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Abstract: Kick is one of the most important drilling problems, and because its occurrence makes
drilling engineering extremely complex, it is essential to predict the possibility of kick as soon
as possible. In this study, k-means clustering was combined with four artificial neural networks:
regularized RBFNN, generalized RBFNN, GRNN, and PNN, to estimate the kick risk. To reduce data
redundancy and normalize the drilling data, which contain kick conditions, k-means clustering was
introduced. The output layer weights were then determined using a brute-force search with different
Gaussian function widths, resulting in a series of artificial neural networks composed of different
clustering samples and different Gaussian function widths. The results showed that the prediction
accuracy of regularized RBFNN + k-means model was the highest, that of the GRNN + k-means
model was the lowest. The kick prediction accuracy for regularized RBFNN, generalized RBFNN,
GRNN, and PNN were 75.90%, 65.20%, 51.70%, and 70.16%, respectively. This method can be used to
enhance the speed and accuracy of kick risk prediction in the field while facilitating the use of and
advances in risk warning technology for deep and high-temperature and high-pressure wells.

Keywords: kick; neural network; k-means clustering; normalized RBFNN; data learning and training

1. Introduction

Due to complicated formation pressure systems, inaccurate pressure predictions, or
unreasonable operation parameter designs, kick is a frequent occurrence in most oil fields.
To increase the safety of drilling operations, it is crucial to precisely and rapidly forecast
kick throughout the drilling process.

To predict kick risk, researchers worldwide have employed various techniques, the
most common of which are manual observation, wellhead or downhole tool measurement,
and big data prediction methods [1]. The mathematical and mechanical model of mul-
tiphase flow in the drilling annulus was created and integrated with the pump stroke
rate and standpipe pressure to form an early kick detection system [2,3]. The EarlyKick
Monitor (EKM) intelligent kick detection system has been developed and applied, which
uses software calculations to find kicks and leaks and grade them by comparing drilling
parameters under different working conditions [4]. In 2020, a data mining method was
proposed for real-time prediction of drilling accidents at operation sites to identify early
malignant drilling accidents [5]. A BP neural network based on an adaptive genetic al-
gorithm (GA) was proposed to predict drilling risk incidents [6]. And an adaptive long
short-term memory network (LSTM) kick detection algorithm was proposed, where the
sliding window method was introduced to expand the data set and calculate the mean
increase to achieve adaptive feature extraction of different well data [7]. These researchers
explored kick prediction from various angles and methods; however, there are still some
limitations. For instance, the wellhead and downhole tool measuring method has consider-
able feedback latency, and the traditional BP neural network model is susceptible to local
minima, which might result in model failure [8,9].

In this study, k-means clustering was introduced to normalize the field data to reduce
redundancy and improve data usability. Regularized RBFNN, generalized RBFNN, GRNN,
and PNN were learned and trained with clustered data to generate the most accurate
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prediction model. The most noticeable advantages of this technology over previous kick
prediction methods are its quicker speed and higher accuracy.

2. Drilling Data

Drilling activities are severely hampered by the frequent kicks in the Sichuan area. We
selected 8 wells in Sichuan for this study, Well-1 to Well-8. Among them, Well-1, Well-2,
Well-3, Well-4, and Well-6 are in normal condition; Well-5, Well-7, and Well-8 contain
normal and kick conditions. A total of 267,323 groups of samples were collected, of which
380 groups were sampled for the kick condition, as shown in Table 1.

Table 1. The specifics of the 8 wells.

Name Working Status No. of Normal
Samples

No. of Kick
Samples

Total No. of
Samples

Well-1 Normal state (0) 20,389 0 20,389
Well-2 Normal state (0) 44,455 0 44,455
Well-3 Normal state (0) 21,927 0 21,927
Well-4 Normal state (0) 36,374 0 36,374

Well-5 Normal state (0)
Kick state (1) 57,175 261 57,436

Well-6 Normal state (0) 20,970 0 20,970

Well-7 Normal state (0) +
Kick state (1) 24,853 39 24,892

Well-8 Normal state (0) +
Kick state (1) 40,800 80 40,880

Well-8 was chosen as the test well, having a total of 40,880 sets of samples; the
remaining 7 wells were employed as training wells, for a total of 2 sets of training data,
of which 226,143 sets represented the normal state (0) and 300 sets represented the kick
state (1). Some drilling data from test Well-8 are shown in Table 2.

Table 2. Partial drilling data of Well-8.

