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Abstract: This paper assesses the profitability of battery storage systems (BSS) by focusing on the
internal rate of return (IRR) as a profitability measure which offers advantages over other frequently
used measures, most notably the net present value (NPV). Furthermore, this study proposes a multi-
objective optimisation (MOO) approach to IRR estimation instead of relying on the simple linear
optimisation and compares the results to the popular linear optimisation with battery cycle-cost
penalty. The analysis is conducted under perfect foresight conditions by considering multiple revenue
streams: arbitrage trading in the day-ahead and intraday markets, peak shaving, participating in the
primary reserves market, and from photovoltaic (PV) power-generation unit. Data are collected for
the German power market for 2017 and 2021. The results show that MOO approach yields similar IRR
estimates to the cycle-cost model in 2017. However, higher market volatility and increased electricity
prices in 2021 resulted in tangible differences. The analysis shows that, if such conditions are coupled
with a low battery capacity price, the MOO method significantly outperforms the cycle-cost model.
The effects of battery calendar lifetime and state of charge which decrease profitability are also
considered. Nevertheless, a noticeable rise in profitability in 2021 relative to 2017 could provide
enough compensation to address the issue of relatively poor viability track record.
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1. Introduction
1.1. Background and Motivation

The need to address climate change issues has seen an increase in the share of renew-
able energy sources (RES) in the power sector, which is expected to reach 85% worldwide by
2050 [1]. However, the inherent volatility of their power generation needs to be addressed
in order to promote the green transition. This is especially true in the EU, which has set the
ambitious goal of reaching carbon neutrality by 2050 [2]. Increasing the flexibility of the
power system is seen as a solution to the problem [3]. To that purpose, operation optimi-
sation and economic viability of distributed energy resources (DERs) providing supply-
or demand-side flexibility is becoming crucial [4]. The viability of various types of energy
storages acting as DERs is therefore frequently examined. Although many commercialised
technologies are available, battery storage technology is often in the research focus for a
number of reasons, but most importantly due to the fact that benefits of battery storage
technologies in the RES integration process are broadly acknowledged [5]. This claim can
be further backed up by [6,7], who elaborate in detail on the technical characteristics of
batteries which make them suitable to various purposes. In [8], their potential to participate
in the reserves market is further pointed out, with [9] stressing the need to further explore
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and develop the technology for high power applications, while [10] emphasize their ability
to support multiple business models.

Apart from research dealing with technical aspects of battery storage system (BSS)
operation modelling, their economic viability has been the focus of many research pa-
pers. Studies on this topic vary greatly depending on a number of factors. For instance,
ref. [11] focus on forecasting while [12] assess profitability from perfect foresight perspec-
tive. Refs. [11,13] deal with determining the optimal size of the BSS whereas [12,14,15] test
different battery capacities in order to assess sensitivities and identify the break-even points.
Refs. [15,16] focus on households as potential BSS clients, unlike [11,12], who base their
analysis on data for 50 industrial sites. Furthermore, ref. [14] assess the BSS profitability
by considering arbitrage trading in the electricity market and participation in the reserves
market. Ref. [12] add peak-shaving as a source of revenue in the analysis and [11] also
consider photovoltaic (PV) power sources in the parallel revenue stream setup.

The various different approaches complicate comparison between research and make
generalisation of conclusions quite difficult. However, based on the papers addressing
the economic viability, it should be possible to clearly draw conclusions regarding the
assessment of profitability. While in some cases, such as in [12,14,16], the authors provide
clear interpretation of their findings, the differences in methodology used, reported rates
and seemingly conflicting conclusions blur the overall picture. For instance, findings in [12]
suggest poor profitability, which is also indicated by a low discount rate of 2% applied in
the research. Contrary to this [14] report profitability rates up to 7.5%, whereas profitability
in the work of [16] is even higher, in the range from 6.4% to 21.9%.

