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Abstract: The emergence of large photovoltaic farms poses a new challenge for quick and economic
diagnostics of such installations. This article presents this issue starting from a quantitative analysis of
the impact of panel defects, faulty installation, and lack of farm maintenance on electricity production.
We propose a low-cost and efficient method for photovoltaic (PV) plant quality surveillance that
combines technologies such as an unmanned aerial vehicle (UAV), thermal imaging, and machine
learning so that systematic inspection of a PV farm can be performed frequently. Most emphasis is
placed on using deep neural networks to analyze thermographic images. We show how the use of the
YOLO network makes it possible to develop a tool that performs the analysis of the image material
already during the flyby.

Keywords: renewable sources; solar energy; photovoltaic modules inspection; artificial intelligence

1. Introduction

The rapid growth of the capacity to generate electricity from renewable technologies
observed in recent years can be further accelerated by the challenges set by a recent political
situation. Renewable capacity growth between 2021 and 2026 is expected to be 50% higher
than between 2015 and 2020, driven by the greater government policy support and more
ambitious clean energy targets [1]. Global renewable electricity capacity is projected to
increase by more than 60% by 2026 compared to 2020 levels, equivalent to the current
combined fossil fuel and nuclear capacity, reaching more than 4.8 GW. Renewable sources
are expected to account for nearly 95% of global capacity growth by 2026. Solar photovoltaic
(PV) installations alone are expected to contribute to more than half of that growth. In
many countries, the general trend is to develop larger installations with power reaching
several tens or even hundreds of megawatts.

Although it may seem strange, many PV farm operators show little concern in quickly
detecting problems in the installation operation and even in immediately repairing the
faults detected. This results from the economic balance sheet, which shows that the potential
loss of profit due to the reduced energy production is lower than the costs of monitoring
and repair [2] (pp. 60–62). However, even the authors of the mentioned report state that
ignoring defects is not a viable solution in the long term. In the next section of this paper,
we will report experiments showing that even a temporary deterioration of the operating
conditions of a cell by only partial shading results in measurable losses which grow if the
problem is more severe. This section is aimed to convince the reader that neglecting the
problems of vegetation or partial failures of some modules can quickly lead to serious
deterioration of the whole plant. Only systematic and precise detection and localization
of defects in PV modules can ensure the proper service life and efficient production of
electricity, and thus the reliable operation of entire installations at a reasonable cost [3,4].

Operators of larger photovoltaic plants face a new challenge in ensuring the proper
operation of a facility that often exceeds 100 hectares. They have to answer the question
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of whether to invest sufficient resources for systematic inspection to detect problems such
as module damage or malfunctions caused by vegetation growth or to accept lower plant
efficiency. The problem of monitoring module quality also applies to small domestic
installations. Although they are not significant in terms of territory, they are usually located
in places that are difficult to access, and the budget allocated by the owner for servicing the
installation is usually very limited. The work of Hong and Pula [5] is a broad overview
and attempt to categorize methods for testing defects in PV modules, including different
data acquisition methods: visual method, thermal method, and electrical method. The
conventional methods of identification and localization of failures are based on electrical
measurements [4] and can be theoretically used for remote supervision of the system.
However, for a large farm, this approach requires a tremendous extension of the sensing
and communication infrastructure. Thus, the quest for cheaper approaches is still ongoing.

Malfunctions of a photovoltaic installation caused by faulty modules or electronic
components or just shading of installation parts can be easily and quickly detected by
analyzing images taken with a thermal imaging camera. In the case of installations that are
difficult to access or extensive, such images are best taken with the help of an unmanned
aerial vehicle (UAV) which can be controlled manually or appropriately programmed based
on a map of the installation (see Figure 1). In the latter case, the flight over the farm is
performed completely automatically based on GPS coordinates. Each image on top of the
visible image and thermal data also contains a fairly precise location and information about
the camera’s position, which allows locating the damage detected in the image on a map of
the installation.

Figure 1. Two exemplary routes of the UAV, with images taken on the spots marked with the orange
dots. Note that in the case shown on the left, the drone was programmed based on the non-actual
Google Maps, where the farm was not visible. Thus, a large part of the photos was useless. The right
inset shows the route controlled manually, and thus it is much less regular.

As a result of flying over a large farm, a considerable amount of photographic material
is produced: the authors’ experience shows that per 1 MW there are 600–700 thermographic
images (in resolution 640 × 512), and the total amount of data exceeds 5 GB (the camera
usually also takes regular pictures in a higher resolution).

Flying over the farm and collecting the material is just the tip of the iceberg of the data
processing task. If we rely on humans, it will take about 2 days of work for an experienced
expert to review several hundred images and mark the detected problems. These estimates
clearly show that without proper process automation, the diagnosis of a large farm would
not be cheap.
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Several methods have already been proposed to address this issue. While older works
used human expertise [6] and digital signal processing [7–11] or parametric models of a PV
module [12], the recent research trends tend to use a variety of machine learning tools such
as traditional artificial neural networks [13–15] and support vector machines [16–18]. The
introduction of deep neural networks has substantially changed the quality of automatic
detection. Most recent works present applications of different deep (convolutional) neural
networks (DNN or CNN) to the problem of automated evaluation of solar facilities. The
actual review of almost 180 related papers can be found in [19]. The approaches are
classified into two groups: algorithms based on digital image processing (DIP) and deep
learning (DL) approaches. In both groups, we can find methods whose claimed accuracy
reaches 100% [20,21]. However, according to the authors of this work, such results should
be approached with great skepticism due to the huge variability of the data that such
algorithms process. This variability is due to the different conditions under which the
images can be taken, the variability of the equipment and its settings, and the qualifications
of the UAV operator. Of course, we do not deny that the presented algorithms may achieve
100% accuracy on the data used in their preparation process (for example, deep learning).
Still, this high accuracy on training data suggests that such an algorithm will achieve very
good results when processing new data, as long as they are similar.