Time Well
Depth

Bit
Position

Vertical
Pressure String

Inlet
Flow
Rate

Outlet
Flow
Rate

Inlet
Density

Oulet
Density

Total
Hydrocarbon

Total
Pool

Volume

223,209 5675.59 5674.68 20.52 1802.4 28.15 1.43 2.23 0.57157 37.41 115.71
223,229 5675.59 5674.71 21.09 1802.4 28.19 1.43 2.24 0.57157 36.41 115.71
223,249 5675.59 5674.73 20.6 1804.1 28.34 1.43 2.23 0.57157 35.54 115.72
223,309 5675.59 5674.76 20.66 1804.3 28.41 1.43 2.23 0.57157 34.48 115.58

Seven factors were considered in the training samples: well depth (m), bit position
(m), vertical pressure (MPa), inlet flow rate (L/s), outlet flow rate (L/s), total pool volume
(L), and total hydrocarbon (%).

3. Data Clustering

Because the field data were gathered every 20 s, some of the data were similar or
even the same in a period. Given the size of the field data (more than 200,000 groups) and
their redundancy, similar or the same data were clustered into one cluster by a clustering
algorithm. The average of these data was used to replace the similar or same data in a
period to improve data usability and decrease computational cost. When the field data
were clustered, the samples were compressed into 49–90 groups and the neural network
only needed to perform 49–90 squared computations, i.e., less than 10,000, considerably
improving computational efficiency. In comparison, the neural network would have needed
to perform about 200,000 squared calculations, i.e., more than 40 billion, if the field data
were not clustered. Figure 1 shows the computational flow chart for k-means clustering.
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Figure 1. The k-means clustering calculation process.

The training dataset consisted of more than 200,000 samples from 7 wells. Because
the field data were collected every 20 s, the samples were relatively redundant and could
be divided into several classifications. The normal state (0) samples and the kick state
(1) samples were separately clustered using k-means clustering to reduce the number of
samples and improve the data usability. The clustered samples were then used to represent
the original samples.

The training samples were clustered several times to lessen the impact of randomness
because the initial clustered samples were generated at random. First, using Equation (1)
to normalize all samples, the factors were transformed into the range [0, 1].

y =
x− xmin

xmax − xmin
(1)

where y is the result after normalization; x is the original data before normalization; xmin
is the minimum value of the same type of data as the prenormalization data; xmax is the
maximum value of the same type of data as before this normalization.

The sample type was divided into normal state (state 0) and kick state (state 1). For the
normal state (state 0) sample, the numbers in the sample groups were set to 5000, 10,000, and
20,000 groups. Each group was calculated three times, the clustered samples were obtained
9 times, and named in order from 1 to 9. For the kick state (state 1) sample, the number of
clustered sample groups was set to 300 groups, and the names of the clustered samples
ranged from 1 to 3. The details of the clustered samples are shown in Tables 3 and 4.
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Table 3. Clustering of normal state in training samples.

Sample Type
No. of

Clustered
Sample Groups

No. of
Calculations

No. of Final
Cluster Sample

Groups
Newly Named

Normal state (0)

5000 1st time 49 1
5000 2nd time 58 2
5000 3rd time 56 3

10,000 1st time 64 4
10,000 2nd time 68 5
10,000 3rd time 64 6

20,000 1st time 76 7
20,000 2nd time 73 8
20,000 3rd time 90 9

Table 4. Clustering of kick states in training samples.

Sample Type
No. of

Clustered
Sample Groups

No. of
Calculations

No. of Final
Cluster Sample

Groups
Newly Named

Kick state (1)
300 1st time 14 1
300 2nd time 10 2
300 3rd time 12 3

Denormalization was applied to the normal state (0) and kick state (1) clustered
samples, after which they were merged to form the final clustered samples, yielding a total
of 3 × 9 = 27 clustered samples. Then, these 27 clustered samples were named using the
following rule: Clustered Sample a-b represents the combination of the ath normal state
sample and the bth kick state sample. For example, the Clustered Sample 6-2 represents
the combination of the 6th normal -state clustered sample (i.e., the 3rd calculation result
when the number of clustered samples was 10,000 groups in the normal-state sample) and
the 2nd kick-state clustered sample (i.e., the 2nd calculation result when the number of
clustered samples was 300 groups in the kick-state sample).

4. Neural Network Model
4.1. Radial Basis Function Neural Network (RBFNN)
4.1.1. Regularized RBFNN

When compared with other feed-forward ANNs, the radial basis function neural
network (RBFNN) is effective and provides the best approximation performance and global
optimality [10,11]. The input, hidden, and output layers are the three layers that make up
the RBFNN topology, as shown in Figure 2 [12].