Apart from the more general problem above, our research indicates an additional,
more specific problem affecting the estimation of profitability which is related to the
battery lifetime assumption. In some instances, such as in [11], the battery lifetime is
fixed and equals the battery calendar lifetime. In other studies, such as in [14], the battery
cycle lifetime is used, leading to variable project lifetimes depending on battery usage.
Sometimes, results for the assumptions are compared, e.g., in [12], to assess the impact of
the different assumptions. The difference can prove to be quite significant if the number of
battery cycles is not used up evenly over the analysed period and if the profit that battery
cycles generate fluctuates greatly. In order to overcome the issue and optimise the battery
use a simple method of introducing a variable related to the battery cycle cost is frequently
applied, such as in [17-19]. However, ref. [20] stresses that the approach may not always
lead to optimal battery use.

1.2. Our Approach and Research Objective

In order to mitigate the first problem, we advocate the use of a profitability measure
which seems to have been frequently overlooked in the BSS profitability assessment litera-
ture. We argue in favour of the internal rate of return (IRR) as a preferred method to assess
profitability given the advantages over the popular net present value (NPV) and many
other frequently used profitability measures. Namely, unlike the simple payback period
method and rates of return on invested capital which disregard the time value of money
and fail to take into account the entire project lifetime, the IRR (just as the NPV) takes
both into account. In contrast to the NPV, there is no need to make assumptions regarding
the discount rate estimation and no need to perform sensitivity analysis to determine the
break-even point, since the IRR is the profitability level (which can also be viewed as the
discount rate) at which the NPV equals zero. Therefore, we argue that IRR allows easier
comparison and generalisation of conclusions regarding the BSS profitability fostering
further research on the topic while taking into account many possible contexts of such
studies. However, apart from research by [16] and, more recently, ref. [21] it is hard to find
additional papers which made use of it.

Regarding the battery lifetime assumption, this research proposes the multi-objective
optimisation (MOQO) approach to define optimal battery usage and estimate the IRR, instead
of relying on the simple linear optimisation or the popular battery linear optimisation with
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battery cycle-cost penalty (CC). Encouraged by the work of [20] we argue that MOO can
outperform the CC approach since under CC the battery is used only when the available
benefits outweigh the cost of battery degradation. In our analysis, we apply the MOO to
determine the optimal cash flows the BSS generates by the trade-off between the cash flow
size and the number of years they are expected to flow in based on the battery cycle lifetime.
Without such optimisation the cash flow size could be maximised at the expense of battery
lifetime and vice versa, adversely affecting the profitability in both cases.

Therefore, the goal of this paper is to comprehensively assess the BSS profitability in
the German power market under perfect foresight conditions. The assessment is based on
the IRR as a profitability measure and by comparing the results for competing optimisation
methods. We consider multiple revenue streams available to the BSS and related to the
arbitrage trading in the day-ahead and intraday markets, participation in the frequency
containment reserves (FCR) market as the primary reserves market, peak shaving for
50 industrial sites and power generation from a PV unit.

1.3. Research Contribution

Our research contributes to the existing literature in several aspects. First of all, it ap-
plies the IRR as a profitability assessment measure which complements the recent research
focused on the economic viability of BSS. Recent papers by [11,12,15] all rely heavily on the
NPV method while [14] apply a simple rate of return suffering from the major drawbacks
already mentioned. Additionally, by employing the MOO to optimise the BSS cash flow
relative to the battery lifetime and, by comparing the obtained estimates to the popular CC
approach, this study provides valuable insight regarding the possible improvement in BSS
profitability estimation. Indeed, our findings demonstrate, as suggested by [20], that under
certain conditions the MOO can outperform the popular CC approach. Specifically, we find
that an increase in electricity prices accompanied by their increased volatility and a drop in
battery prices presents a combination of factors leading to a strong MOO outperformance.

The paper has the following structure. Section 2 describes the data and methodology
and also presents technical assumptions of the BSS. Section 3 reveals research findings by
focusing on estimated IRRs in different operational and optimisation settings. Section 4 dis-
cusses the findings and concludes the paper by addressing its limitations and by providing
the guidelines for future research.

