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Abstract: In this study, alternative uses for lignocellulosic waste by considering them a source of
eco-friendly and renewable energy generation with the application of the anaerobic digestion of
treated and untreated waste for biogas and biohydrogen generation were investigated. The diluted
sulfuric acid method was used for both the substrates and inoculum. Hydrogen production was
absent when untreated spent coffee grounds (SCG) and alcohol waste (AW) were both used with
the inoculum at pH 5.5 and pH 7.5. Meanwhile, the highest biogas yield of 320 dm3 kg V.S−1 was
obtained when using AW at pH 7.5, with a 190 dm3 kg V.S−1 yield of methane. Instead, hydrogen
production was observed when initially 4% (w/v) and 6% (w/v) SCG-containing hydrolysates were
used as the substrates at pH 5.5, yielding 2.9 ± 0.09 dm3 kg V.S−1 and 3.85 ± 0.12 dm3 kg V.S−1,
respectively. The further optimization of pretreatment technologies and pH control could lead to
increased and prolonged hydrogen production.

Keywords: spent coffee grounds; alcohol waste; biogas; biomethane; biohydrogen

1. Introduction

Nowadays the application of non-conventional fuels using different types of waste or
side streams is in great demand. Biogas and biohydrogen are the current best alternatives
to fossil fuels. Molecular hydrogen (H2) is a non-toxic, eco-friendly fuel as only water
(H2O) is generated during its combustion, and it has a ~3.5-time higher energy content
than oil, consisting of 142 kJ g−1 [1,2]. Biogas consists of methane (50~65%) and carbon
dioxide (35~50%), with some additions of hydrogen, nitrogen, ammonia, hydrogen sulfide,
and water vapor [3].

Biogas is not a totally pollution-free alternative to fossil fuels but it is considered
cleaner than coal [4]. Biogas and biohydrogen production from biomass waste, such as lig-
nocellulosic waste generated in everyday life, could have a significant impact on the world’s
economy as well as climate change. It is worth mentioning that the global production of
lignocellulosic biomass is approximately 120 × 109 tons per annum, which is equivalent to
2.2 × 1021 J and is four times higher than existing global energy consumption [5]. Globally,
a huge amount of waste is generated during the production and consumption of both
alcoholic and non-alcoholic beverages. For instance, global beer production exceeded
1.94 billion hL in 2018, of which 85% was brewer’s spent grain (BSG) generated as major
waste [6]. The worldwide annual production of BSG has been estimated to be approxi-
mately 38.6 × 106 tons [7]. The total consumption of spirits dipped to 35.27 billion liters in
2020 but is expected to reach almost 38 billion liters by 2025 [8]. Distilleries are one of the
most polluting industries as 88% of their raw materials are converted into waste [9].
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On the other hand, a huge amount of waste is also generated from the production of
non-alcoholic beverages. In particular, the global consumption of tea surpassed 5.8 mil-
lion tons in 2019 [10]. Coffee production reached 9542 tons as of 2018 and is continually
increasing [11]. Agro-industrial residues, such as brewery spent grains (BSG), coffee waste,
sugarcane bagasse, corn cobs, wheat straw, sorghum husks, sorghum leaves, sorghum
stover, rice straw, rice bran, and rice husks, used in dark fermentative biohydrogen pro-
duction using different microorganisms are already well reported [7,12–14]. Anaerobic
digestion (decomposition of organic matter under anaerobic conditions by different micro-
bial strains) [15] and dark fermentation are promising solutions for waste-based biogas
and biohydrogen production but face challenges, such as finding the optimal pretreatment
technology and controlling the pH variations during the culturing of microbial responses
to environmental factors [16–18].

Although different microbial strains have the capability for the hydrolysis and degradation
of lignocellulosic waste, there is still a need to treat lignocellulosic waste for higher efficiency
of anaerobic digestion and dark fermentation. Using some pretreatment methods, the yield of
fermentable sugars can reach 90%, which is less than 20% without any pretreatment [19].

