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Abstract: Energy is at the center of human society and drives the technologies and overall human
well-being. Today, artificial intelligence (AI) technologies are widely used for system modeling,
prediction, control, and optimization in the energy sector. The internet of things (IoT) is the core of
the third wave of the information industry revolution and AI. In the energy sector, tens of billions
of IoT appliances are linked to the Internet, and these appliances generate massive amounts of
data every day. Extracting useful information from the massive amount of data will be a very
meaningful thing. Complex event processing (CEP) is a stream-based technique that can extract
beneficial information from real-time data through pre-establishing pattern rules. The formulation
of pattern rules requires strong domain expertise. Therefore, at present, the pattern rules of CEP
still need to be manually formulated by domain experts. However, in the face of complex, massive
amounts of IoT data, manually setting rules will be a very difficult task. To address the issue, this
paper proposes a CEP rule auto-extraction framework by combining deep learning methods with
data mining algorithms. The framework can automatically extract pattern rules from unlabeled air
pollution data. The deep learning model we presented is a two-layer LSTM (long short-term memory)
with an attention mechanism. The framework has two phases: in the first phase, the anomalous
data is filtered out and labeled from the IoT data through the deep learning model we proposed,
and then the pattern rules are mined from the labeled data through the decision tree data mining
algorithm in the second phase. We compare other deep learning models to evaluate the feasibility of
the framework. In addition, in the rule extraction stage, we use a decision tree data mining algorithm,
which can achieve high accuracy. Experiments have shown that the framework we proposed can
effectively extract meaningful and accurate CEP rules. The research work in this paper will help
support the advancement of the sector of air pollution prediction, assist in the establishment of air
pollution regulatory strategies, and further contribute to the development of a green energy structure.

Keywords: the internet of things (IoT); energy intelligent; sustainable city; complex event
processing (CEP)

1. Introduction

The energy industry is at a crossroads of development [1], and the efficient use of
energy is a pressing issue to be addressed. The emergence of artificial intelligence provides
an emerging impetus and solution for the development of the energy industry. With the
fast-growing popularity and utilization of the IoT in the energy sector, AI technologies can
provide increased opportunities for the development of the energy industry [2].

Today, the IoT is one of the most widely adopted and fastest growing technologies.
It has a major impact on our daily lives in many respects, including the economy, society,
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health, and so on [3]. At the same time, the IoT has a broad range of applications in many
areas, such as energy [4], smart transportation [5], emergency services [6], smart manufac-
turing [7], and e-health [8]. The IoT can also help the energy sector by increasing the share of
renewable energy sources and reducing the environmental impact of energy consumption.

With the development of the internet of things, hundreds of millions of devices, such
as sensors and mobile phones, will be connected to the Internet in the energy sector. The
volume, speed, and diversity of data produced by this equipment are showing explosive
growth [9]. In addition, the continuous data produced by this equipment require real-time
analysis and processing [10,11]. The processed IoT data can provide valuable information
to users, businesses, and society [12,13]. However, as IoT data continue to grow in size and
variety, there will be situations where it is necessary to analyze heterogeneous data streams
and detect complex patterns in near real-time, so there will be significant scope for complex
event processing [14] in the IoT sector.

Complex event processing (CEP) is a relatively complex event processing framework
based on dynamic environmental event streams, which enables real-time analysis of com-
plex events [15,16]. It regards system data as different types of events and establishes
different event relationship sequence libraries by analyzing the relationship among events.
CEP uses technologies such as filtering, association, aggregation, and pattern matching to
generate advanced events from simple events [17]. Figure 1 illustrates the basic framework
of the CEP. CEP has three main components: data resources, the CEP engine, and the event
consumer. The data streams generated by sensors are sent to the CEP engine. The CEP
engine captures complicated events from a single atomic event and reveals meaningful and
valued information based on CEP rules pre-defined by domain experts. Then, the results
are used by the event consumer such as the forecasting system, alert system, etc.

Figure 1. The CEP framework.