The goal of the authors is to develop a method that would provide high accuracy,
defined as the ability to find more than 95 percent of defects, and at the same time would be
fast enough to work in real time (meaning defects should be located on the fly) and could
be used as both a desktop application and a web service. The second usage may be limited
by the Internet connection quality at the controlled farm.

In this paper, an adaptation of You Only Look Once (YOLO) [22–24] deep convo-
lutional neural network to automate the process of the detection and localization of the
defects is discussed. The content is organized as follows: the next section briefly reviews
selected problems that can occur in a photovoltaic system. The review focuses on pre-
senting the measurable impact of a defect or incorrect installation on panel performance.
It is then shown how these defects are visible in thermographic images, followed by a
discussion of how to prepare the data used to train the CNN, which will be able to detect
the defects. In the authors’ opinion, an appropriate dataset is currently the key to the
successful application of CNNs. We will not describe the algorithm and methods used for
object detection here. This work has already been conveyed elsewhere [23,25,26] and based
on these reviews, the choice of one of the last versions of YOLO seems obvious. Nowadays,
it is the fastest and yet most accurate DNN for object detection. However, the YOLO
network was originally designed and trained on classical (visual) images, and adaptation
to photovoltaic-oriented thermography requires additional data that are prepared and
selected for this task. In the final section of this paper, we will show how the preparation of
thermographic data affects the results of defect detection and classification. Four “recent”
versions of the YOLO framework have been presented in the last three years [23,27–29]. We
have chosen YOLOv4 here for two reasons. Firstly, it is the most mature yet sufficiently
fast (the processing of a thermal image is an order faster than the preparation of this image
from raw sensor data) and has reasonable accuracy (this accuracy is affected far stronger by
the training dataset than by the YOLO version). It has been implemented in C++ and can
be incorporated into the detection system as a dynamically loaded library, which seriously
influences the system’s overall speed. The latest versions of YOLO are reported to run
much faster, but the authors’ experience shows that the latest version of DNN software may
not be as stable as the mature one. Considering that the last two versions were released in
the last two months, we opted for the version we tested longer.

It has been shown [30] that carefully designed and properly trained DNN can model
complex non-linear relationships. Since the beginning of the deep learning revolution, they
have been successfully applied to problems of object detection [31–33]. In particular, the
YOLO deep convolutional neural network was applied to detect defects in PV [34–36]. The
novelty of this work lies firstly in using a newer version of YOLO (YOLOv4), which is
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considered better in terms of speed and accuracy, and secondly in a deeper analysis of the
impact of data preparation on detection results.

2. Selected Problems of PV Installations
2.1. Technical Description of PV Modules

The correctness of the operation of the photovoltaic system is the main factor that
primarily affects the efficiency and profitability of the investment and, consequently, the
return-on-investment time, which should be as short as possible. One of the first systems to
detect improper installation operating parameters is the inverter itself. Still, many faults are
impossible to identify even by the inverter. The basic method of detecting module damage
is to perform current–voltage characteristics, commonly known as the I–V curve. Based on
it, it is possible to determine precisely what problems in the operation of a photovoltaic
system are caused.

The typical I–V curve of a properly operating module is summarized in Table 1.
Besides the characteristics, the important parameters of the module are:

Pmax—the maximal output power [W];

Vmpp—output voltage at maximal power [V];

Impp—current at maximal power [A];

NOCT—standard temperature at nominal conditions [◦C];

α—temperature coefficient of Isc [%];

β—temperature coefficient of Voc [%];

γ—temperature coefficient of power [%].

To standardize and enable the comparison of the PV modules’ performance, it was
necessary to standardize the measurement conditions. It has been achieved by establishing
the benchmark (laboratory) conditions for measuring the parameters of PV modules, the so-
called Standard Test Conditions (STC): insolation (irradiance) of 1000 [W/m2], PV module
temperature 25 ◦C, and air mas factor of 1.5. STC is an industrial standard.

Table 1. Typical current–voltage characteristics of a properly functioning PV module.

Name Symbol Unit Value STC

Output power P [W] 370 375 380 385 390

Output voltage Vmp [V] 34.11 34.41 34.71 35.00 35.30

Output current Imp [A] 10.85 10.90 10.95 11 11.05

Open circuit voltage Voc [V] 41.85 42.15 42.50 42.79 43

Short-circuit current Isc [A] 11.37 11.42 11.47 11.52 11.57

Performance [%] 20.31 20.59 20.86 21.13 21.41
γ = −0.35 (%/◦C), β = −0.29 (%/◦C), α = +0.048 (%/◦C).