Different treatment technologies have been reported for lignocellulosic biomass degra-
dation such as physical/mechanical pretreatment (particle-size reduction, high-pressure
homogenization, ultrasonic treatment, gamma-ray irradiation), thermal and hydrothermal
treatment, chemical pretreatment, etc. [20].

Acidic pretreatment is one of the most popular pretreatment techniques. Monlau et al.
reported a 233 mL CH4 g−1 initial VS yield using HCl as a treating agent at 170 ◦C for
sunflower stalks [21].

Montoya-Rosales et al. reported a more noticeable effect of acidic pretreatment on the
solubilization of lignocellulosic compounds than on the biogas yield [22]. Meng et al. also
showed enhanced methane production and VS destruction using a free nitrous acid (FNA)
pretreatment on thickened waste-activated sludge (TWAS) [23].

The goal of the current research is to understand the applications of anaerobic digestion
(AD) of treated and untreated spent coffee grounds (SCG) and alcohol waste (AW) for
biogas and biohydrogen generation.

2. Methods
2.1. Batch Culturing

The process of anaerobic digestion was performed in 2 dm3 wide-mouth bottle
DURAN® GLS 80 glass reactors with an active volume of 1.2 dm3. Glass reactors were
tightly connected with water-filled cylindrical vessels for gas collection (Figure 1). Sewage
sludge inoculum taken in the summer of 2021 from a wastewater treatment plant in Gdańsk,
Poland, was used. As accurate as the experimental setup is harmonized, some variabilities
can occur depending on the nature of the used inoculum [24]. In addition, as much as
microbial communities inhabiting wastewater treatment or biogas plants are known, the
composition and concentration can vary daily or seasonally, thus the simple determination of
volatile solids (VS) gives general information about biomass content but other characteristics
should be determined perennially [25]. Thus, prior to digestion, total solids [TS] and volatile
solids for the inoculum and substrates were determined from the fresh mass [FM] [26] by
drying samples in an oven (SLN 115, WODZISŁAW ŚLSKI, Poland) at 105 ◦C for 24 h and
later burning for 4–5 h at 550 ◦C (in a furnace CARBOLITE GERO AAF, Germany).

A 10 g sample of a fresh mass of inoculum was used for volatile solids determination;
after drying and periodic weighting, the dry weight was 0.352 g and after burning, the
sample weight was 0.117 g. Reactors were set up with a 1 VS substrate/2 VS inoculum
ratio, digestion was carried out under mesophilic conditions (40 ± 2 ◦C), and oxygen was
removed by flashing the rectors with nitrogen. The pH value was monitored once a day
using a combination pH electrode (IJ44A, ELMETRON, Poland).
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Figure 1. Experimental setup for anaerobic digestion.

2.2. Feedstock, Treatment, and Medium Preparation

Spent coffee grounds (SCG) that were sourced from a coffee shop (in the Institute of
Fluid-Flow Machinery) and the alcohol waste from Pomeranian Voivodship (a distillery
that processes potatoes into alcohol) were used as a feedstock representing the two types of
big industrial waste, non-alcoholic and alcoholic beverages, respectively. The used alcohol
waste consisted of potato stillage—a mixture of water, yeast, enzymes, starch, alcohols,
fermentation additives, and potato residues. From the existing physical, chemical, thermo-
chemical, and biological methods of waste treatment [27], acidic (chemical) pretreatments
had been beneficially preferred. Lignocellulosic waste was used both with and without
treatment by either suspending it in distilled water and exposing it to pretreatment with
acidic hydrolysis at 121 ◦C for 45 min or by directly adding the required amount to the
reactor. Various waste concentrations were tested: 4% (w/v) and 6% (w/v) of SCG treated
with 0.4% (v/v) sulfuric acid [12], as well as 10% (w/v) and 20% (w/v) of AW treated
with 1.5% (v/v) sulfuric acid [28]. Later, the substrate’s low pH was adjusted to proper
fermentation conditions either with potassium hydroxide KOH or with monopotassium
phosphate (KH2PO4).