Most IoT applications generate huge amounts of data, such as smart cities, various
sensors (temperature, air quality), etc. These data must be analyzed in near real-time
for better decision-making. However, these data often require technical support that can
process complex events with minimal time delay. With its high processing speed and high
throughput performance, CEP provides a good solution to the above problems. The CEP
is ideal for many IoT applications due to its ability to perform distributed and parallel
computing [18].
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However, CEP also has some shortcomings. So far, the formulation of CEP rules still
needs to be manually formulated by experts in professional fields. When the data to be
generated are single and contain few attributes, this method is still feasible. However, as IoT
technology develops, the diversity and complexity of data generated by IoT applications
continue to grow, which makes it difficult to manually formulate rules. Moreover, due
to the constant change and rapid update of IoT data, previously established rules require
to be renewed within a certain period of time. At this time, manually formulating CEP
rules will consume huge human, material, and financial resources, so we need to take other
methods to automatically generate CEP rules.

In this paper, we propose LAD (two-layer LSTM [19] attention mechanism [20] with
decision tree [21]), a framework for the auto-extraction of CEP rules. The framework can
extract pattern rules from untagged IoT data automatically. We validate the feasibility
of the framework with a real-world air quality dataset. As manufacturing, industrial
technology, and urban transport develop, various pollutants emitted have caused more
and more serious air pollution [22]. Some scholars proposed a number of approaches to
air pollution prediction to improve the reliability and sustainability of the predictions.
Todorov et al. [23] proposed an innovative digital stochastic method for multidimensional
sensitivity analysis in air pollution modeling. This approach allowed the assessment
of the impact of harmful emissions on human health. In addition, with the growing
urban population, the air quality situation in large urban agglomerations is also facing
serious problems [23]. Facing the declining trend of global air quality, all countries have
strengthened the monitoring of air pollution gases (sulfur dioxide, particulate matter, ozone,
nitrogen dioxide, carbon monoxide) [24], and control the impact of air pollution gases on
human health and ecosystems [25]. It is easy to deploy air quality sensors indoors and
outdoors, and the air quality data gathered can be made known to the public in real time,
reminding the public to take precautions [26]. Therefore, being able to process abnormal air
data and make decisions promptly will bring great value to society. At the same time, the
prediction of urban air pollution can make a very important contribution to controlling the
emergence of pollution, which is also conducive to energy saving and emission reduction,
adjusting the energy structure, and accelerating the construction of energy intelligence. In
the first phase of the LAD framework, we label the unlabeled air quality data by using the
deep learning model we proposed. We then extract the CEP rules using a decision tree
rule mining approach in the second phase. The CEP rules will be sent to the CEP engine to
detect the alert air data.

The contributions are as follows:

• We propose a novel framework LAD for the automatic extraction of CEP rules by
combining a two-layer LSTM attention mechanism with a decision tree data min-
ing approach.

• We present a method for predicting air quality data and extracting meaningful CEP
rules based on the LAD. The extracted CEP rules can be used to monitor the incoming
air quality data stream in real time through the CEP engine.

The structure of this paper is given below: Section 2 presents research in the literature
on automatic CEP rule extraction. Section 3 presents the design and implementation details
of the framework and some related knowledge. In Section 4, we introduce the experimental
results using a real-world air quality dataset, which proves the feasibility of our framework.
We include the results of the comparison with other papers in the same field in Section 5.
Finally, in Section 6, we draw conclusions and give our perspective for future work.

2. Related Work

Recently, a number of proposals for automatic mining of CEP rules have been released,
yet the automatic acquisition of CEP rules is still an open issue [27]. In previous stud-
ies, some academics proposed CEP editors to help non-CEP domain experts build CEP
rules [28]. Some scholars proposed the method to update CEP rules by using machine
learning under some existing CEP rules [29]. Other scholars proposed some methods to
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extract and generate CEP rules that satisfy the conditions by using machine learning, deep
learning methods, or rule mining methods. In the next paragraphs, we describe each of
these solutions.

Boubeta-Puig et al. [28] proposed MEdit4CEP, a model-driven solution for real-time
decision making in event-driven SOAs. This model allowed any user, whether a program-
mer or a CEP expert, to extract CEP rules from real-time information using the CEP event
pattern graphic editor.

Sun et al. [29] proposed an automatic rule update method under existed CEP rules
based on machine learning. Machine learning is performed on the changed rules to form
new rules.