2.2. Experimental Evaluation of the Impact of Problems on PV Module Operation

All measurements for this work were made on the existing photovoltaic system, shown
in Figure 2. This system was designed and constructed with four photovoltaic modules
of various models and types facing south and set at an angle of 35 degrees to the ground.
The whole system is managed by a Hoymiles HM-1500 single-phase inverter. Thanks to
this solution, it is possible to combine different photovoltaic modules into one system
without worrying about the current–voltage mismatch. The system has been in operation
for about two years now, thanks to which it is possible to observe a slight decrease in
module efficiency associated with silicon cell degradation. The measurements took place in
stable and cloudless weather at an air temperature oscillating around 30 ◦C in the sun, with
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winds of negligible strength. To better illustrate the problems occurring during operation,
one module was selected for the test—LG brand LG366N1C-N5, shown in the foreground
of Figure 2. The PV module’s construction and orientation are shown on the right inset
of Figure 2. The bypass diodes are located on the top of the module. This remark will be
necessary when we begin to analyze the shading of a large part of the module. Plots of the
nominal I–V curves are presented in Figures 3–9.

Figure 2. The PV system prepared for measurements. The tested module (LG366N1C-N5) is visible
in the foreground (left inset). The orientation of the module is presented on the (right inset), which
additionally explains the purpose of bypass diodes.

The development of photovoltaics has been accompanied by the rapid development of
the necessary diagnostic instruments. Most manufacturers of measurement equipment for
the electrical industry offer devices for measuring photovoltaic installations. Companies
such as Benning, Fluke, Metrel, HT Instruments, and Sonel have such instruments in their
offerings. For this study, the Benning PV2 instrument was used along with the Benning
Sun 2 attachment. In addition to the main measuring device, an important component of
the system is the Sun2 attachment, whose most important functions are the measurement
of sunlight intensity, air temperature, and PV module surface temperature. The attachment
is equipped with an inclinometer for determining the angle of the PV module to the
horizontal and a compass for determining the module’s azimuth. All these data are sent
to the measurement module, where they are analyzed and included in the measurement
results on an ongoing basis, presented graphically, and stored in the device’s memory.

Figure 3 shows the current–voltage characteristics of a module illuminated correctly
and without shading. However, it can be noted that the voltage and power values are
different compared to nominal. This is due to several reasons [2]. The nominal characteristic
is shown in a graph created for a new module operating under STC conditions; in the
test case, we are dealing with a module that is already two years old and, therefore,
partially degraded. An additional factor affecting the lower voltage operation is the high
surface temperature of the module, which translates into a decrease in its voltage. The
abovementioned factors are completely normal, and such modules are considered efficient.

Figure 4 very clearly shows how the installation can be negatively affected even by
a single relatively minor shading caused, for example, by a stuck leaf or accumulated
bird droppings. The module’s power has dropped from a nominal value of 365 W to
198 W. To protect the module from the possible hotspot issue that is very dangerous in this
case, bypass diodes are used, thus protecting the module and the entire installation from
the possibility of damage to the module or even the occurrence of a fire. Comparing the
nominal and measured power, we see the situation shown on the right inset of Figure 2.



Energies 2022, 15, 5966 6 of 21

Figure 3. Measured characteristics of the module shown in Figure 2 compared to the nominal one.
The age-caused deterioration of the performance is clearly visible.

Figure 4. Shading with a piece of paper of a single cell in a controlled PV module (left, next to the
module, the Benning SUN2 attachment is visible) and the I–V curve of the whole module (right inset).

Figure 5 presents the negative impact of shading by vegetation on system performance.
This problem is often underestimated by owners of installations and can significantly affect
the energy yield. In the case simulated above, the module’s power output dropped by more
than 45% from 365 W to 199 W. In the case of a larger, not optimized system, consisting of a
string of modules connected in series, losses of one module will translate proportionally
into losses of the whole chain and thus will be very significant.

Figure 5. Shading PV module with a simple model of vegetation (left inset) and the I–V curve of the
whole module (right inset).
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In the case of backyard installations, another concern is the impact of relatively small
equipment mounted as standard on roofs on installation efficiency. Vent stacks, elements of
antenna lashings, ladders, spires of lightning protection systems, etc., cause a phenomenon
referred to in industry parlance as “traveling shadows” due to their movement with the
sun’s path in the sky. An additional difficulty in assessing this type of shadow on a system
is that its location changes depending on the year’s season and during the day. To eliminate
the negative impact of the above devices on the PV system, it becomes necessary to use
professional software that simulates shading areas on the system model. Only based on the
analysis of such simulation results is it possible to determine how much negative impact
on the system’s operation a particular device has so that an appropriate decision can be
made. It may often be better to reduce the system by one module than place it in a shaded
area, which will translate into a reduction in the efficiency of the entire installation.

The top row of Figure 6 shows one of the worst possible shading cases. As can be
seen on the I–V curve plot presented in the top-right inset Figure 6, covering the entire
strip of cells in a module installed vertically, we can see a substantial loss of power: nearly
75%. In practice, such phenomena can occur in a case where sliding snow or a layer of
dirt accumulates in the module’s lower part along its frame. This study tested traditional
modules consisting of 60 cells to demonstrate the importance of the module’s correct
orientation and inclination. Especially for small installations, horizontal mounting is a
common mistake. With today’s 120-cell module (Half-Cut) technology, it is no longer as
troublesome and loss-carrying as was the case with the older 60-cell modules.