The pH of the inoculum for biogas production was not adjusted as naturally, it is
at around 7.5 (Table 1), but for biohydrogen production, it was adjusted to 5.5 by using
concentrated sulfuric acid (95%).
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Table 1. The composition and characteristics of wastes and inoculum used in this study.

Material pH Consistency TS [%FM] VSS [%TS]

Inoculum 7.5 liquid 3.52 69.00

Coffee waste without treatment - solid 41.58 97.53

4% (w/v) coffee waste treated
with 0.4% (v/v) sulfuric acid 1–2 liquid 1.98 92.31

6% (w/v) coffee waste treated
with 0.4% (v/v) sulfuric acid 1–2 liquid 2.72 91.86

Alcohol waste without
treatment 5 liquid 3.27 86.81

10% (w/v) AW treated with 1.5%
(v/v) sulfuric acid 1–2 liquid 3.48 80.21

20% (w/v) AW treated with 1.5%
(v/v) sulfuric acid 1–2 liquid 3.80 95.85

2.3. Gas Analysis

The volume of gases produced was measured every day by collecting them in cylindri-
cal vessels. The qualitative and quantitative assessments of the gases were performed using
a portable biogas analyzer (GA5000, Geotech, Dexter, MI, USA) for methane determination
and using a gas chromatograph (GC) with a thermal conductivity detector and argon as a
carrier for biohydrogen determination using the GC parameters of a stainless steel column
of 2.0 m × 2.2 mm I.D. × 1/8-inch O.D., Shincarbon-ST 50/80. The gas flow rate was
0.6 mL/h; the run started at 40 ◦C, which was held for 2.5 min, and then the temperature
was increased to 180 ◦C with a 35 ◦C /min rate and held for the next 1.5 min. The gas
analyzer allowed the measurements of CH4, CO2, O2, H2, and H2S in the ranges 0–100%,
0–100%, 0–25%, 0–1000 ppm, and 0–5000 ppm, respectively [27]. Daily records of room
temperature, actual pressure, and absolute pressure in a tube were collected and further
recalculated according to normal conditions. Biogas production was observed continuously
for 25 days and biohydrogen production for 10 days.

2.4. Reagents and Data Processing

K2HPO4, KOH, H2SO4, and other reagents of analytical grade were used. Each
data point represented was averaged from independent triplicate cultures; the standard
deviation calculated according to [12,29] was not more than 3% if it is not presented. The
average of the data was calculated by performing at least three experiments; the standard
errors were considered, and reactors containing only the inoculum and feedstock were set
up to observe the amount of gas produced by their mixture.

3. Results and Discussion
3.1. Biogas and Biohydrogen Production from SCG and AW

All the analyses were conducted in batch systems: substrates and inoculum were
added once to the digester for the duration of the process. The data in Table 1 show that the
SCG and AW are promising substrates with high organic content; therefore, their use could
be the basis for the increased and cost-effective production of biogas and biohydrogen. The
biogas and methane yields were higher for the untreated than for the pretreated waste;
however, the opposite was observed in the case of biohydrogen generation: waste treatment
improved biohydrogen production. The highest biogas yield was observed for the SCG
without treatment and inoculum at pH 7.5; on the fourth day of fermentation, the yield
was 41.7 dm3 kg V.S−1 and the actual methane content was ~50%, reaching 70% at the end
of the digestion process. The cumulated biogas was 238 dm3 kg V.S−1 (Figure 2a), which
was equal to 182 dm3 kg dry matter−1 (data not shown).
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Figure 2. Accumulation of biogas (violet) and methane (yellow) during 25 days of fermentation
during utilization of (a) untreated and (b) pretreated SCG and AW.

When the AW was used as a feedstock without treatment under the same conditions,
the biogas and methane yields were comparatively higher: the accumulated biogas was
320 dm3 kg V.S−1, with the highest yield of 60 dm3 kg V.S−1 on the third day of digestion.
Moreover, the actual methane content was higher reaching 75% at the end of the digestion
process. Respectively, the total biogas and methane generation was 135 dm3 kg V.S−1 and
190 dm3 kg V.S−1 (Figure 2a). Similar methane yield was obtained by Luz et al. (2017)
using SCG and fresh cow manure [30]. As shown in Table 2, depending on the treatment
technology and inoculum used, different methane yields were obtained [31–34].
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Table 2. Comparative table of methane and hydrogen yields.

