, which is beneficial to all the participants involved in the VPP system.
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In the case of day-ahead scheduling, the electrical power balance for both Cases I and
II are presented on an hourly basis and shown in Figures 10 and 11. Power is represented on
the primary Y-axis which is on the left-hand side expressed in MW. To reduce the complexity,
the electricity price is plotted on the secondary Y-axis which is on the right-hand side and
is expressed in ($/MWhr).
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When the prices of electricity are low, the CHP units can be changed to a not committed
(NC) status as the acquisition of electricity from the electricity market is considered more
cost-effective and the VPP buys the electricity from the trading market. On the other hand,
when the electricity prices are high, it is not economical to purchase the power from the
wholesale market and in those instances, the VPP similarly trades power similar to any
other conventional power plant.

5.1. Scenario Generation

Two scenarios have been considered to examine the performance of the projected
technique. Scenario I is considered for day-ahead scheduling, followed by scenario II which
is 15-min scheduling. All the results obtained in Scenario I are based on hourly scheduling
and the performance is quite satisfactory and improved when compared with the other
different techniques.
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The numerical studies were carried out by using the multi-objective black widow
optimization (MOBWO) algorithm with a code developed with utmost care and keeping
in mind that the computation time should be as low as possible. In the BWO algorithm,
the number of search agents and iterations is assumed to be 100 and 200, respectively. The
behavior of the algorithm seems to be quite satisfactory, and it is capable of avoiding any
premature convergence as well as local entrapment which is one of the most unfortunate
traits of any nature-inspired algorithm. Along with BWO, other popular techniques, i.e.,
artificial bee colony (ABC) and ant colony optimization (ACO), are also selected to see their
performance and the obtained results are discussed in the subsequent section. The case
studies and scenario generation are executed and carried out in MATLAB software on a
DELL laptop with a processor having an Intel(R) Core (TM) i7-6600U CPU @ 2.60 GHz.

5.1.1. Scenario I (Day-ahead Scheduling)

For demonstration purposes, the program was developed for day-ahead scheduling
(DA), i.e., a 24-h period. The obtained results of the convergence for profit and emission
by the proposed method are discussed and displayed in Case I and Case II, respectively,
and compared with published results. In this paper, two scenarios are considered, i.e., day-
ahead (hourly-based scheduling), followed by a 15 min-based scheduling. All the numerical
results obtained from the proposed MOBWO algorithm in scenario I are compared with the
existing published results in which the MOPSO technique is used. For the selected problem
statement of the proposed system, only one relevant paper is reported in the literature, i.e.,
Ref. [22], to the best of our knowledge. Another comparison has been made, i.e., Ref. [46],
and the obtained value of net profit from the proposed technique was higher. Similarly, the
emission value was compared with Ref. [47] and found that the obtained values of both
net profit and emission in a single objective, as well as multi-objective optimal day-ahead
scheduling, are better in addition to the reduced computational time of the proposed
MOBWO algorithm over all the other control methods as evident in Tables 7 and 8 for each
case, respectively.

Table 7. Comparison of net profit with different techniques for Case I.

Output Ref. [46] MOPSO [22] ABC ACO Proposed
MOBWO

Maximum Profit ($) 19,737 23,302.8271 24,191.8221 24,950.7372 27,785.6723
Minimum Profit ($) - 22,600.1679 19,636.7483 20,190.8183 21,400.3254

Mean Profit ($) - 22,955.3462 21,914.2852 22,570.7776 24,592.9985

Computational time (Seconds) - 148.095
(For 20 runs)

139.3737
(For 100 runs)

135.4932
(For 100 runs)

123.058
(For 100 runs)

Table 8. Comparison of emissions with different techniques for Case II.