In the top-left photograph in Figure 6, we see a 60-cell module, where green fabric
obscured the lower strip of the module, covering one row of cells. Such a situation often
occurs when dealing with sliding snow or vegetation (grass) growing along the lower edge
of the panels installed near the ground. Obscured in this way, the module practically stops
working altogether, all bypass diodes are activated, and the module’s generation drops to
near zero.

Figure 6. Shading of the entire row of cells as by growing vegetation or snow. The top row of the
insets shows the operation of all bypass diodes (compare it to the right inset of Figure 2). The bottom
row shows a simulated installation with bypass diodes on the side of the module.
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The bottom row of Figure 6 shows the characteristics of the PV module shaded along
the side edge. We can imagine that such a module is installed in a horizontal position. In
such a case, if the sliding snow obscured its entire edge, only one bypass diode would
operate, resulting in losses of 30–35%, which is far more favorable than vertical installation.
As already mentioned, Half-Cut modules have significantly reduced the negative impact
of obscuring the bottom edge of the cells on the operation of modules installed vertically.
However, horizontal mounting is still far more advantageous and justifiable.

2.3. Effect of Shading on Module Strings

To complete the overall picture of research on losses resulting from shading, one
must mention the impact of these phenomena on an installation consisting of multiple
modules connected in series in a chain. Suppose the installation consists of more than
one module, and the modules are done with different technologies. In that case, the effect
of the shadow may have a different effect on the operation and behavior of the entire
group of modules than on a single module. Consequently, the measurement result will
be presented differently on the measuring equipment. We will demonstrate this using
the existing ground system, constructed of 12 Chaser M6/120P (Half-Cut) photovoltaic
modules of 380 W peak power each. All modules are connected in series into a single chain,
oriented centrally to the south, and set at an angle of 35 degrees to the ground. Conditions
during the tests were favorable, the weather stable and sunny. Radiant intensities ranged
from 990–1010 W/m2. The air temperature was about 26 degrees Celsius in the sun, and
the temperature of the PV modules ranged from 44–46 degrees Celsius.

We will not describe experiments analogous to those shown in Figure 5 with the
shading of the installation by vegetation and small details. As a result, we found that
minor shading has little effect on the efficiency of the installation, reducing its output by
significantly less than 10%. Here we present only the setups which caused more substantial
drops in the system performance.

Figure 7 shows the effect of covering a small section of the module on string perfor-
mance. Moreover, in this case, only a small (about 9%) degradation of the performance is
observed, favoring modules with Half-Cut technology.

Figure 7. Shading of a small part of the installation (left inset) and the measured characteristic of the
string (right inset).

As expected, covering half of the module has a stronger impact on the installation
performance. This case is documented in Figure 8 (top row). We can see that the peak
power drops from 4.59 kW to 3.97 kW. More interesting is that blacking out the entire
module produces similar (or even slightly weaker) effects—see the bottom row of Figure 8.
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Figure 8. Impact of shading of half of the module on the characteristic of the string (top row) and
shading of the whole module on the characteristic of the string (bottom row).

The most significant impact on the performance of the installation can be observed
in the case of shading or covering the entire lower part of the string. Such a situation is
presented in Figure 9. The installation still produces 2.4 kW, about half of its maximum
output. In the case of standard 60-cell modules, such a situation could shut down the
maximum power point tracking module of the inverter [37] due to a too-low chain voltage.
Half-Cut modules, however, handle this type of problem quite efficiently.

Figure 9. Impact of covering of the installation’s lower part on the string’s characteristic.

3. Defects on Thermal Images

Thermography or infrared (IR or IRT) imaging is a non-destructive measurement
technique that provides rapid, real-time imaging of PV module operation. It can be a non-
contact method for diagnosing defects and problems in PV modules. For precise detection
of defects, thermography can be performed under artificial illumination of the PV module
and temperature distribution under different load conditions, such as short-circuited and
open. However, this is an impractical approach for large installations or even small but
usually difficult to access backyard systems. Luckily, thermography can also be performed
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during regular operation of the PV facility as an airborne scan of large systems built from
many PV modules.

As already mentioned, this paper is focused on a low-cost and fast diagnostic method
that will also, but not only, be practical for large, extensive, and not necessarily easily
accessible installations. For this reason, we are interested in a method that will allow us to
test the operation of modules under virtually any reasonable conditions. This necessitates
advanced thermal image processing to minimize the impact of atmospheric conditions and
uneven sunlight on the diagnostic result.

The international standard IEC TS 62446-3 [38] specifies the minimum requirements
for thermal imaging cameras that can be used to inspect PV installations and also indirectly
defines the correct way to take measurements by specifying the minimum resolution of the
images (one pixel must image no more than 3 cm of the module edge). According to the
standard, the thermographic inspection has to be executed under stable radiation of at least
600 W/m2 and weather conditions: a cloud coverage should not exceed 2/8 Cumulus and
maximal 4 Beaufort wind. After short-term radiation or load changes (>10% per minute),
a settling time of at least 10 min should be kept before proceeding with the inspection.
However, even taking radiometric images following the recommendations of this standard
does not guarantee that they will look the same for diverse farms and under different
conditions for performing the fly-over.

