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Abstract: As energy consumption constantly gains importance, it has become one of the major issues
in managing logistics systems. However, it is ranked against other company priorities, and the
rationalization for investing in energy needs to be justified by the savings achieved. A solution for
reducing energy consumption via electric forklifts for performing docking operations at distribution
centers, which requires no investments in infrastructure or equipment, is outlined in this paper. The
solution is based on optimizing inbound dock door allocation, and the energy savings are quantified
using a simulation model. A case study of a local FMCG distributor’s logistics center was conducted
to collect the data and information needed for modeling inbound docking operations and performing
simulation experiments. The optimal dock door allocation was obtained using a linear programming
method using an MS Excel spreadsheet optimizer (Solver), while the simulation of the docking
operations was carried out using FlexSim simulation software. The experimental results show that
the solution outlined in this paper enables savings in the electric energy consumption of forklifts of
between 12.8% and 14.5%, compared to the empirical solution applied by the company in the case
study. The intended contribution of this paper is not limited to presenting an applicable solution
for energy savings in performing logistics processes, but also aims to draw the attention of more
researchers and companies to the ways in which logistics processes are managed and performed in
terms of raising energy efficiency.

Keywords: warehouse dock door allocation; energy savings; linear programming; docking
process simulation

1. Introduction

In terms of the flow of materials in a distribution network, supply chain manage-
ment deals with transport from suppliers to distribution centers, warehousing processes,
inventory and last-mile delivery to the customers. With reference to this, designing a
distribution network may be considered a multi-echelon optimization problem [1]. Sung
and Yang [2] propose a branch-and-price algorithm as an exact algorithm for the cross-dock
(XD) supply chain network design problem; this deals with optimizing the locations of XD
facilities and allocating vehicles for transport between origin and destination nodes via an
XD facility to meet a given set of freight demands at minimum cost, subject to the given
lead time. Mohtashami et al. [3] considered cross-docking in a supply chain and proposed
a multi-objective mathematical model for minimizing the make-span, transport costs and
the number of truck trips in the supply chain. The proposed model allows deliveries from
suppliers to the XD facility, but also direct deliveries from suppliers to end-customers.

This research is focused on the possibilities for energy savings in warehouse docking
operations. The loading dock area is typically the hub of warehouse activities, with vehicles,
inventory and personnel constantly moving in and out. The efficiency of docking operations
has a significant impact on the inventory level and response time to the customers. To ensure
the loading dock and door area are safe and running at maximum efficiency, companies
need to constantly monitor and improve their logistics processes and mitigate potential
risks that can affect it. Mirčetić et al. [4] carried out a case study on the central warehouse

Energies 2022, 15, 5862. https://doi.org/10.3390/en15165862 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15165862
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-5074-5041
https://doi.org/10.3390/en15165862
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15165862?type=check_update&version=2


Energies 2022, 15, 5862 2 of 14

of a beverage company, where the proper engagement of forklifts in loading operations
is crucial for maintaining the defined customer-service level. To deal with the problem of
forklift engagement, they created two expert system (ES) models, using several machine
learning (ML) models. The models try to mimic expert decisions while determining the
forklifts’ engagement in the loading operations.

Besides infrastructure and docking technology, the major issue in optimizing docking
processes is truck-to-gate assignment, which has been addressed by numerous researchers.
Due to the intensity of the working activities, the loading dock area should also be consid-
ered in terms of energy saving possibilities, as current trends in the logistics industry focus
on sustainability and energy efficiency.

The methodology for optimizing cross-dock gate assignment by applying a linear
programming mathematical model is outlined in a practical example of an I-shaped cross-
dock facility by the authors of [5]. Kuo Y. [6] proposed a model for calculating the docking
operations’ make-span, integrated with a variable neighborhood search (VNS), to optimize
the sequencing of inbound and outbound trucks. In [7], the authors analyzed operational
cross-docking decisions that concern CO2 emission and energy consumption, directly
related to moving products from inbound trucks to outbound trucks. Rijal et al. [8] studied
an integrated approach to solving the problem of scheduling trucks and assigning them
to the terminal dock doors, where dock doors can operate in a mixed service mode (both
inbound and outbound trucks can be processed at these mixed-mode doors).