Output Ref. [47] MOPSO [22] ABC ACO Proposed
MOBWO

Minimum Emission (Kg) 56,270 64,432.3217 62,467.8291 61,346.4838 57,532.2738
Maximum Emission (Kg) 77,430 67,077.3937 72,383.7292 71.463.2612 67,342.3798

Mean Emission (Kg) - 66,070.1682 67,425.7792 66,404.8725 62,437.3268

Computational Time (Sec) - 171.4826
(For 20 runs)

153.4826
(For 100 runs)

131.3633
(For 100 runs)

81.3745
(For 100 runs)

Case I: The statistical results obtained after 100 independent runs from MOBWO
converge to an optimum value of 27,785.6723 $ which outperforms the existing value of
23,302.8271 $ obtained from multi-objective particle swarm optimization (MOPSO) Ref. [22].
Additionally, the numerical results for other techniques are mentioned in Table 7.

In Case I, the computational time for the proposed MOBWO of 123.0548 (for 100 runs)
is less when compared with the multi-objective particle swarm optimization (MOPSO)
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of 148.0945 (for 20 runs). The convergence curve of the proposed algorithm for Case
I is presented in Figure 12 and it is evident that the proposed technique produces the
optimum value.
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Case II: On the other hand, in Case II, the purpose is to reduce emissions and the level
of emission is reduced significantly by a considerable margin. The unit of the emission is in
Kg and it is the combination of three emission factors, namely, NOX, CO2, and SO2. The
statistical results obtained after 100 independent runs from MOBWO are shown in Table 8
as converging to an optimum value of 57,532.2738 Kg which outperforms the existing value
of 64,432.3217 Kg obtained from MOPSO Ref. [22]. In Case II, the computational time for
the proposed MOBWO is 81.3745 (for 100 runs), much less when compared with 171.4826
(for 20 runs) from MOPSO. In addition, the convergence characteristics of the proposed
algorithm for Case II are shown in Figure 13.
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Computation time plays a significant role in selecting a suitable optimization technique
which is usually problem specific. Cumulative factors are involved in solving real-world
problems, i.e., selection of parameters, constraints handling, computation time, etc. Based
on any particular optimization technique, these factors vary to some extent and the best
trade-off is selected for the chosen technique. The nature-inspired algorithms are the
best way to solve these non-convex type problems and come with lesser mathematical
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complexities and an efficient way to reach a global optimum value. Black widow opti-
mization (BWO) is selected to carry out the numerical analysis in this research as it is
a recently developed meta-heuristic technique and it has a unique ability to handle the
multi-objective problem with reduced complications, improved convergence characteristics,
and better computational efficiency. The cases which have been considered for single, as
well as multi-objective, are compared with PSO and the resulting computation time is better
with BWO.

Case III: The multi-objective optimal scheduling is carried out and the convergence of
both objectives is displayed together in Figure 14, followed by Figures 15 and 16 with other
techniques. It is worth mentioning that including emission as an objective function has
an immense effect on the overall working of the system since the CHP unit is considered
one of the resources. Here, the peak valley electricity pricing is considered which is very
essential in the peak load shifting to enhance the economic benefit. For every time period,
the sale and purchase prices are given in Table 9. The effect of this pricing scheme on the
operating costs has been given proper consideration in this paper.
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Table 9. Comparison of emissions with different techniques.

Period Detail Time (Hr.) Purchase Price
($/MWh)

Sale Price
($/MWh)

Peak 9,12,17,22 0.0079 0.0044
Intermediate 13,16 0.0070 0.0035

Valley 1,8,23,24 0.0062 0.0026

A comparison of the statistical analysis is also presented in Table 10 and obtained after
100 independent runs. It can be observed that by adopting the peak valley power pricing
concept in this paper, better compromise solutions are given which show enhancement in
the performance and behavior of the price-based-MOBWO algorithm.

Table 10. Comparison of multi-objective with published and proposed techniques.