To realize nonlinear regression, RBFNN uses the Gaussian function to project the
sample from low to high dimension and achieves the linear divisibility of samples [13].

The output of the hidden layer is calculated as:

hi = e(
−‖X−Ci‖

2

2δ2 ), i = 1, 2 · · · k (2)

X = (x1, x2 · · · xn) (3)

Ci = (ci1, ci2 · · · cin), i = 1, 2 · · · k (4)

where n is the number of nodes in the input layer; k is the number of nodes in the hidden
layer; X is the input vector, n dimension; xn is the output of the nth input layer node; Ci is
the center vector of the ith Gaussian function, n dimension; cin is the ith value of the center
vector of the ith Gaussian function; ||X-Ci|| is the Euclidean distance between the input
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vector X and the center vector Ci of the ith Gaussian function; δ is the width of the Gaussian
function; hi is the output of the ith hidden layer node.
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The output of the output layer is calculated as:

yj =
k

∑
i=1

hi · wij, i = 1, 2 · · · k, j = 1, 2 · · ·m (5)

where hi is the output of the ith hidden layer node; wij is the connection weight of the ith
hidden layer node and the jth output layer node; m is the number of output layer nodes; k
is the number of hidden layer nodes.

If there are p training samples, then (5) can be written as:

Ypj = Hpi ·Wij, i = 1, 2 · · · k, j = 1, 2 · · ·m (6)

where Ypj is the output layer output matrix of row j of p; Hpi is the hidden layer output
matrix of row i of p; Wij is the output layer weight matrix of row j of i.

For convenience, Equation (6) is expanded in the form of a matrix.
y11 y12 · · · y1j
y21 y22 · · · y2j

...
...

. . .
...

yp1 yp2 · · · ypj

 =


h11 h12 · · · h1i
h21 h22 · · · h2i

...
...

. . .
...

hp1 hp2 · · · hpi

 ·


w11 w12 · · · w1j
w21 w22 · · · w2j

...
...

. . .
...

wi1 wi2 · · · wij

 (7)

where p is the number of training samples; j is the number of nodes in the output layer; i is
the number of nodes in the hidden layer; ypj is the jth output result corresponding to the
pth training sample; hpi is the pth training sample corresponding to the ith output of the ith
hidden layer node; wij is the weight of the jth output layer node corresponding to the ith
hidden layer node.

In Equation (6), the unknown parameter is Wij. Multiplying the left and right sides of
the equation by the inverse or pseudo-inverse of Hpi, Wij can be obtained.

Wij =
(

Hpi
)−1 ·Ypj, i = 1, 2 · · · k, j = 1, 2 · · ·m (8)
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When the training samples are used as the centers of Gaussian functions in the hidden
layer, the number of training samples is equal to the number of nodes in the hidden layer.
At this time, RBFNN is a regularized RBFNN, Hpi in Equation (8) is a square matrix, and
the output layer weight matrix Wij is determined by the inverse of Hpi.

4.1.2. Generalized RBNN

When the Gaussian function centers is determined by methods such as k-means
clustering, the number of training samples is generally not the same as the number of
nodes in the hidden layer, and the RBFNN at this time is a generalized RBFNN. Hpi in
Equation (7) is a nonsquare matrix, and the output layer weight matrix Wij can be obtained
by the pseudo-inverse of Hpi.

4.2. Radial Basis Function Neural Network (RBFNN)

The generalized regression neural network (GRNN), which was developed in 1991 and
proposed by Donald Specht [14], is a neural network model modified from RBFNN [15].
The GRNN transforms samples using a Gaussian function, projecting the samples from
low to high dimensions to achieve linear divisibility, to realize the function from nonlinear
nondivisibility to linear divisibility, and then complete the fitting of nonlinear functions
and data prediction. The input, hidden, summation, and output layers are the four layers
that compose the GRNN structure. In Figure 3 shows the GRNN topology.
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The summation layer is computed differently from the hidden layer, which is similarly
computed to the RBFNN hidden layer. The summation layer, which has one more node
than the output layer, may be separated into two types of functions, i.e., function A and
function Gj.

A =
q

∑
i=1

hi, i = 1, 2 · · · q (9)

Gj =
q

∑
i=1

hi × yij, i = 1, 2 · · · q, j = 1, 2, · · · , k (10)

where A is the output of the summation layer function A node; Gj is the jth output of the
summation layer function Gj node; q is the number of hidden layer nodes; k is the number
of output layer nodes; hi is the output of the ith hidden layer node; and yij is the jth value
of the real value vector in the ith training sample.
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The output layer nodes are calculated with Equation (11).

zj =
Gj

A
, j = 1, 2, · · · , k (11)

where zj is the output of the jth output layer node; Gj is the output of the jth node of the
summation layer function Gj; q is the number of hidden layer nodes; A is the output of the
summation layer function A node; k is the number of output layer nodes.