The application of artificial intelligence in optimizing automated storage and retrieval
systems (ASRS) (computer-controlled systems that automatically place and retrieve items
from storage locations in a facility with precision, accuracy and speed; the system is
usually comprised of predefined locations where machines can follow established routes to
obtain items) as a recent trend in the logistics industry has been addressed by numerous
researchers. Brezovnik et al. [9] designed an optimization algorithm to determine the path
and the final position for each product entering the ASRS. They demonstrated how to
plan ASRS using multiple-objective ant colony optimization (ACO). Foumani et al. [10]
considered a robotic ASRS whereby a Cartesian robot picks and palletizes items onto a
mixed pallet for any order. They developed an avoidance strategy to prevent collisions
that might cause the unsafe handling of hazardous items. Due to the complexity of
the problem, they applied the cross-entropy (CE) method. Cardenas et al. [11] dealt
with the problem of high-power-demand peaks due to the simultaneous operation of
the ASRS machines in an automated warehouse, which might cause the electric system
to turn unstable. They presented a genetic algorithm approach to implement demand-
side management (DSM) in the automated warehouse, to minimize instantaneous power
demand while keeping the system store and retrieval times. Mostofi and Erfanian [12]
examined the optimization of multi-shuttle ASRS machine scheduling in shared storage,
in fuzzy and dynamic environments, to minimize travel time. They presented a fuzzy
linear programming mathematical model and used a genetic algorithm (GA) with Matlab
software to obtain optimal solutions.

The results of the aforementioned research papers are mainly evaluated against the
logistics key performance indicators (KPIs) (a key performance indicator (KPI) is a quan-
tifiable measure used to evaluate the success of an organization or a process in meeting
a specific objective), commonly used in supply chain management, such as the distance
travelled, quantity of goods moved, shipment lead time, cost of transport, infrastructure or
inventory. For this reason, it may be difficult to transparently correlate the improvements
achieved by optimization with specific KPIs, set by the company stakeholders, in a particu-
lar case. This issue was addressed by Stanković and Božić in [13], who proposed a linear
programming model (LP model) to optimize the truck-to-gate assignment and designed
a simulation model of inbound docking operations to quantify the respective reduction
in waiting time in docking operations, which were the KPIs set in that case. Generally,
these simulation methods have been widely used in designing and optimizing logistics
processes and systems [14–20], since the time when researchers started needing to use
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general-purpose computer language (such as C) to write program code that would enable
the performance of simulation experiments [21], until the present, when advanced simu-
lation software packages (such as FlexSim) provide user-friendly development interfaces
supported by automatic program-code generation.

Although energy consumption constantly gains importance and has become one of
the major issues in supply chain management, it is ranked against other company priorities,
where the conventional KPIs, directly related to company competitiveness, remain at
the top of the list [22]. To draw more attention to the possibilities for reducing energy
consumption, they should be transparently correlated to improvements in the logistics
processes. Additionally, the rationalization for the adopted measures and investments in
energy saving must be justified by the savings achieved.

In this article, we propose a solution for both improving the docking process effec-
tiveness and reducing the energy consumption of electric forklifts in performing docking
operations. Therefore, the results achieved by optimizing the docking process are quantified
by the respective savings in forklift energy consumption. Moreover, the proposed solution
requires no investments in infrastructure or additional equipment at the distribution center;
reorganizing truck handling is sufficient. The solution is based on optimizing truck-to-gate
assignment using a linear programming mathematical model, while the respective energy
savings are quantified using a simulation model. The solution we outlined in this article
may motivate researchers and companies to find similar possibilities in some other logistics
processes that could be adopted in practice.

2. Materials and Methods

The materials and methodology of the research consist of four stages. In the first stage,
we conducted a case study of a local FMCG (fast-moving consumer goods) distributor’s
logistics center, to collect the data and information needed for modeling inbound docking
operations and performing simulation experiments.

The second stage encompassed designing a mathematical model of the inbound dock-
ing operations and obtaining optimal truck-to-gate assignment using a linear programming
method, using an MS Excel spreadsheet optimizer (Solver).

In the third stage of the research, we designed a simulation model of the inbound
docking operations, and carried out simulation experiments with varied parameters us-
ing the FlexSim simulation software package. The values of the simulation experiment
parameters are related to the FMCG distributor’s empirical truck-to-gate assignment and
to the optimal truck-to-gate assignment obtained in the previous stage. In performing the
simulation experiments, the electric energy consumption of the forklifts was monitored as
the primary key performance indicator (KPI).