Substrate Inoculum
Cumulative H2

Volume Dm3 Kg
V.S−1

Cumulative
CH4 Volume

Dm3 Kg V.S−1

Biogas Volume
Dm3 Kg V.S−1 Reference

Boll pretreated with 8%
(w/w) sodium

hydroxide solution for
10 min at 100 ◦C.

Wastewater treatment
sludge

heat-shocked at 85 ◦C
for 45 min

17.1 246.4 - [35]

Native consortium of
microalgal biomass
without treatment

Treated anaerobic sludge 15.0 245 - [36]

SCG a liquid fraction of pig
manure - 290 - [31]

SCG pretreated with 8%
NaOH

Granular sludge
(5.2 g VS/L,

VS/TS ratio = 0.6)
collected from a
full-scale upflow

anaerobic sludge blanket
(UASB) digester of a

brewery factory

- 392 - [32]

“coffee” waste from
instant coffee substitute

production

The granular sludge
collected from a UASB

(upflow anaerobic
sludge blanket) reactor

treating
brewery effluent

- 280 - [33]

Coffee husks harvested
from agricultural land in

the municipality of
Lavras.

Pretreatment at 120 ◦C
for 60 min

Microalgal biomass was
harvested from a

full-scale wastewater
treatment raceway pond

- 196 - [34]

Spent coffee water fresh cow manure - 167.80 - [30]

Cotton waste

Inoculum from a
mesophilic digester
mainly used to treat

maize silage and manure

1.1 780 - [26]

Alcohol waste without
treatment

Sewage sludge from
wastewater treatment

plant
- 135 240 This study

SCG without treatment
Sewage sludge from

wastewater treatment
plant

- 190 320 This study

SCG treated with 0.4%
sulfuric acid

Sewage sludge from
wastewater treatment

plant
3.85 1.3 43 This study

On the other hand, it is well known that commercial biogas plants typically produce
biogas with a CH4 content of 50–70% [37]. Thus, it can be stated that the obtained data
are promising for the commercialization and further application of SCG and AW and the
development of new biogas stations in Armenia, as methane content with a high upper
limit was generated. Interestingly when the inoculum with a pH of 5.5 was applied, the
biogas yield from the SCG was 118.4 dm3 kg V.S−1 with a maximum methane content of
50%, but no significant gas generation was observed when using the AW (data not shown).
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During the SCG digestion at pH 7.5, the pH value decreased by ~0.5 during the first
week and slowly increased to pH 7.8 at the end of the process. However, when AW was
used, the changes in the pH were not significant. In contrast, when a pH of 5.5 was applied
as a result of the degradation of the SCG, the pH significantly increased to pH 7 (Figure 3)
and thus the methane production advanced instead of the desired hydrogen. In addition,
no significant pH changes were observed during the digestion of untreated AW at pH 5.5.
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3.2. The Effect of Pretreatment on Biogas and Biohydrogen Production

As mentioned above, the investigated lignocellulosic waste underwent some pretreat-
ment to examine its influence on biogas and biohydrogen production. Initially, 4% and 6%
SCG-containing medium were suspended in a slightly acidic (0.4% sulfuric acid) solution,
after which medium filtration and pH adjustment, either with potassium hydroxide (KOH)
or dipotassium hydrogen phosphate (K2HPO4), were performed. Petrosyan et al. [12] have
shown that media pH adjustment using K2HPO4 is optimal for biohydrogen production
when using a pure culture of E. coli. Interestingly, in our study, this principle was inefficient
for both biogas and biohydrogen production, which can be explained due to the generation
of inhibiting factors during both hydrolysis and gas generation (data not shown). The
inhibiting factors could be the result of thermal treatment or hemicellulose hydrolysis.
The generation of dangerous compounds because of the dehydration of xylose galactose,
mannose, and glucose-like furfural, hydroxymethylfurfural, and phenolic acids could have
occurred. Nevertheless, the generation of inhibitory substances, such as phenolics, fur-
furals, and aldehydes, means this type of pH adjustment is not preferable as it is influenced
by the acid concentration, reaction temperature, etc. [19].