Mehdiyev et al. [27] used rule-based classifiers (OneR classifier, PART classifier, RIP-
PER classifier) to extract CEP rules to match events. The authors processed the users’
physical activity sensor data and then sent the processed data to rule classifiers to form CEP
rules. They also compared the performance of several types of rule classification models
and proved the feasibility of the method. Similarly, Naseri et al. [30] also used the same
rule-based classifiers to perform rule learning on the hospital dataset to extract CEP rules.

Petersen et al. [31] extracted CEP rules from unlabeled data by combining the X-
means clustering method with the SVM classification algorithm. The authors applied this
approach to a real-world data set to demonstrate that their method works. Margara et
al. [32] presented a solution for CEP with automatic rule generation, which was named
iCEP. The method learns the hidden causal relationship between the received events
and the events to be detected from historical data by applying crossover techniques and
automatically generates CEP rules from them.

Simsek et al. [33] proposed an automatic extraction framework for CEP rules based on
deep learning methods called ARECEP. The framework is divided into two stages. In the
first phase, the authors used deep learning algorithms to perform regression prediction on
IoT data. In the second stage, the authors used some common data mining algorithms to
extract CEP rules. In [10], the authors first used the Canopy algorithm to select the cluster
center and the optimal K values from the unlabeled IoT data, and then used the obtained
data as the parameters of the K-means algorithm to classify and label the IoT data. The CEP
rules were then mined from the data obtained during the first stage using a rule mining
algorithm, as described previously. To our knowledge, our paper is the first research to
use two LSTM layers attention mechanism with decision tree rule mining methods for
automatic rule extraction in a CEP system.

3. The Introduction of LAD

In this section, we first show the overall design idea of LAD. Next, we introduce the
two stages included in the framework in detail.

3.1. The Structure of Framework

The structure of LAD can be seen in Figure 2. First, the data collected by IoT sensors
will be stored in a historical database. These historical data will be processed and analyzed
by LAD. The framework contains two phases. We use deep learning methods to filter
historical data for abnormal data and label the data in the first phase. This lays the
groundwork for the extraction of CEP rules in the second phase. Then we extract CEP rules
by using a decision tree data mining method from the labeled data in the second phase.
These extracted rules will be fed into the CEP engine for risk identification on the data
received by the sensors.
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Figure 2. The proposed framework.

3.2. The First Phase: Abnormal Data Identification

In this phase, we will introduce our proposed two-layer LSTM attention mechanism
model and how we filter out anomalous data.

3.2.1. Two-Layer LSTM Attention Mechanism Model

Figure 3 shows the basic structure of the model. This model is composed of an input
layer, two LSTM layers, an attention layer, and an output layer.

First, the first LSTM layer acquires the long-running relationships between the at-
tributes of the pre-processed IoT data. Then, the attention layer will learn the percentage of
important attributes of the states hidden by the two LSTM layers. At last, a weighted sum
is obtained as an output and a prediction is made.

Input Layer

.

.

.

.

.

.

.

.

.

LSTM Layer LSTM Layer Attention Layer

Output Layer

Predicted 

Data

Air Quality 

Data

Air Quality 

Sensor

Figure 3. The proposed model.

3.2.2. LSTM Layer

The processed IoT data is fed into the LSTM layer. The LSTM is a modified recurrent
neural network (RNN) that can address the long-distance dependency issue that RNNs are
not able to handle. Compared to the hidden state of the original RNN, the LSTM adds a
cell state. This cell state can update information in a timely manner and maintain the state
of long-term memory [34]. The cell structure and connections of the LSTM are shown in
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Figure 4. An LSTM cell is made up of three basic types of gates: output gates, input gates,
and forgetting gates. An LSTM cell can be calculated in the following way [35]:

ft = σ(W f hht−1 + W f xxt + b f ) (1)

it = σ(Wihht−1 + Wixxt + bi) (2)

c̃t = tanh(Wc̃hht−1 + Wc̃xxt + bc̃) (3)

ct = ft ◦ ct−1 + it ◦ bc̃ (4)

ot = σ(Wohht−1 + Woxxt + bo) (5)

ht = ot ◦ tanh(ct) (6)

where ft is the output of the forget gate; it is the output of input gate; c̃t is the current input
cell state; W f h is the weight of the forget gate to the output of the cell; W f x is the weight of
the forget gate to the cell input; Wih is the weight of the input gate to the cell output; Wix is
the weight of the input gate to the unit input; Wc̃h is the weight from the current input cell
state to the cell output; Wc̃x is the weight from the current input cell state to the cell input;
Woh is the weight of the output gate to the output of the cell; Wox is the weight of the forget
gate to the input of the cell; b f is the bias of the forget gate; bi is the bias of the input gate;
bc̃ is the bias of the current input cell state; bo is the bias of the output gate; σ is the function
of sigmoid; the symbol “◦′′ means point multiplication of two vectors.