In the fourth stage of the research, the forklifts’ energy consumption was related to
the optimization of the inbound dock door allocation, and the electric energy savings were
quantified based on the simulation study results.

There are two main reasons for which we decided to follow this four-stage method-
ology. First, we wanted to evaluate the optimal solutions obtained in the LP model by
correlating the improvements achieved thereof with the respective energy savings in per-
forming the docking operations that were quantified in the simulation model.

The second reason refers to the way in which the energy efficiency issue needed to be
presented to the stakeholders of the distributor. Due to the strict time-window scheduling
of the incoming trucks, the distributor has never encountered a situation in which all the
trucks could not have been handled within the time frame allocated for receiving goods or
with insignificant delay, so this KPI has been continuously met. Therefore, the distribution
center managers have never paid more attention to the truck-to-gate assignment, nor to the
possibilities of the energy savings that could be achieved with reference to that. To bring
this issue to their attention, we needed to demonstrate, in a transparent way, that both
the logistics process effectiveness and the energy efficiency could be raised with existing
resources, only by optimizing the warehouse dock door allocation. The most convenient
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way to do so was to perform a demonstration in a 3D simulated model of the warehouse. In
addition to the statistics on the warehouse performance, the simulation model also enables
experimentation with different layouts, equipment, truck scheduling, etc.

2.1. Case Study: Inbound Docking Operations at the FMCG Distribution Center

The case study was carried out in February 2022 at the logistics center operated by
one of the leading Croatian FMCG distributors (hereinafter referred as Distributor). The
name of the company is not quoted due to General Data Protection Regulation (GDPR).

The aim of the case study is to learn the logic of the inbound docking operations,
determine the activities and resources involved in performing those operations, and collect
and process the respective data. With reference to this, the inbound side of the distribution
warehouse was analyzed, where suppliers deliver the goods on daily basis according to the
orders placed by the Distributor’s procurement department. The facility is a conventional
distribution warehouse with manually operated electric forklifts.

Each supplier is assigned a time window for his truck to arrive. The total time allocated
for receiving goods (suppliers deliver palletized goods to the distribution warehouse) is
limited to the period from 08:00 AM to 01:00 PM, divided into five time windows of one
hour each, while a truck must arrive within the first half of the time window. The inbound
dock doors (Gates 1 to 8) are assigned to the trucks according to the arrival order, meaning
the first truck to arrive within a time window is assigned to Gate 1, the second truck to
arrive is assigned Gate 2, etc. A sample of the truck arrival sequence is shown in Table 1.
The columns, from left to right, refer to: date of arrival, time of arrival, total time in seconds
elapsed from the beginning of the shift (08:00 AM) to the truck arrival (these data are
calculated for the purpose of simulation experiments), the truck reference (name), the gate
assigned to the truck, and the number of pallets for each storage zone (there are seven
storage zones: SZ1 to SZ7).

Table 1. The trucks arrivals input data recorded on 1 February 2022.