4.3. Probabilistic Regression Neural Network (PNN)

Figure 4 shows the network structure of the PNN, a type of neural network specifically
designed for classification.
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The same as the RBFNN and GRNN, the hidden layer of PNN is based on the Gaussian
function. The competitive layer is used to average the outputs of several hidden layers,
compare the size of the competitive layer’s outputs to identify samples with the highest
value, and ultimately finish the classification. The value increases with increasing distance
from the Gaussian function’s center, while decreasing with increasing distance from it.
Figures 5 and 6 show the two-dimensional curves and three-dimensional surfaces of the
Gaussian function.
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5. Evaluation and Analysis of Prediction Results
5.1. Prediction Results of Normalized RBFNN + k-Means Model

The normalized RBFNN Gaussian function centers and input were created with the
27 groups of clustered samples from the k-means clustering. A brute-force search was used
to determine the output layer weights of various Gaussian function centers, resulting in
the normalized RBFNN model corresponding to different clustered samples and Gaussian
function widths. All the samples in Well-8 were used as the test dataset to evaluate the
normalized RBFNN model accuracy and adaptability, so that the best normalized RBFNN
model could be determined. As a result, when the Gaussian function center was Clustered
Samples 8-1 and the Gaussian function width was 0.52, the prediction accuracy of the test
sample was 75.90%, and the prediction accuracy of the kick-state sample was 100%.

In actual operation, kick is unwelcome, i.e., the prediction accuracy of the neural
network for kick occurrence must be 100%. At this time, the overall prediction accuracy of
the sample was 75.9%, and the other 24.1% inaccuracy was from mistaking the normal state
as the kick state, which can simply be replaced by another operation condition and the kick
state will not occur. Although the prediction result is conservative, it can guarantee the
kick state will not occur to the maximum extent possible, ensuring 100% site safety.

5.2. Prediction Results of Generalized RBFNN + k-Means Model

The generalized RBFNN Gaussian function centers were created with the 27 groups
of clustered samples from the k-means clustering. The 226,443 training samples from the
seven wells were normalized in accordance with the normalization rule of the 27 clustered
samples, and then were employed as the input of RBFNN. A brute-force search was used
to determine the output layer weights of the various clustered samples, resulting in the
generalized RBFNN model corresponding to several clustered samples. All the samples in
Well-8 were used as the test dataset to evaluate the generalized RBFNN model accuracy
and adaptability to various clustered samples and Gaussian function widths, so that the
best generalized RBFNN model could be determined. As a result, no outcome satisfied the
target of the prediction accuracy on the test sample being more than 70%; the prediction
accuracy of the kick-state sample was almost 100%.

5.3. Prediction Results of GRNN + k-Means Model

The GRNN Gaussian function centers were created with the 27 groups of clustered
samples from k-means clustering. The 226,443 training samples and 40,880 test samples
were normalized in accordance with the normalization rule of the 27 clustered samples, and
then were employed as the input of GRNN. A brute-force search was used to determine
the GRNN model of the various clustered samples. As a result, no outcome satisfied the
target of a prediction accuracy on the test sample being more than 70%, and the prediction
accuracy of the kick-state sample was almost 100%.
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5.4. Prediction Results of PNN + k-Means Model

The PNN Gaussian function centers were created with the 27 groups of clustered
samples from k-means clustering. The 226,443 training samples from the seven wells were
normalized in accordance with the normalization rule of the 27 clustered samples, and then
were employed as the input of PNN. A brute-force search was used to determine the output
layer weights of the various clustered samples, resulting in a PNN model corresponding
to several clustered samples. All the samples in Well-8 were used as the test dataset to
evaluate the PNN model accuracy and adaptability to select the best PNN model. As a
result, when the Gaussian function center was Samples 5-2 and the Gaussian function
width was 0.41, the normalized PNN had the best prediction result, with 70.16% prediction
accuracy on the test sample and 98.75% prediction accuracy on the kick-state sample.

5.5. Comparison of Prediction Results

Table 5 and Figure 7 show the prediction results of the normalized RBFNN + k-means,
generalized RBFNN + k-means, GRNN + k-means, and PNN + k-means models, with the
best-clustered samples shown in Tables 2 and 3 above.

Table 5. Comparison of prediction results produced by four neural network models in over-
flow prediction.