A pH adjustment using KOH was more optimal than using K2HPO4; namely, the
biogas yields were 218 dm3 kg V.S−1 and 212 dm3 kg V.S−1 (Figure 2b), respectively, when
4% and 6% SCG-containing mediums were applied in the AD process.

It is clear that the concentration of SCG does not affect general biogas production;
however, it has a positive effect on the generated methane amount; when a 4% SCG
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medium was applied, the accumulated methane yield was ~65 dm3 kg V.S−1, but the
6% SCG medium resulted in a higher (100 dm3 kg V.S−1) methane yield (Figure 2b). When
using the 4% SCG medium, the highest methane production was observed on the fifth
day of fermentation. Meanwhile, during digestion of the 6% SCG-containing medium,
these results were obtained on the sixth day of fermentation. It is worth mentioning that
out of all of the tested AW concentrations, to some extent significant gas production was
observed only when using a 10% concentration, with a 140 dm3 kg V.S−1 accumulated
biogas yield and 32 dm3 kg V.S−1 accumulated methane yield (Figure 2b). These data are
lower compared to the untreated AW, showing that in this case, crude feedstock leads to
the highest biogas yields.

Promising data were obtained for hydrogen production during the utilization of
treated SCG at pH 5.5. Hydrogen generation has been extensively studied for a broad
variety of lignocellulosic substrates [38]. One of the main limitations of H2 production
from agricultural residues is the low biodegradability of lignocellulosic materials, thus the
possibility of acidic hydrolysis has been investigated.

In this case, the pH adjusting agent also did not have any significant effect (data not
shown) and further investigations were carried out using KOH. During the fermentation of
treated 4% and 6% mediums containing SCG hydrolysate in both cases, the highest hydro-
gen production was observed on the first day of fermentation, namely, 2.05 dm3 kg V.S−1

(Figure 4a) and 1.86 dm3 kg V.S−1 (Figure 4b), respectively.
Generally, a high H2 production rate could lead to a fast dark fermentative medium

with highly acidic conditions due to the large amount of produced acidic metabolites, e.g.,
acetic, butyric, malic, propionic, fumaric, and succinic acids [38]. For instance, during the
dark fermentation of 4% and 6% SCG medium-containing reactors, the pH dropped by
4.5 after the first day of fermentation, but interestingly, on the sixth and seventh days of
fermentation, an increase in the pH to ~5.2 was observed, which consequently resulted in a
hydrogen generation, especially in the 6% SCG-containing reactors, of ~1.2 dm3 kg V.S−1

(Figure 4b). This fact once again underscores the importance of pH management for the
optimal production and high yield of H2 [39].
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The usage of a 6% SCG-containing medium was more optimal for the total cumulated
hydrogen yield, which was 3.85 dm3 kg V.S−1, comparatively 1.4-fold higher than for the
yield from the 4% SCG-containing substrate. This is higher compared to the results obtained
from using cotton waste [21]; however, it is somewhat inferior to the data obtained for other
types of waste [32,33]. These results suggest that the improved hydrogen yield correlates
well with the increase in the soluble sugar and lignin removal. During fermentation of the
6% SCG-containing medium, the cumulated biogas yield was 43 dm3 kg V.S−1. Untreated
or treated AW was not efficient for biohydrogen production.

4. Conclusions

It can be concluded that SCGs and AW are promising substrates for bioenergy pro-
duction. The results obtained indicate that acidic hydrolysis treatment was important for
biohydrogen but not for biogas production. The highest biogas yield of 320 dm3 kg V.S−1

was observed when untreated AW with an inoculum at pH 7.5 was used. However, the
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