Date Time Time (s) Name Gate Pallets
SZ1

Pallets
SZ2

Pallets
SZ3

Pallets
SZ4

Pallets
SZ5

Pallets
SZ6

Pallets
SZ7

1 February 2022 8:00:00 0 Truck1 1 3 0 2 0 8 6 14
1 February 2022 8:02:00 120 Truck2 2 6 3 5 0 0 6 13
1 February 2022 8:03:00 180 Truck3 3 0 5 6 5 0 8 9
1 February 2022 8:09:00 540 Truck4 4 3 5 3 8 10 1 3
1 February 2022 8:11:00 660 Truck5 5 17 0 7 5 0 0 4
1 February 2022 8:15:00 900 Truck6 6 9 0 7 5 4 0 8
1 February 2022 8:18:00 1080 Truck7 7 9 5 6 4 6 0 3
1 February 2022 8:20:00 1200 Truck8 8 10 0 9 4 2 0 8
1 February 2022 9:01:00 3660 Truck9 1 2 5 6 5 0 8 7
1 February 2022 9:02:00 3720 Truck10 2 0 1 2 0 8 8 14
1 February 2022 9:10:00 4200 Truck11 3 3 5 3 8 10 1 3
1 February 2022 9:14:00 4440 Truck12 4 11 0 7 4 2 0 9
1 February 2022 9:16:00 4560 Truck13 5 6 3 5 0 0 6 13
1 February 2022 9:17:00 4620 Truck14 6 9 5 6 4 6 0 3
1 February 2022 9:21:00 4860 Truck15 7 15 0 8 5 0 5 0
1 February 2022 9:22:00 4920 Truck16 8 9 0 7 5 4 0 8
1 February 2022 10:00:00 7200 Truck17 1 7 2 6 1 0 8 9
1 February 2022 10:01:00 7260 Truck18 2 0 5 2 0 8 6 12
1 February 2022 10:05:00 7500 Truck19 3 10 0 9 4 2 0 8
1 February 2022 10:06:00 7560 Truck20 4 0 7 0 8 6 9 3
1 February 2022 10:10:00 7800 Truck21 5 9 6 5 4 6 0 3
1 February 2022 10:12:00 7920 Truck22 6 11 0 7 3 4 0 8
1 February 2022 10:18:00 8280 Truck23 7 18 4 0 0 0 4 7
1 February 2022 10:19:00 8340 Truck24 8 9 0 7 5 0 7 5
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Table 1. Cont.

Date Time Time (s) Name Gate Pallets
SZ1

Pallets
SZ2

Pallets
SZ3

Pallets
SZ4

Pallets
SZ5

Pallets
SZ6

Pallets
SZ7

1 February 2022 11:05:00 11,100 Truck25 1 9 0 7 5 4 0 8
1 February 2022 11:06:00 11,160 Truck26 2 0 5 6 5 0 8 9
1 February 2022 11:09:00 11,340 Truck27 3 5 0 2 0 8 6 12
1 February 2022 11:10:00 11,400 Truck28 4 0 5 0 8 10 7 3
1 February 2022 11:11:00 11,460 Truck29 5 10 0 9 4 2 0 8
1 February 2022 11:17:00 11,820 Truck30 6 16 3 3 0 0 4 7
1 February 2022 11:18:00 11,880 Truck31 7 12 0 7 5 0 5 4
1 February 2022 11:19:00 11,940 Truck32 8 9 5 6 4 6 0 3
1 February 2022 12:00:00 14,400 Truck33 1 2 5 6 5 0 8 7
1 February 2022 12:02:00 14,520 Truck34 2 2 0 2 0 8 7 14
1 February 2022 12:04:00 14,640 Truck35 3 9 5 6 4 6 0 3
1 February 2022 12:05:00 14,700 Truck36 4 3 5 3 8 10 1 3
1 February 2022 12:09:00 14,940 Truck37 5 10 0 9 4 2 0 8
1 February 2022 12:11:00 15,060 Truck38 6 6 3 5 0 0 6 13
1 February 2022 12:15:00 15,300 Truck39 7 9 0 7 5 4 0 8
1 February 2022 12:16:00 15,360 Truck40 8 18 2 5 2 0 0 6

∑ 296 99 208 146 146 135 290

These data were needed as input data for optimizing the inbound dock door allocation
and for performing the simulation experiments. The data were recorded on three different
working days, in three different weeks in February 2022.

The pallets are unloaded from the truck to the receiving zone corresponding to the gate
which is assigned to that truck (there are eight receiving zones corresponding to eight gates:
Receiving Zone 1 corresponds to Gate1, Receiving Zone 2 corresponds to Gate 2, etc.).

From the receiving zone, the pallets are moved to their respective storage zone and
placed in their designated address in the pallet rack. Each of seven storage zones consists of
two (SZ2 and SZ6), three (SZ1, SZ3, SZ4 and SZ5) or four (SZ7) pallet racks. Moving pallets
to the storage zones is performed using electric forklifts (there are four electric forklifts
allocated to this operation).

A simplified layout of the inbound side of the distribution warehouse is depicted in
Figure 1. The pallets are painted in different colors with reference to their respective storage
zones. The layout was designed in FlexSim, scaled against the real warehouse structure
and space.

In addition to the truck arrivals data, for the purpose of designing the simulation
model and simulating the inbound docking operations, the following data were collected
and recorded:

• The dimensions of the warehouse sections and objects;
• The length of the forklift paths;
• The forklift travel speed, loading time and unloading time;
• The duration of the docking operations.