2. Materials and Methods
2.1. Data

This research is performed using the data collected for the German power market in
2017 and 2021. Wholesale electricity prices were obtained from the ENTSO-E webpage
(60-min day-ahead prices) and the EPEX-Database (15-min intraday prices). Since the 2021
intraday prices were not available, we ran a stochastic simulation to generate a time-series
of intraday prices. Generated intraday prices are a result of corresponding day-ahead prices
adjusted for the stochastically simulated spread between day-ahead and intraday prices.
This spread was a result of the random number generator assuming the normal distribution
and the spread modelled based on the 2017 dataset. More specifically, we recognized spread
level as a function of month-of-the-year and corresponding day-ahead price level, while
spread volatility (measured as standard deviation) was month-of-the-year dependent.

Table 1 shows that data for 2017 and 2021 represent very different market conditions
in the German power market. The descriptive statistic show clearly that price level and
volatility of wholesale electricity prices in 2021 is significantly higher than in 2017. The
described difference in market conditions plays an important factor which significantly
influences the presented findings as shown later in the paper.
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Table 1. Descriptive statistics of wholesale electricity prices in the German power market (€/kWh).

Day-Ahead Price Intraday Price Day-Ahead Price Intraday Price

2017 (€/kWh) 2017 (€/kWh) 2021 (€/kWh) 2021 (€/kWh)
Mean 34.19 33.91 96.85 86.11
St. Deviation 17.66 21.26 73.68 62.84
Kurtosis 9.84 16.38 5.26 4.68
Skewness 0.02 0.77 1.97 1.81

From the ENTSO-E webpage we downloaded the FCR prices for the 2017 (weekly
resolution) and 2021 (four-hour resolution). We set the peak power price and the elec-
tricity supply fees for the average small- and medium-sized enterprises (SMEs) in Baden-
Wiirttemberg. For this research, observed load profiles (15-min resolution) were obtained
from [22]. These relate to 50 German industrial plants in 2017 and all of these plants were
characterised as SMEs. The PV electricity production potential was acquired from the
renewables.ninja website. For the investment (purchase) cost of the operating hardware
the following assumptions were initially made: 400 €/kWh plus 400 €/kW as the price for
the battery storage, and 1750 €/kW as the price for the PV system.

2.2. Internal Rate of Return (IRR)

This paper is based on the IRR as a key economic metric for assessing the profitability
of investment projects. Namely, when deciding whether to invest large amounts of capital,
if IRR exceeds the cost of capital (the required minimum rate of return for an investor),
the investment project is considered to be efficient from the financial point of view. More
specifically, IRR represents the compounded annual profitability rate of a project based
on the time-series of cash flows, i.e., IRR confronts expected capital expenditures (cash
outflows) and operating benefits (net cash inflows) over the project’s lifetime. Since battery
storage purchase represents large capital expenditure for the observed BSS, the level of IRR
greatly defines optimal battery size and overall operational setting. Based on the observed
historical data for 2017 and 2021, the optimal mix of the BSS business activities (energy
savings, revenues from ancillary services, and electricity prices arbitrage trading) resulting
in annual net cash flows is estimated for each year separately. This maximal (optimal)
level of annual benefits is further assumed as a continuous and constant level of cash flows
during all years of operation that will be available to investors. Thus, we define IRR as:

Q+)'-1_ I / )

a+0T-i CF

where i is the internal rate of return of BSS, T is the battery lifetime, I is initial investment
in battery and CF are annual net cash flows which are assumed constant for the whole
period T. Battery cycle lifetime of 5000 cycles is assumed throughout the analysis. The
battery cycle lifetime expressed in a number of years is calculated based on the number of
battery cycles used up in the annual net cash flow estimation as a result of optimisation
and the maximum number of cycles (5000). Battery calendar lifetime can also be used for
battery lifetime and when used in this paper it was assumed to stand at 20 years.