According to IEC TS 62446-3, aerial infrared thermography can reveal nine kinds of
problems: overheated conductor strips, overheated cells, broken front glass of the module,
overheated junction boxes, short circuits in string and substrings, disconnected string and
substrings, and partial shading of modules. These problems are represented in IRT imagery
by characteristic patterns; some are shown in Table 2. In the authors’ opinion, the most
important function of this table is to draw the reader’s attention to the fact that the image
presented on the camera’s display and stored on the memory card is just one of many
possible representations of the registered temperatures. Depending on the temperature
scale, color palette, and filters used, the same temperature can be depicted differently, and
characteristic patterns of defects can be highlighted or blurred. To emphasize this remark
in Figure 10, the DJI camera image used to create the third and fourth rows in Table 2 is
compared to the temperature distribution extracted from the picture metadata.

Figure 10. Example infrared image created with DJI Zenmuse XT2 (left, note that the vertical
axis of the image is pointing downward), and temperature distribution extracted from the image
metadata (right).

It is much easier for a human expert to evaluate images such as the one shown in
the right inset of Figure 10. Together with image rotation and scaling tools, this allows
precise evaluation of the area of each panel or string as a whole. Even small hotspots are
visible as peaks, and the temperature scale makes it easy to assess temperature differences.
However, it would be too expensive to manually evaluate several hundred or thousand of
such images.
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Table 2. Examples of IRT images of typical problems in PV installations.

Description Temperature + [◦C]
Visualizations *

Grayscale RainbowHC + CLAHE †

Disconnected
substring

Hotspot (over-
heated cell)

Short circuit

Another short
circuit

Partial shadow
(vegetation)

+ These columns show distribution of temperature on the surface of the selected PV module; * these columns
show visualizations of the temperature with different color palettes; † in this column, the Rainbow High Contrast
(RainbowHC, RHC) palette [39] together with contrast limited adaptive histogram equalization (CLAHE) [40]
was used.

The signatures of defects of the same kind are not always clear. Comparing the third
and fourth rows of Table 2, we can spot the difference, yet the origin of defects is identical
and so should be their classification. The problem becomes more evident when comparing
the last row of the table with a similar but bad-quality image of partial shadow shown in
Figure 11. It can be said that such images do not comply with the standard because the
image resolution is too low, and the 5 × 5 pixel limit for a single cell is not met. However, if
we target a web-based system supporting farm inspections, dealing with poorly prepared
data would also be a great advantage. Thus we do not exclude low-quality data from the
learning dataset.

Figure 11. Bad quality image of a partially shaded PV module. From left to right: temperature
distribution, grayscale image, RHC image, RHC + CLAHE image.
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4. Automated Detection and Localization of Defects
The DNN

Deep Neural Networks (DNNs) have significantly popularized and dominated ma-
chine learning among data scientists and industrial applications over the past decade [41].
DNNs have found application in natural language processing, data generation (both text
and images), data classification, and pattern detection. The authors study the latter example.

DNNs are neural networks consisting of more than three layers (input layer, many
hidden layers, and output layer). The use of a neural network can be divided into two
phases: the training phase and the use of a trained network. The network training phase
requires prior preparation of training data and test data, which (in the case of DNN for
detection) are pairs of files: a graphic file and a text file consisting of data describing each
bounding box on a separate line. During the training phase, the numbers returned by the
trained DNN are compared with the known (expected) values. Based on these results, the
current DNN score is calculated, which affects the automatic update of the weights and
other parameters for the next iteration of DNN training.

After completing the training, the next step is using the trained network. In that case,
the input data are only image files (without additional text files), and the result from the
last (output) layer is data of detected objects (described by bounding box coordinates).

The types of DNN that are best suited for detection purposes are convolutional neural
networks (CNN). Their characteristic structural elements are convolutional layers, mainly
responsible for extracting features from the input images. It can be assumed that a network
consisting of many (not only) convolutional layers might be a better detector of the features
of more complex objects (classes).

A particular example of CNN is the structure of the YOLO neural network model.
This CNN was presented initially in 2015 [22] as an example of a real-time (30 frames per
second or more) object detection neural network model. YOLO is a one-stage detector,
which results in faster performance (unfortunately at the cost of less accuracy) because
both bounding box regression and object classification are performed without earlier pre-
generated region proposals (candidate object bounding boxes).

Each input image is divided into grid cells. YOLO estimates whether it contains a
specific object (class) or not for each of those cells. For example, if the input image is
640 × 512 and the input layer is 416 × 416, then the image must be resized to the network
input layer. After that, the image is split into 361 (19 × 19) grid cells of 21 × 21 size, and for
each cell, YOLO estimates if it contains the specific object (the central point of that object)
or not.

The mechanism for dealing with a situation where more than one object may be
detected in a given cell is the idea of anchor boxes, i.e., predefined shapes of boxes with
which YOLO tries to predict the localization of objects (classes).