Since the forklifts’ energy consumption is the main issue here, the docking operations
not performed using forklifts, such as unloading pallets from the trucks to the receiving
zones, checking goods against orders and placing pallets into the racks, are detailed only to
the extent that is sufficient for obtaining the desired simulation results.

The energy consumption of the forklifts is given by the manufacturer’s technical
specifications: 4.3 kWh/h according to EN16796:2016 (this European Standard specifies the
general test criteria and requirements for measuring energy consumption for self-propelled
industrial trucks during operation; for electric trucks, the efficiency of the battery and the
battery charger is included).
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2.2. Optimizing Inbound Dock Door Allocation at the Logistics Center

Determining the optimal truck-to-gate assignment is a resource-allocation problem
which can be approximated by a linear programming model, i.e., a resource-allocation
model. Incoming trucks are assigned to the inbound dock doors (gates) with reference
to the quantity of goods (number of pallets) and the length of the path a forklift travels
to move the pallets from a particular receiving zone to the respective storage zone. The
rectilinear metric (in a rectilinear metric, the distance between two points in a plane consists
of paths which are always parallel to the axes at right angles; the rectilinear distance is also
referred as the Taxicab distance or Manhattan distance) is used instead of the Euclidean
metric since the forklifts follow similar geometry when travelling across transport corridors
within the warehouse.

We designed a linear programming mathematical model to describe the problem of
optimizing inbound dock door allocation (truck-to-gate assignment). The structure of the
model is explained hereinafter.

Objective function:
The criterion of optimality is to minimize the number of pallets moved over the

distances travelled by the forklifts, which is equal to the sum of the products of the number
of pallets and respective rectilinear distances, as given by Equation (1).

Constraints:

1. Each incoming truck must be assigned a gate, as given by Inequity (2);
2. Each gate can be assigned to only one or no incoming trucks, as given by Inequity (3);
3. The decision variable xgt is binary, as given by Expression (4);
4. The total number of incoming trucks must not exceed the total number of gates

(receiving zones), as given by Inequity (5).

Input data:

• The number of incoming trucks;
• The number of pallets for each storage zone in each incoming truck;
• The total number of gates (receiving zones);
• The total number of storage zones;
• The rectilinear distances from the gates (receiving zones) to the storage zones.
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The mathematical formulation of the model is given by the Expressions (1)–(5):

minF =
m

∑
g=1

n

∑
z=1

l

∑
t=1

ptz·rgz·xgt (1)

m

∑
g=1

xgt = 1 ∀t = 1, . . . , l (2)

l

∑
t=1

xgt ≤ 1 ∀g = 1, . . . , m (3)

xgt ∈ {0, 1} ∀g = 1, . . . , m ; t = 1, . . . , l (4)

m ≥ l (5)

where:

ptz = the number of pallets in incoming truck t to be placed into the storage zone z;
rgz = the rectilinear distance between the gate (receiving zone) g and storage zone z;
xgt = the decision variable:

1 = gate g assigned to incoming truck t
0 = gate g not assigned to incoming truck t;

m = the total number of gates (receiving zones);
n = the total number of storage zones;
l = the total number of incoming trucks.

The optimal solution to the inbound dock door allocation was obtained using the
model with an MS Excel spreadsheet optimizer (Solver) (Solver is a Microsoft Excel add-in
program that uses techniques from operations research to find optimal solutions to all
kinds of optimization and decision problems). We found this software tool suitable for
several reasons. It uses the Simplex algorithm for solving linear problems, which is made
flexible and easy to use, as well as fast, for problems of the dimensions we were dealing
with. Even if the limitations of Solver could have affected the quality of the results, which
is not the case here, it would have an insignificant impact on the final outcomes of the
research. The optimization results obtained by applying Solver were merely used to create
different scenarios for the simulation experiments.

Moreover, using Solver requires no additional installation besides the standard MS
Office, which has been generally used, making it suitable for daily use in real situations.

The solution applied by the Distributor (empirical solution) and the optimal solution
of the inbound dock door allocation for the first time window, on 1 February 2022, are
shown in Figure 2.

In the Distributor’s empirical allocation, the gates are assigned to the incoming trucks
according to the arrival sequence: Gate 1 is assigned to Truck 1, Gate 2 is assigned to
Truck 2, Gate 3 is assigned to Truck 3, . . . , Gate 8 is assigned to Truck 8.