The cell state of each LSTM is controlled by the interaction of the input and output
gates. The quantity of information about the cell state saved at time t-1 to time t is controlled
by the forgetting gate. (When the value of the forget gate ft is equal to 1, it means that the
information is retained. When it is 0, it means to discard the information.) At time t, the
input gate and the output gate control the amount of information stored in the cell state
and the amount of output respectively.

Figure 4. The structure of the LSTM [36].

3.2.3. Attention Mechanism

After the two LSTM layers have extracted long-term dependencies relationship from
all the attributes of the IoT data, their output is taken as an input to the next attention layer.
The significance of each hidden state in the two-layer LSTM can be learned computationally
by the new attention layer. The attention mechanism can be understood as a weighted sum.
The importance of the input features needs to be calculated first. Then the contribution of
each attribute at each step is then calculated by employing a so f tmax function and making
the sum of the contribution weights of all attributes equal to 1. Each input feature is then
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multiplied by its corresponding weight and summed together to obtain the final result of
the output. The formula for calculating the attentional mechanism can be listed as [37]:

ak
t =

exp(ek
t )

∑n
i=1 exp(ei

t)
(7)

ek
t = gT

e σ(Ne[ht−1, ct−1] + Ueht + be) (8)

z̄t =
T

∑
t

aT
t hT

t (9)

where ge,be ∈ RT , Ne ∈ RT×m, and Ue ∈ Rm×m are the parameters will be obtained by using
the formula; the parameter m represents the number of neurons; ak

t is the attention weights
of the Kth input at time t; the magnitude of ek

t represents the degree of importance of ht; z̄t
represents the output of the attention layer, the value of which is obtained by weighting
the sum of all the hidden states.

3.2.4. Example

In the water quality prediction field, LSTM and attention mechanism have been used
to predicate the values of the PH and NH3-N [37]. The approach of combining LSTM and an
attention mechanism has shown good robustness and stronger generalization capabilities
in the experiments.

3.2.5. Abnormal Data Filtering

First, the raw IoT data will be cleaned, filtered, and normalized to become standardized
data. The data will then be divided into a training set and a test set. The data from the
training set will be sent to our proposed model for learning and finally, an ideal model
will be obtained. Then, the data of the test set will be sent to the trained model for
regression prediction, and the model will output the predicted value. We need to calculate
the reconstruction error (RE) between the true and predicted values, after obtaining the
predicted values. The reconstruction error represents the differences between input data
and predicted data [38]. It is defined as follows:

RE = υ′ − υ (10)

where the predicted data vector is represented by υ′ and the true data vector is represented
by υ.

The reconstruction error will, through a given threshold, measure whether it is normal,
that is, whether the data is normal or not. The selection of anomaly data thresholds is an
important problem in the unsupervised learning area and is a key factor in determining
the success of anomaly detection. In our study, we choose an approach commonly used in
the field of anomaly detection which is to set δ = 3σ, where δ is the threshold we choose, σ
is the standard deviation of the reconstructed error series [39]. When RE > ±δ, these data
will be labeled as abnormal data.

3.3. The Second Phase: CEP Rules Extraction

In this phase, we will use data mining methods to mine meaningful CEP rules from the
labeled data obtained in the first phase. We use the decision tree algorithm to perform data
mining. A decision tree is a commonly utilized data mining model to calculate regression
and classification, as well as easily visualize the results [21]. It has a tree structure and
makes decision judgments through conditional branches. When learning the model, the
features and label information in the training set data need to be input into the model,
and the model is learned by minimizing the loss function, then the optimal single-branch
classification rule is calculated. Finally, the final classification results are obtained through
different sub-classification rules, extending down from its root node. Given its strong
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interpretability and fast classification speed, the decision tree approach is often employed
in the rule mining direction within the data mining profession.