Objective
Functions Profit ($) Emissions (Kg)

Parameters MOPSO [22] ABC ACO MOBWO MOPSO [22] ABC ACO MOBWO

MaxFprofit 23,302.83 24,286.82 25,183.74 26,167.78 122,963.46 119,789.29 119,432.37 116,400.85
MinFemission 9883.69 10,320.38 11,723.47 11,808.47 64,432.32 62,467.83 61,346.48 58,785.34

The main purpose of obtaining the Pareto graph is to provide the VPP operator a
chance to select a trade-off solution that is in line with the environmental restrictions
and satisfies the economic constraints at the same time. To this end, Case III has been
implemented with multi-objective scheduling and obtaining the Pareto optimal solutions,
respectively, as shown in Figure 17.

In the existing program, a pricing strategy was also incorporated to see the behavior
of the convergence obtained from the proposed MOBWO. The code was developed very
carefully, and the program was run for multiple trials. All the displayed results were
obtained after running the program for 100 trials to ensure the precision of the algorithm.
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5.1.2. Scenario II (15-min Interval Scheduling)

For further analysis, scenario II is presented in which the type of scheduling is trans-
formed to a 15-min basis and the available data are extrapolated for carrying out the
real-time analysis. The overall power balance in the case of a 15 min schedule for a one-day
profile, is represented in Figures 18 and 19, and the unit of time is taken in hours. All the
associated resources are represented in a vertical bar and the electricity price is projected
on the right-hand side of the secondary Y-axis.
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Likewise, in scenario II, i.e., 15-min scheduling, the proposed scenario has no compari-
son available in the existing literature. The pay-off table is mentioned below, and it can be
observed that the results are quite reasonable in real-time scheduling, especially in terms of
profit as compared to the day-ahead scheduling which can be seen in Table 11, followed by
Figures 20–22 obtained by ABC, ACO, and MOBWO after 100 independent trials.

Table 11. The pay-off table for the proposed MOBWO (15-min scheduling).

Objective
Functions Profit ($) Emissions (Kg)

Parameters ABC ACO MOBWO ABC ACO MOBWO

MaxFprofit 27,392.5631 26,312.3523 28,415.3525 120,913.4532 120,325.463 119,843.4532
MinFemission 10,404.7262 11,123.4253 11,929.7262 56,402.4216 57,342.4235 59,921.3248
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Figure 23 shows the Pareto graph for scenario II, the 15-min scheduling. In generating
the graph, the operator of the VPP can select an appropriate solution that deals with the
possibilities of both technical constraints as well as the related economical limitations.
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Marcos Tostado-Veliz et al. Ref. [48] proposed a MILP optimization framework that is
segmented into two parts, i.e., based on historical consumption, the most suitable tariff is
determined followed by the optimal hours which are referred to as ‘Happy hours’ tariff
plans. Three different tariffs are discussed, viz., the fixed tariff, time-variable tariff, and
happy hours tariff. The Spanish retail market is considered for the developed framework
case study in which the price of selling electricity is set to zero during the happy hours time
to avert any unrealistic transactions among the home and utility grid. In a deregulated
electricity market, a framework for the decision for tariff selection is presented along with
some useful results in which the Happy hours, i.e., 7:00–8:00 a.m., are stressed.

To balance the price volatility, scheduling strategies play a vital role. They are catego-
rized as day-ahead scheduling, for a 24 h profile, and 15 min schedule. Merits of day-ahead
scheduling are highlighted:

(a) Buying and selling of electricity one day before the following day.
(b) The VPP acts as a price taker in the day-ahead market.
(c) Ease of unit commitment and power dispatching.

The advantages of the 15-minute scheduling are mentioned below:

(a) This scheduling helps to determine the imbalance in settlement prices.
(b) Offers the purchase and selling of electricity during the functioning day.
(c) Real-time scheduling stabilizes the differences between day-ahead and real-time

demand and production of electricity.
(d) Operating systems that work in real-time can execute quickly without any delay,

resulting in a nearly immediate output.

For a practical case, real-time scheduling (a few seconds to 5-min intervals) is prefer-
able due to its inherent characteristics of reliability and performance-orientation, and the
requirement of only minimal, latest, and most relevant data followed by a rapid response
for given circumstances.