In the optimal allocation, the gates are assigned to the incoming trucks according to
the values of the decision variables (xgt): Gate 1 is assigned to Truck 5, Gate 2 is assigned to
Truck 8, Gate 3 is assigned to Truck 7, Gate 4 is assigned to Truck 6, Gate 5 is assigned to
Truck 2, Gate 6 is assigned to Truck 4, Gate 7 is assigned to Truck 3 and Gate 8 is assigned
to Truck 1.

The improvement achieved via optimization is quantified by the decrease in the
objective function value, which cannot be expressed in a physical dimension. This is not
an issue here, because the energy consumption of the forklifts is to be quantified in the
simulation model, in different scenarios, which are switched with respect to the inbound
dock door allocation (empirical vs. optimal).
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2.3. Simulation Study of the Inbound Docking Operations

The aim of the simulation study is to quantify the impact of the inbound dock door
allocation on the electric energy consumption of the forklifts when performing inbound
docking operations. For this purpose, the input data collected in the case study were
analyzed, and the current-state simulation model was designed to simulate inbound
docking operations. The energy consumption of the forklifts was monitored in simulation
experiments, which were performed with the arrivals’ input data recorded on 1, 7 and
25 February 2022. Each experiment consisted of two scenarios, one with the empirical
and the other with the optimal inbound dock door allocation, as the parameters of the
simulation model.

The simulation study was carried out by using FlexSim simulation software
(version 2021.1.2), which is a professional software tool that models, simulates, predicts
and visualizes business systems in a variety of industries: manufacturing, material han-
dling, healthcare, warehousing, mining, logistics and more. We used FlexSim simulation
software due to its powerful 3D engine, which enabled us to present the research findings
to the stakeholders of the Distributor in a proper way. Since they are not academics, the
presentation could not be too abstract, but more technical and as transparent as possible.
Therefore, we produced a real-time 3D animation of the docking operations with a dynamic
display of the state and performance indicators.

The simulation model was built using two user interfaces: the 3D model and the
Process Flow tool. The 3D model is where the inbound docking operations are visualized
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using 3D graphics. The Process Flow tool is where the logic that powers the 3D model is
defined, as shown in Figure 3.

Figure 3 also shows the dashboard, which is used to dynamically (in the real time)
display the state and performance indicators of the objects in the simulation model, as well
as to record the respective statistical data for further processing.
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3. Results
3.1. Results of Optimizing the Inbound Dock Door allocation

The optimization of the inbound dock door allocation was performed for each of the
five time windows on 1, 7 and 25 February 2022. The objective function values in the cases
of empirical and optimal dock door allocation are graphically presented in Figure 4.

The values of the objective function are nondimensional (multiplying the number of
pallets by the rectilinear distance), so can only be used to compare the optimal solution
obtained in the linear programming model against the empirical solution applied by the
Distributor. The improvement achieved thereof is quantified by the percentage decrease
in the objective function value. The values of the objective function differ across working
days and time windows due to the various inbound truck loads (number of pallets for each
storage zone) delivered by the suppliers (cf. Table 1).

While the objective function values reflect the improvements achieved by optimization,
the decision variables (optimal truck-to-gate assignment for each time window) represent
parameters to be used in subsequent simulation experiments.
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3.2. Results of the Simulation Study

We performed three simulation experiments, against two scenarios each, to monitor the
energy consumption of the forklifts while they are engaged in performing inbound docking
operations (moving pallets from the receiving zones to the storage zones). Each experiment
refers to the working day (1st, 7th and 25th of February 2022), while the scenarios are
switched by changing the parameters (empirical or optimal dock door allocation). The total
energy consumption of the forklifts in performing inbound docking operations (sum of
the a.m. working days) is shown in Figure 5. The following inbound docking operations
were monitored:

• Travel empty—the movements of the forklifts (without a pallet) along the path from the
current position to the receiving zone where the pallet is to be loaded;

• Travel loaded—the movements of the forklifts (with a pallet) along the path from the
receiving zone where the pallet is loaded to the storage zone where the pallet is to
be unloaded;

• Offset travel empty—the movements of the forklift across the receiving zone (without a
pallet) before loading the pallet;

• Offset travel loaded—the movements of the forklift across the receiving zone (with a
pallet) after loading the pallet;

• Loading—lifting the pallet in the receiving zone;
• Unloading—lowering the pallet in the storage zone.