It is quite possible, that several (more than one) anchor boxes in one of the cells will
detect the same object. To minimize the risks of redundant object detection, YOLO uses
a non-maximum suppression mechanism (NMS) to reject those bounding boxes which
have a common part with others. Still, their predictions are less accurate (with a lower
prediction value).

YOLO neural network model consists of several elements such as an input (which
gets data in batches, e.g., 16 images simultaneously, to increase the efficiency of calcu-
lations), backbone, and neck parts responsible for features extraction and aggregation,
respectively, and a head part, of which the aim is to make a prediction (object localization
and classification) based on the extracted features.

In the current research, the authors decided to use the YOLO implementation in
version 4 [23], which is considered state of the art. In comparison to earlier versions, the
following has been added:

• Bag of freebies (including, among others: mosaic data augmentation, self-adversarial
training, drop-block);
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• Bag of specials (including, among others: mish activation function [42] (which is
more advanced and complicated than popular ReLU or Leaky ReLU) and Distance
IoU NMS.

These additional extensions positively affect the prediction accuracy with minimal
loss on the computing performance (compared to YOLOv3 [43], YOLOv4 improved mean
average precision (mAP) [44] by 10%). From our point of view, the additional advantage
of YOLOv4 is that it is implemented in C++, and it can be effortlessly incorporated into a
larger system as a dynamically loaded library, allowing for the memory-based pipeline for
image processing. Building a system based on the newer versions of YOLO (v5, v6, or v7),
which are naturally implemented in Python, is much more complicated.

5. Preprocessing of Thermal Data
5.1. The Dataset

The dataset used in the experiments consists of 1060 aerial thermographic images
collected at various PV farms in Poland in 2021 and 2022. The quality of the images varies;
the two extreme cases are presented in Figure 12. Human experts processed all images
with the help of two tools: the Thermal Studio Suite [45] with Sense Reporting plugin [46]
used for image labeling, and the labelme [47] public domain graphical image annotation
tool heavily extended by one of the authors. Two kinds of labeling were applied. The
first one was aimed at the semantic segmentation of the images, which is not the subject
of this paper. The other labeling was much simpler and oriented to be applied just for
YOLO DNN. In Figure 13, both labelings are compared. It must be mentioned that the exact
segmentation, shown in the left inset of Figure 13, is much more labor-intensive but also
has more potential applications. It can be easily converted into the labels seen in the right
inset of Figure 13, while automatically converting the bounding boxes into a segmentation
is difficult. On the other side, bounding box labeling is much faster and easier. It took one
30 min to create the exact labelings shown in the left inset of Figure 13, but only less than
1 min to create what is shown in the right inset. The reader should note that segmentation is
always based on the thermal, not visible image. The natural resolution of all thermograms
is 640 × 512 pixels, so it is necessary to enlarge an image for manual labeling.

Seven labels were used: the “good” module, the disconnected substring, the hot spot,
the short circuit of a substring, the disconnected string, the “other” fault, and the light
reflex. The last label is quite special; it is not a fault of the PV module but rather the fault of
the inspection, but it appears on many images and could potentially mislead the classifier.
An example of the light reflex can be observed in the center of the bottom row of modules
in the right inset of Figure 12 (it is also present and visible in the thermal map in Figure 13,
but is almost completely covered by the labels). The original labeling is stored in XML files
associated with the images. For YOLO training, these files are converted into the pure text
format required by YOLO. Each label is stored in a separate line containing five numbers:
the first is an integer describing the class, the next two are normalized coordinates of the
box center, and the last two are normalized box width and height. Normalization involves
dividing all horizontal dimensions by the width of the image, and all vertical dimensions
by the height of the image.

5.2. The First Set Experiments: Two Classes

The labels were reduced to “good module” and “defective module” for the first set
of experiments. Light reflexes were arbitrarily assigned to the defect group since it was
assumed that it is better to “detect” a non-existent defect than to overlook an existing
one. The whole dataset was divided (randomly) into two groups: 848 images for training
and 212 for testing. The training dataset was enlarged by augmentation: each image was
duplicated and then randomly converted. The conversion was a randomly chosen one of
scaling by a random factor chosen from <0.5:0.9> or rotation by 90,180 or 270◦ and scaling
by a random factor or by scaling by 0.25 and tiling.
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Figure 12. Two sample images from the database used in the experiments. On the left is a good
quality image conforming to the [38] standard; on the right, there is a poor quality image: UAV was
positioned too high.

Figure 13. Two kinds of image labeling: on the left, an exact segmentation made with Thermal
Studio [45]; on the right, the easier bounding box labeling made with labelme [47].

YOLO has three input channels (typically RGB) and uses stacked convolutional filters.
Individual filters act as feature detectors and can be (trained to be) sensitive to straight
edges from dark to light or gradual transitions from green to red. Stacking them allows
filters to be built for more complex features (such as PV modules). Thus, the original
temperature maps from the images were converted to three-channel RGB images.

Four different conversion methods were used. In the first, the temperature of each
image was independently scaled to <0:1> range with a simple formula

Tn =
T − Tmin

Tmax − Tmin
, (1)

where Tmin and Tmax are the image’s minimal and maximal temperature. The normalized
temperature tn was then multiplied by 255 and converted with the default grayscale color
map of OpenCV [48,49] library to the three-channel grayscale image. An example of such
an image is shown on the left inset of Figure 13. Additional examples are presented in the
second column of Table 2.