4. Experiment Evaluations and Results

Through this section, the overall performance of LAD in the two phases will be
presented in the form of data. In the first phase, we implement our proposed two-layer
LSTM attention mechanism model. We also compare with traditional LSTM, bidirectional
LSTM (BiLSTM) [40], and gate recurrent unit (GRU) [41] models to present the feasible
of LAD. We then use these four models to identify abnormalities in the time series data
collected b the IoT devices.

After identifying the abnormalities, labeled data would be sent to the next stage to
assess the accuracy of the rule extraction. In the rule mining stage, we use a decision tree
algorithm to extract the rules. We select air quality data from a smart urban scene to assess
the whole forecasting ability of our framework.

4.1. Data Set

For all the experiments in this paper, we used data on urban air pollution collected
by the Pulse of the City EU FP7 project [42]. The City Pulse EU FP7 Project provides
data in many fields such as road traffic data, cultural event data, weather data, library
event data, social event data, parking data, and pollution data [43]. In this paper, we use
pollution data gathered at 5-minute time intervals between August and October 2014 in two
cities, Aarhus and Brasov, Denmark. The dataset we use has a total of 17,568 samples and
each sample contains eight features including particulate matter, sulfur dioxide, nitrogen
dioxide, carbon monoxide, longitude, latitude, ozone, and timestamp [44]. More statistical
information is shown in Table 1, including the max, min, mean and standard deviation
(std) of the air pollution data.

Table 1. The basic information contained in the dataset.

Max Min Mean Std

particulate
matter 215 15 124.90 54.04

nitrogen
dioxide 215 15 107.10 54.09

sulfur dioxide 215 15 116.59 54.61
carbon

monoxide 215 15 98.13 49.70

ozone 215 15 111.04 55.04

4.2. Evaluation Metrics

In all the experiments included in this paper, we will use three evaluative metrics
frequently employed in the regression prediction area to measure our model’s capabilities.
The three evaluation criteria are mean absolute error (MAE), root mean square error (RMSE),
and mean absolute percentage error (MAPE).

Suppose:

ŷ = {ŷ1, ŷ2, · · · , ŷn} (11)

y = {y1, y2, · · · , yn} (12)

where ŷ is the set of predicted values and y is the actual value.
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4.2.1. Mean Absolute Error (MAE)

The absolute error between the set of predicted vectors and the set of actual vectors
calculated by MAE, which is the most common measure of average error size [45]. The
formula for MAE can be expressed as:

MAE =
1
n

n

∑
i=1
|ŷi − yi| (13)

4.2.2. Root Mean Squared Error (RMSE)

RMSE is often used in the field of regression forecasting to measure the deviation
between the predicted and true values. It can capture anomalies in the data used and is
very sensitive to outliers [46]. The formula for RMSE can be expressed as:

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)2 (14)

4.2.3. Mean Absolute Percentage Error (MAPE)

MAPE is often used in the field of regression forecasting for the assessment of uniform
forecast errors and is one of the more commonly used assessment criteria [47]. The formula
for MAPE can be expressed as:

MAPE =
100%

n

n

∑
i=1
| ŷi − yi

yi
| (15)

4.3. Experiment Environment

In the first phase, we label urban air quality IoT data as normal or abnormal by training
and adjusting the four models employed on the Python platform using the Tensor Flow
and Keras deep learning frameworks. In the second phase, we adopt the sklearn.tree from
scikit-learn machine learning tools to extract the CEP rules. All experiments in the two
phases conducted in this paper were performed on a Windows 10 system equipped with
an AMD A10-9630P RADEON R5, 10 computing core CPU. The machine is equipped with
an 8 GB running memory and it runs at a maximum speed of 2.78 GHZ.

4.4. Experiment Results

Before we start our first phase of experiments, we normalize the raw sensor data by
min-max normalization within the interval [0, 1] and then used it to fit the four models.
The normalization [48] is shown as follows:

y′ =
y− ymin

ymax − ymin
(16)

where ymin and ymax are the minimum and maximum of the raw data, respectively. In
Table 2 the basic parameters in the four models we have compared are presented.