The proposed approach is more suitable for advancing the existing system by adding
a few more resources that can act as a spinning reserve, i.e., an energy storage system,
and ensure the continuity of electricity supply in case of any power deficit. The capacity
of the power supply system considered in the current VPP system is 10.48 MW. Since
the main concept of a VPP is that it is not restricted by any geographical location, it is
always connected to the grid which is not the case when discussing a Microgrid that can be
islanded and constrained in a confined region of operation. The selected VPP system under
study is assumed to be a national power system.

The multi-objective optimal scheduling of VPP considering various renewable re-
sources has been solved using the weighting factor method to simultaneously maximize
profit and minimize emission. Peak valley’s power pricing (PVPP) strategy is introduced in
the multi-objective optimal scheduling of the VPP problem. Moreover, a new price based
MOBWO is presented and implemented, satisfying all the related constraints. For both
scenarios I and II, Pareto optimal solutions are obtained specifically for the multi-objective
optimal scheduling of the VPP problem for maximization of profit along with minimization
of emissions. The statistical results for all three cases show the effectiveness and suitability
of the proposed approach and are compared with various other techniques along with the
published results.

6. Conclusions

The optimal scheduling of a VPP consisting of various resources is carried out and
the performance of the BWO algorithm shows superiority in terms of the numerical results
obtained. It can be inferred that taking emission as an objective function leads to a con-
siderable reduction in the amount of day-ahead emission. In scenario I, the net profit for
hourly-based scheduling leads to 26,167.7823 ($), followed by the daily emission which
is 116,400.8473 (Kg). Although, when the same process is followed for scenario II, which
is a 15-min interval, the numerical results are reasonably better, i.e., net profit leads to
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28,415.3525 ($). However, in the case of emission, there is no significant improvement as
the obtained value is 119,843.4532 (Kg). The single objective scheduling is performed for
both net profits along with emission as an objective function, followed by multi-objective
scheduling; Pareto optimal solutions are presented for both scenarios. Statistical analysis
was performed for both single and multi-objective scheduling of the VPP problem. Optimal
scheduling of the selected VPP problem was performed with three different techniques,
i.e., ABC, ACO, and MOBWO, and it was observed that the developed MOBWO algorithm
performance was superior in terms of reduction in computation time as well as the ability
to escape from local entrapment by reaching a global optimum.

In the future, more resources such as hydro, thermal, or a combination of hydro-
thermal will be incorporated into the VPP system. It will be very interesting to see how the
performance of the system and the aspect of the reliability index will be explored. Similarly,
adding some specific pricing and bidding strategies along with exploring the impact of
market constraints on effective analysis is anticipated in a forthcoming study.
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Nomenclature
All the abbreviations used in the manuscript are listed:

TPP Traditional power plant
DERs Distributed energy resources
VPP Virtual power plant
MOBWO Multi-objective black widow optimization
MOOS Multi-objective optimal scheduling
MOSS Multi-objective scheduling strategy
SP Spot pricing
TOU Time of use
EVs Electric vehicles
ES Energy storage
RERs Renewable energy resources
ICT Information communication technology
IRP Integrated resource planning
P2P Peer to peer
NM Net metering
BTM Behind the meter
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PSO Particle swarm optimization
GA Genetic algorithm
DR Demand response
V2H Vehicle to home
BSS Battery storage system
CEM Consecutive energy management
SOC State of charge
TNPC Total net present cost
UC Unit commitment
SC Soft computing
PV Photovoltaics
WT Wind turbine
FC Fuel cells
CHP Combined heat and power
EL Electric load
EM Energy market
PLR Part load ratios
FOR Feasible regions of operation
PDF Probability distribution function
FF Fill factor
ACO Ant colony optimization
ABC Artificial bee colony
ANN Artificial neural network
CR Cannibalism rate
MR Mutation rate
RP Reproduction rate
PVPP Peak valley power pricing
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