In the second method, the Rainbow High Contrast (RHC) colormap [39] was used
instead of the grayscale one. The examples of this colorization are shown in the third
column of Table 2.

In the third method, the contrast limited adaptive histogram enhancement (CLAHE) [40]
was applied to the image colored with RHC. CLAHE was originally defined for single-
channel images. To apply it to the color one, the image is first converted to the CIELAB
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colorspace [50]. The CLAHE was applied to the “L” component (representing luminance),
and, finally, the image was converted back to RGB.

In the fourth approach, the temperature was normalized using <0:100> range for
all images:

Tun =
T − 0

100 − 0
, (2)

regardless of the values of Tmin and Tmax. Then the results were converted to a three-channel
image using Arctic [39] color scale. The resulted images may have black or white spots for
regions where the temperature is lower than 0◦ (the reader should bear in mind that the
Celsius scale is used) or higher than 100◦. Figure 14 shows the comparison of the adaptive
and uniform temperature scaling.

Figure 14. The same thermogram converted to the grayscale image with adaptive temperature
range (1) on the left and to the Arctic palette image with uniform temperature scaling (2) on the right.

In each experiment of the first group, the network was trained longer than required
by YOLOv4 authors [23]. However, the mean average precision [23] (shown as mAP on
Figure 15) was monitored to prevent loss of generality. Figure 15 shows learning curves for
two example experiments: the grayscale images and the RHC images. Learning curves for
other data were very similar, and the final mAP difference was lower than 1%. Figure 15
shows an unusually large final loss, which is the difference between the expected and
obtained classification results. This is caused by the big diversity of the training data and
the mass-scale detection of the modules shown only partially in an image. This problem is
illustrated in Figure 16 where the “ground truth” image (on the left) is compared with the
results of detection (on the right).

Figure 15. Learning curves for grayscale images and RHC images: in the left inset, the loss change; in
the right inset, the actual mean average precision.
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Figure 16. An example of the “mismatch” between the basic (“ground truth”) labeling (the left image)
and the results of detection (the right image). The “false positive” shown in the right image with
green color are PV modules that were not labeled in the base image because they are visible only
partially. The reader should notice that the most interesting faulty module (shown in blue in the right
image) was detected correctly in the right image (the blue box is visible there).

The metrics calculated for the test data in the first group of experiments are summa-
rized in Table 3.

Table 3. Metrics for the first group of experiments.

Experiment Class TP FP FN Precision Recall F1

Grayscale 0 13,931 2366 1846 0.855 0.883 0.869
1 367 115 44 0.761 0.893 0.822

RHC 0 13,482 2730 2295 0.832 0.855 0.843
1 320 45 44 0.877 0.779 0.825

RHC + CLAHE 0 12,860 2551 2917 0.834 0.815 0.825
1 270 38 141 0.877 0.657 0.751

Arctic 0 14,129 3006 1651 0.825 0.895 0.858
1 277 42 134 0.868 0.674 0.759

Threshold value of IoU = 0.67; Data augmentation caused different values of TP + FN for each class. The best
value of the most important recall value for the “defect” class is highlighted with the bold font.

Standard designations used in DNN assessments have been adopted. In assessing
whether a module has been correctly located, a measure of intersection over union (IoU) is
determined as the ratio of the area of the common portion of the module’s true marking,
and its detection to the sum of the marked areas is primarily used. In all calculations used
in this article, a threshold IoU value of 0.67 is assumed. True positive (TP) means an object
is located correctly (at least 67% of its marking overlaps with the true position). False
positive (FP) is the marking of an object not really in the image, and false negative (FN) is
when the object in the image was not detected. Precision is calculated as the ratio of the
real objects among detected ones (p = TP/(TP + FP) and the recall as a ratio of existing
objects being detected (r = TP/(TP + FN). The most important value is the recall—the
ratio of correctly located defects is shown in the seventh column of the even rows. The
highest score was obtained for grayscale images. It is highlighted in Table 3.

In the second series of experiments, the network was trained to distinguish all seven
classes shown in Table 4. It must be stressed that the number of samples is too low for
some defects, at least for the class “other fault”. The “disconnected string” samples were
also taken from just three defects. Thus the number of images is not as small, but they are
similar. Thus, we cannot expect good results (i.e., high precision and high recall) for these
two classes.
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Table 4. Labels in the database used for experiments.

Description Number of Labels
in Original Dataset in Augmented Dataset

“Good” module 81,771 209,539

Disconnected substring 186 489

Hot spot 1287 3301

Disconnected string 173 413

“Other fault” 26 66

Short circuit in the substring 186 699

Light reflex 289 478

We have tested two sets of images: temperature converted to grayscale and tempera-
ture converted to RHC. The training process shown in Figure 17 was similar, but the RHC
scale produced a slightly better mAP index. The results metrics obtained for all classes in
the second set of experiments are compiled in Table 5.

Figure 17. Learning curves in the second sets of experiments for grayscale images and RHC im-
ages: in the left inset, the loss change is shown; in the right inset, the best-so-far mean average
precision (mAP) is shown.