Table 2. The optimal hyperparameters of the four models.

Model Name Parameter Setting Learning Rate

LSTM Epoch: 50, Batch Size:128, Units:128 0.001
Bidirectional LSTM Epoch: 40, Batch Size:128, Units:128 0.001

GRU Epoch: 40, Batch Size:128, Units:128 0.001
NewModel Epoch: 40, Batch Size:128, 0.001

First-Layer LSTM Units:64,
Second-Layer LSTM Units:32



Energies 2022, 15, 5892 10 of 16

Then, the normalized air quality IoT data is randomly divided into an 80% train set
and a 20% test set, with the 80% training set containing a 10% validation set. The training set
and the test set are used for different aspects. The training set will be applied to train and fit
the four models. The test set will be employed to calculate the values of the three evaluation
metrics that we have used to compare the performance of the four models. During each
prediction, we use the first 8 h of data to predict the value of the next timestamp. In the
same experimental environment, the performances of the four models are shown in Table 3.
We then plotted the comparison between the predicted and true values of these four models
for particulate matter, ozone, sulfur dioxide, and nitrogen monoxide in the air pollution
data. The difference between the results and the real observations can be seen in Figure 5–8.

Table 3. The performance of the four models.

LSTM BiLSTM GRU NewModel

MAE 0.0458 0.0524 0.0446 0.0407
RMSE 0.059 0.066 0.057 0.051
MAPE 27.15 25.60 19.71 16.49

Figure 5. The comparison for particulate matter.

Figure 6. The comparison for ozone.
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Figure 7. The comparison for sulfur dioxide.

Figure 8. The comparison for carbon monoxide.

From the experimental results and comparative figures, we can see that our proposed
model shows the best results in terms of the three evaluation criteria used, MAE, RMSE,
and MAPE. GRU is the best model of the three traditional models. The MAE of the model
we proposed is 0.047, which is 8.74% lower than that of the GRU model. The RMSE of
the model we proposed is 0.051, which is 10.53% lower than that of the GRU model. The
MAPE of the model is 16.49, which is 16.34% lower than that of the best traditional models.
From Figures 5–8, the predicted results of LAD are the closest to the real data, indicating
that LAD has a good performance than the three other models. The experimental results
of the first phase show that our proposed two-layer LSTM attention mechanism model
performs well in predicting air pollution data.

Following the prediction of air pollution data, we obtain the reconstruction error
(RE) between the predicted and real data through the model calculation, and 3 times the
standard deviation of the reconstruction error is selected as the threshold δ. If the RE > δ,
then the data will be labeled abnormal.
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After finishing the first phase, we get the series of labeled data for the second phase.
In the next second stage, we used the classical decision tree process mining algorithm to
extract criteria-compliant CEP rules from the labeled IoT data obtained in the first stage.
Then, we assessed the feasibility of the decision tree algorithm used in our second stage by
calculating the precision, recall, and F1 score of the predictions. The final results for each of
these items are presented in Table 4.

Table 4. Prediction results of the decision tree algorithm.

Class 0 1 Accuracy

Precision 0.79 0.93
Recall 0.80 0.92

F1-Score 0.79 0.93 0.89
Support 180 519 699

We divided the classification results of the decision tree into two categories, 0 and
1. Here, class 0 stands for normal IoT data, while class 1 stands for anomalous IoT data.
Based on the results shown in Table 4, we can observe that the decision tree algorithm has a
prediction accuracy of over 90% for anomalous data. The overall accuracy of the prediction
reached 89%. We also compared the importance and correlation of several attributes in the
air pollution data to the final classification prediction results. The specific results are shown
in Figure 9. By examining the results presented in Figure 9, we can obtain the following
order of importance of these four attributes to the final classification result: ozone, sulfur
dioxide, carbon monoxide, and particulate matter. Each attribute is more than 80% relative
importance with the final classification results, which indicates that the attributes of the IoT
data we used are correct.

Figure 9. The importance of the variables.

Next, we visualize the obtained decision tree model, which will help us better extract
rules from the decision tree. The part of the decision tree is shown in Figure 10. Then we
use codes to convert the decision tree model into CEP rules. Two of the rules we extracted
are as follows:

“ozone>124 and ozone<193 and particulate matter>117.5 and carbon monoxide>126.5 and carbon monoxide
<173.5 and sulfur dioxide>106.5 and sulfur dioxide<192.5”.