2.3. Technical Assumptions of the Battery Storage System

We refer to the battery storage together with photovoltaics as the battery storage
system (BSS) which supplies the energy to the industrial plants. The PV power and the
battery storage power is kept at an equal level throughout the analysis. PV can provide
energy to industrial plants, charge the battery storage or sell the energy directly to the
grid. A battery can charge itself from the PVs or by buying from the grid and can be
discharged to meet the demand of industrial plants or to sell the electricity to the grid. It is
also possible for the battery to provide ancillary services in the form of FCR. Finally, the
industrial plants” demand can be met by buying directly from the grid. Also, BSS generates
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revenue by performing peak shaving and arbitrage in day-ahead and intraday markets
which are observable in the lower cost of peak power and electricity.

2.3.1. Basic Model Formulation

In the optimisation model the cost function and its components have to be defined first.

cost =Y (Z Cw = R£CR> + C peak )
w \'i

th_ewh Pwh Z(th pw’“?)+

4 . .
Z (ez%,rﬁi_BSS +e u%’rlii_Prod) e fees, Yw, h 6)
R FCR P FCR p FCR Yo (4)
w 7
cpeak _ p peak | p peak (5)
p peak >e zfr;f; -4, Vw,h,q (6)

In (2) the cost function, which is the objective function of the model, is defined considering
the cost of electricity, cost for peak power, and revenues from primary reserves. In (3) the
cost of electricity with fees is computed. Since the electricity can be sold back to the grid for
a price pBIZ or piUDh . the fees are computed separately only for electricity bought from the

gr]id BSS and e grld_prod
w q

ePAand e D Equatlon (4) defines weekly revenue from prlmary reserves as the product
of the power reserved for providing FCR and the FCR market price. In (5), the cost of peak
power is defined as a product of peak power and peak power price. The peak power is
defined in (6). Multiplying by 4 is done because of the 15-min resolution.

grid, e . In the case of selling back to grid, e q s negative and so are

soef R =n . pECR vy (7)
0efR < s0e™,  Vw (8)
PFCR < pBSS vy )

S0€y, g < SO€ max _ soe£CR, Yw, h,q (10)
Peh < PP —PIR, v, g (11)
Pois, < PP —PIR, v, hg (12)

In (7), capacity to power ratio for providing FCR is defined with factor n. Equations (8) and (9)
are constraints on capacity and power reserved for FCR, while (10) to (12) define the
remaining energy and charging and discharging capacities.

P ch _ pdis

w,h, w,h,

80y 11,9 = S0€y g1+ # Yw, h,q\ q1 (13)
Pufktlt q ufl;?q

80y 11 = 80€y 11,4, T f Vw, h, g1\ hp (14)



Energies 2022, 15, 5859

60of 17

h di

- Pufh q Pw;zsq

S0€y g = S0€w 1 jyes,q: + —
Vw, hi, 41\ Wy (15)
$0€w, hiy,q; = 0 (16)
P < xung- PP, Vw,hg (17)
pdis < (1 PP, ww,h 18
w,h,q ( xw,h,q) ’ w,n,q ( )

In (13)—(16) the state of charge of the battery in the latest interval is defined. It relates to
charging or discharging from the previous interval. In (17) and (18), binary variable x is
used to rule out the concurrent charging and discharging of the battery.

grid_prod pv_prod

__BSS_prod
dw g = ew h,q + ew,h,q + ew,h,q 4 wa h/ q (19)
4
v v_prod v_erid v_BSS
PP =% (euljh; Py Brd Pt ) Vo, I (20)
q=1
grld grid_BSS grid_prod BSS_grid pv_grld
€k 4 ew,h,q + ew,h,q - ew,h,q € q 7
Yw, h,q (21)
< grid DA 4
Z ew,h,q = ey T Z w,h,q w, h (22)
q:] :