The experiments confirmed the expectation that for the correct operation of the DNN,
we need to use many different examples of the objects to be detected in the training data.
The lack of proper representation of class 3 and class 4 resulted in poor recognition of these
defects. This problem can be solved by completing the database and teaching the network
with the new one. Using the previously computed weights will speed up considerably the
additional training. This method is known as transfer learning and is used by default in
YOLO applications [23]. The network generally performs better processing images of good
quality, but the results for images not compliant with the standard are also not disqualifying.

In the case of a normally operating PV installation, we can expect that only a small part
of the installation is affected, and most panels work correctly. Thus the proper inspection
of the farm should focus on the faulty modules. In the authors’ opinion, the final report
should be as concise as possible. It should list all faults, specifying their position and kind
(severity/origin). In addition, performing the diagnosis already during the installation’s
fly-over can allow additional images to be taken, focusing on defects located earlier.

A great advantage of YOLO is the ability to analyze the images truly online. It takes
less than 20 milliseconds to process a single image in detection mode using a powerful (with
large memory) graphics card. The experiments described in this paper were conducted
using an NVIDIA GeForce RTX 3090 Ti card with 24 GB RAM.
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Table 5. Metrics for the test data for the second group of experiments.

Class Colormap TP FP FN Precision Recall F1

0 (good)

grayscale 14,400 2591 1626 0.848 0.896 0.872
RHC 14,491 2399 1543 0.858 0.904 0.881

grayscale S 9454 1576 33 0.857 0.997 0.922
RHC S 9455 1657 32 0.851 0.997 0.918

1 (faulty substring)

grayscale 31 16 2 0.660 0.939 0.775
RHC 31 7 2 0.816 0.939 0.873

grayscale S 31 15 1 0.660 0.969 0.795
RHC S 31 6 1 0.838 0.969 0.899

2 (hotspot) grayscale 286 37 13 0.885 0.956 0.920
RHC 280 41 19 0.872 0.936 0.903

3 (faulty string) grayscale 38 8 16 0.333 0.211 0.258
RHC 38 17 25 0.405 0.447 0.425

4 (other) grayscale 0 0 7 0 0 0
RHC 0 0 7 0 0 0

5 (light reflex) grayscale 38 32 4 0.543 0.905 0.679
RHC 36 33 6 0.521 0.857 0.649

6 (short circuit) grayscale 24 37 1 0.393 0.96 0.558
RHC 24 6 1 0.800 0.96 0.873

S Only images compliant with the IEC TS 62446-3 standard; threshold value of IoU = 0.67. The best value of the
most important recall values for each class are highlighted with the bold font.

6. Conclusions

The main goal of this paper is to show the concept of the real-line, cheap, and effective
system aimed at inspection of large or/and not easily accessible photovoltaic installations.
We show that neglecting even the small problems in the module’s operation leads to
measurable loss of the potential income from the plant and that an effective system can be
designed with YOLO DNN. We have chosen not the newest but still competitive YOLOv4,
owing to the easy incorporation of this version into a larger system.

Using a YOLO network for detecting problems in a photovoltaic installation based on
thermographic images taken with a UAV should enable the development of a cost-effective
solution for the ongoing inspection of even large photovoltaic farms where individual
modules are not easily accessible.

YOLO allows for performing the processing of the collected material in a real online
mode. Assuming that the UAV takes thermographic images no more often than once per
second, YOLO makes it possible to detect defects visible in such an image even before flying
the UAV to the next position. This makes possible correction of the possibly not correct
detection in case of a false positive encounter. Therefore, the crucial problem of proper
DNN training is to reduce the number of false negative cases. Legitimate hypersensitivity,
which will result in a not-so-high precision rate, can be offset by additional diagnostics by
other methods.

Two possible applications of YOLO can be imagined. In the first scenario, the YOLO
is used ex-post the fly-over (or in parallel to it) and works as a filter, selecting the “sus-
picious” images which are later processed more precisely and comprehensively. In this
scenario, using YOLO reduces the number of images that more time-consuming methods
must process.

In the second scenario, YOLO is used as a standalone detector, and its speed allows to
control UAV adaptively, forcing it, if a suspicious image is detected, to deviate from the
pre-programmed route and take additional shots of the suspicious part of the installation
from a different height, angle, or direction.

In both cases, the crucial issue of the successful application of any DNN for automated
detection is the collection of an extensive, diverse database of defects. The database used
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in this paper was made based on material collected from almost 20 different installations
for a year. Hundreds of hours were necessary to label the PV modules by human experts.
However, the experiments documented in this paper showed that the database must be
substantially enlarged to recognize all kinds of defects properly.

The following novelties presented in the article can be pointed out: firstly, the concept
of a defect detection system operating in real-time (during the farm’s overflight, with
adaptive flight path control); secondly, the emphasis on the importance of the database, and
that the size, diversity, and representativeness are more important than the choice of DNN
used for defect detection (all the latest architectures have essentially similar high accuracy).
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Abbreviations

The following abbreviations are used in this manuscript:

CNN convolutional neural network
DNN deep neural network
IoU intersection over union
mAP mean average precision
NOCT nominal (normal) operating cell temperature
PV photovoltaic(s)
RHC rainbow high contrast colormap
STC standard test conditions
UAV unmanned aerial vehicle
YOLO You Only Look Once (kind of) deep neural network
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