“ozone>79.5 and ozone<193 and particulate matter>125.5 and carbon monoxide>126.5 and sulfur dioxide
>106.5 and sulfur dioxide<191”.

What the CEP rules we extracted mean that air quality records will be recognized by
the CEP engine when the hazardous gases meet the conditions at the same time.
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Figure 10. The part of the decision tree.

We take the first rule as an example. According to the Air Quality Index (AQI) issued
by the World Health Organization (WHO) [49], as shown in Figure 11, we can find that
the AQI values for “sulphur dioxide” in our extracted rule are between 106.5 and 192.5,
which is labeled by the WHO as unhealthy and can cause a lot of harm to people’s health.
The AQI values for other harmful gases in the rule are also largely at unhealthy levels.
Therefore, the rules extracted by our proposed framework can be used to identify abnormal
values in the air quality data.

Figure 11. AQI.

Next, we apply the extracted CEP rules to the Flink CEP engine. We then write a CEP
pattern event based on the extracted rules and performed early warnings on real-world air
quality data. The results of the early warning are shown in Figure 12 below.

Figure 12. The warning data.
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5. Discussion

In our work, we propose a framework LAD that could extract CEP rules from un-
labeled IoT data. LAD has two stages. In the first stage, we utilize a two-layer LSTM
attention mechanism model to detect anomalous IoT data. We also compare it with LSTM,
bidirectional LSTM, and GRU algorithms. In terms of three evaluation indicators, MAE,
RMSE, and MAPE, the experiment results show that our proposed model has a better
performance compared to the other three deep learning models. In the second phase, we
use a decision tree data mining algorithm to extract the CEP rules that satisfy the conditions
from the tagged IoT data obtained in the first phase. The two-stage experiments show that
our proposed framework is feasible. At the same time, our work differs from that of other
scholars in many ways.

Our work extracts CEP rules by combing deep learning and data mining methods.
Previous studies extracted CEP rules by rule-based classifiers or CEP editors. Different
methods have their own advantages in different areas. This work applies CEP to the field
of air pollution forecasting and monitoring. Other works apply CEP to human activity
detection and medical applications respectively, i.e., [27,30]. This shows that CEP can
be applied to different areas. Compared with other works, the objects of experiment
comparison and the indicators of evaluation are different. We compare four deep learning
methods and use three evaluation metrics, MAE, RMSE, and MAPE. This is different from
other works, e.g., [33].

Every work has its advantages and limitations. Our work innovatively incorporates
attention mechanisms into deep learning methods and applies them to the field of automatic
extraction of CEP rules. The CEP rules are extracted from the unlabeled data by our
proposed method. Previous studies extracted CEP rules from tagged data by rule-based
classifiers. They complement each other.

6. Conclusions

Energy is the driving force for the development of human society. The efficient use
of energy will play a vital role in environmental protection, green development, and
sustainable city construction. In our work, we propose a framework that extracts CEP
rules from unlabelled IoT data. This framework can be applied to IoT data in the energy
industry, which will promote the development of IoT in the energy sector. By predicting
air pollution data, this framework can be used to help the formulation of controlling air
pollution regulation strategies and drive the development of renewable energies and the
construction of sustainable cities.

The model we proposed also has several limitations. First, the amount of data is
too small. The dataset we used only has air quality data for two months. Therefore,
it is unknown how well our framework will perform in the face of data with seasonal
attributes. So using a larger dataset to experiment with our framework is one of our future
work directions. In addition, our framework learns and extracts CEP rules from historical
datasets, rather than learning CEP rules online. Due to the strong uncontrollability of online
learning [50], the performance of our proposed model has limitations. Therefore, extracting
rules from IoT data through online learning is also a direction for our future work.
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10. Şimşek, M.U.; Özdemir, S. CEP Rule Extraction From Unlabeled Data in IoT. In Proceedings of the 2018 3rd International Confer-

ence on Computer Science and Engineering (UBMK), Sarajevo, Bosnia and Herzegovina, 20–23 September 2018; pp. 429–433.
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