Model Regularized RBFNN +
k-Means

Generalized RBFNN +
k-Means

GRNN +
k-Means

PNN +
k-Means

Optimal cluster sample name 8-1 6-2 4-1 5-2
Gaussian function width 0.52 0.38 0.29 0.41

Test sample prediction accuracy (%) 75.9 65.2 51.7 70.16
Prediction accuracy of overflow status

samples in test samples (%) 100 25.52 61.43 98.75Energies 2022, 15, x FOR PEER REVIEW 10 of 11 
 

 

 

Figure 7. Comparison of prediction results of four neural network models in overflow prediction. 

The comparison in Table 5 and Figure 7 reveals that the regularized RBFNN + k-

means model had the best prediction ability, and its prediction accuracy was higher than 

that of the PNN + k-means model for both the predicted and the kick-state samples in 

the test samples. 

6. Conclusions and Prospect 

In this study, field data were clustered with k-means clustering, after which the 

clustered data were learned and trained for normalized RBFNN, generalized RBFNN, 

GRNN, and PNN. The prediction results of the four models were then compared and 

analyzed, and the following conclusions were drawn: 

(1) Due to the huge volume and similarity of the field data, it was important to cluster 

the training samples with k-means clustering to decrease data redundancy and ac-

celerate computation speed. 

(2) After clustering, the data samples were applied in four ANN models, including 

normalized RBFNN, generalized RBFNN, GRNN, and PNN. According to the 

comparison and analysis, the normalized RBFNN + k-means model had the highest 

prediction accuracy. 

The limitations of this study are as follows: The neural network’s training samples 

were derived from k-means clustering calculations. Whether the same number of sample 

groups was set, the final k-means findings differed, which impacted the neural net-

work’s learning. The neural network should learn these training samples and select the 

best prediction models with several k-mean computations. 

In future work, by introducing kernel principal component analysis (KPCA) or 

PCA, it will be possible to minimize the dimension of the data while retaining the effects 

that significantly impact the outcomes and eliminating those that have a minor impact. 

To more quickly determine the best Gaussian function width, neural network models 

may also be integrated with intelligent algorithms such as the genetic algorithm (GA), 

particle swarm algorithm (PSO), and artificial fish swarm algorithm (AFSA). 

Author Contributions: Conceptualization, G.Q. and F.X.; methodology, Y.Z.; validation, H.H., 

F.X. and G.Q.; formal analysis, Y.Z.; investigation, H.H.; resources, H.H.; data curation, Y.Z.; writ-

ing—original draft preparation, Y.Z.; writing—review and editing, Y.Z.; supervision, Z.H. All au-

thors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement:  Not applicable. 

Informed Consent Statement:  Not applicable. 

0

20

40

60

80

100

Regularized
RBFNN+k-means

Generalized
RBFNN+k-means

GRNN+k-means PNN+k-means

Test Sample Prediction Accuracy (%)

Prediction accuracy of overflow
status samples in test samples (%)

Figure 7. Comparison of prediction results of four neural network models in overflow prediction.

The comparison in Table 5 and Figure 7 reveals that the regularized RBFNN + k-means
model had the best prediction ability, and its prediction accuracy was higher than that
of the PNN + k-means model for both the predicted and the kick-state samples in the
test samples.

6. Conclusions and Prospect

In this study, field data were clustered with k-means clustering, after which the
clustered data were learned and trained for normalized RBFNN, generalized RBFNN,
GRNN, and PNN. The prediction results of the four models were then compared and
analyzed, and the following conclusions were drawn:
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(1) Due to the huge volume and similarity of the field data, it was important to cluster the
training samples with k-means clustering to decrease data redundancy and accelerate
computation speed.

(2) After clustering, the data samples were applied in four ANN models, including
normalized RBFNN, generalized RBFNN, GRNN, and PNN. According to the com-
parison and analysis, the normalized RBFNN + k-means model had the highest
prediction accuracy.

The limitations of this study are as follows: The neural network’s training samples
were derived from k-means clustering calculations. Whether the same number of sample
groups was set, the final k-means findings differed, which impacted the neural network’s
learning. The neural network should learn these training samples and select the best
prediction models with several k-mean computations.

In future work, by introducing kernel principal component analysis (KPCA) or PCA,
it will be possible to minimize the dimension of the data while retaining the effects that
significantly impact the outcomes and eliminating those that have a minor impact. To more
quickly determine the best Gaussian function width, neural network models may also be
integrated with intelligent algorithms such as the genetic algorithm (GA), particle swarm
algorithm (PSO), and artificial fish swarm algorithm (AFSA).
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