The percentage shares of the forklifts’ energy consumption in performing each of
the monitored inbound docking operations, in both scenarios:—(a) empirical dock doors
allocation and (b) optimal dock doors allocation—are depicted in Figure 6.

The energy consumption of the forklifts while performing inbound docking operations
was recorded in each of the three simulation experiments carried out against the two
scenarios. The respective values (energy consumption expressed in kWh) were added
together (to include the three working days: 1, 7 and 25 February 2022) in each scenario
and compared to quantify the energy savings achieved by optimizing the inbound dock
door allocation.
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To make the quantification more generalized, the savings in the forklifts’ energy
consumption while performing inbound docking operations are expressed as percentages,
instead of absolute values, as depicted in Figure 7.
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4. Discussion

Optimizing the inbound dock door allocation reduced the quantity of work employed in
performing the inbound docking operations. The improvements achieved thereof are quan-
tified by a decrease in the objective function value (obtained using the linear programming
model). The decrease in the objective function values across working days and time windows
ranged from a minimum of 12.8% to a maximum of 15.5%, as shown in Figure 8. The average
decrease achieved in the sample (the three working days) equals 14.5%.
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door allocation.

The optimal values of the linear programming model decision variables, representing
the optimal inbound dock door allocation, were used as parameters in the simulation model.

The results of the simulation study enable comparison of the forklifts’ energy consump-
tion in performing inbound docking operations in two scenarios (empirical vs. optimal
dock door allocation) and quantification of the reduction achieved by optimizing the in-
bound dock door allocation, as the main KPI in this research. Across the working days
(1, 7 and 25 February 2022.), the following reductions in the forklifts’ energy consumption
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were recorded: 12.8%, 13.2% and 14.5%, as shown in Figure 9. The average reduction
achieved in the sample (the three working days) equals 13.5%.
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The average reduction in the forklifts’ energy consumption (13.5%) does not corre-
spond with the average decrease in the objective function value (14.5%), because each
inbound docking operation is not equally affected by the optimization (cf. Figure 7). Addi-
tionally, the shares of particular docking operations in the total energy consumption are
different (cf. Figure 6).

To obtain more accurate results, future research should include a bigger sample and
perhaps consider the possibilities of energy savings by optimizing other sections of the
distribution center, such as cross-docking or outbound docking operations.

5. Conclusions

Applying a business policy oriented towards sustainability and minimizing environ-
mental impact while developing competitive advantages makes companies more focused
on the possibilities for reducing energy consumption when performing their activities. We
proposed a solution for reducing the energy consumption of electric forklifts in performing
docking operations by optimizing inbound dock door allocation.

The proposed solution enables a reduction in the quantity of work employed in per-
forming inbound docking operations, which results in savings in the energy consumption
of the forklifts. The energy savings were quantified in kWh using the FlexSim simulation
model in a sample of three working days: 1, 7 and 25 February 2022. The average energy
saving achieved across the time windows in the a.m. working days, determined by com-
paring the forklifts’ energy consumption in two scenarios (empirical dock door allocation
vs. optimal dock door allocation) was 13.5%.

Companies that have not encountered difficulties in meeting their logistics KPIs may
be reluctant to pay more attention to the optimization of their logistics processes, or to the
possibilities of the energy savings that could be achieved thereof. Therefore, the intended
contribution of this paper is not limited to outlining the possibility of achieving energy
savings in performing inbound docking operations, but also aims to draw the attention of
more researchers and companies to the possibilities of raising the effectiveness and energy
efficiency of logistics processes.

In this research we also showed that energy savings can be achieved by optimizing
logistics processes, which may not necessarily require investments in infrastructure or
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additional equipment. The proposed solution may inspire research into similar possibilities
in some other logistics processes that could easily be adopted by companies.
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9. Brezovnik, S.; Gotlih, J.; Balič, J.; Gotlih, K.; Brezočnik, M. Optimization of an Automated Storage and Retrieval Systems by
Swarm Intelligence. Procedia Eng. 2015, 100, 1309–1318. [CrossRef]

10. Foumani, M.; Moeini, A.; Haythorpe, M.; Smith-Miles, K.; Brezočnik, M. A cross-entropy method for optimising robotic automated
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