In (19), buying from the grid, discharging previously stored electricity from the battery, or
using electricity generated by PV is defined to meet the demand from industrial plants.
In (20), the utilization of electricity from PV is defined. It can be stored in the battery, used
for the demand of industrial plants, or sold to the grid. In (21) and (22), the electricity
traded with the grid is described. Equation (21) nets the purchasing for industrial plants and
charging the battery with sale of PV electricity and discharging the battery. Equation (22)
defines the purchasing or selling the electricity at the intraday and day-ahead markets.

h grid_BSS | pv_BSS
P g = A (e Pt,q + ewl‘;l/q ), Yw,h,q (23)
i 1 BSS_grid | BSS_prod
dis _ -8 _p
w'lhsfq - ‘u dis T ( w,h,q + ew,h,q )/ vu)/ h/ q (24)
eTBﬁ < Ywh M, VZU,h (25)
eon > (Yop—1) M, Vuw,h (26)
whq<]/wh M, Yw,h,q (27)
el})Dh g — (yw h — ) MI Vu)/ h/ q (28)
o BSS_total _ Z Z Z(eu%rhii_BSS te ZEXT;SSS) +
w h q r s
PJCR . fFCR> (29)

Equations (23) and (24) define the power of charging and discharging for each interval,
taking into account the charging and discharging inefficiencies. In (25) through (28), the
binary variable y is used to rule out the simultaneous buying at the one market and selling
at the other. Finally, (29) computes annual cycle degradation as total energy that went
through the battery. The FCR factor f F°R is used to compute the cycle degradation while
providing the FCR.
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2.3.2. FCR Market Formulation for 2021

In 2021, FCR market is based on 4-h resolution, so the model needs to be adjusted
accordingly. Equations (30) and (31) are added to the model to describe the 4-h resolution.

soeg N = soep iR Vw, b h%4 =1,k € {1,2,3} (30)

PoiR = PR Vw,h:h%4 =1,k € {1,2,3} (31)

The hourly dimension is added to all FCR related variables, i.e., (2), (4) and (7) through (12).
In Equations (7) through (12), hourly dimension is simply added to variables, soefR

becomes soeu}j%R and PFCR becomes Puf %R. However, since the FCR market is based on 4-h

resolution, or{ly every fourth hour is considered when describing FCR revenue. Therefore,
in (2) and (4), RECR is replaced with RZE%,R where /' is such that i’ = h, h%4 = 1 and Ru}‘j%{
is added under the  sum. In (4), P/“R is again replaced with PSR,

2.4. Optimisation Methods

All optimisations were carried out using the General Algebraic Modeling System
(GAMS) with CPLEX solver.

2.4.1. Simple Linear Optimisation (without Either Cycle Depletion or Cycle-Cost Constraints)

The first method analysed in this paper is the simple linear optimisation method.
In this method, the cost function is minimized under all the constraints from the model
defined in the previous subsection. If only the above is considered in the optimisation
process, the model in this paper is referred to as the simple linear optimisation model. The
results of the optimisation, cost either by using (2) or (34) and ¢ BSS_total 3re ysed to calculate
cash flow CF and battery cycle lifetime T as:

CF = costyy /opss — cOst (32)

5000 - soe ™

T'= 55 tomr - (33)

where costy, /pss is the cost of industrial plants without the BSS and 5000 refers to the battery
cycle lifetime. These results are then used in the second step to calculate the IRR under the
constant cash flow assumption. It should be noted that all of the methods analysed in the
paper involve these two steps, with the second step being the same for all methods.

2.4.2. Linear Optimisation with Battery Cycle-Cost Penalty

As its name suggests, the battery cycle-cost model considers the cost of each battery
cycle so that BSS is discouraged from entering trade if it will earn less than the cost of cycle
depletion for that trade. Equation (2) then becomes

P ch
cost = (Z (Z (wf'q - f“) + C£}h> - RJ?CR> +CPeak, (34)

ch
w,h,q

where f 7 is used to calculate energy that will flow through battery and f is factor
which represents the cost of each battery kWh. The cost emerged from that factor is not
incorporated in the final version of the cost variable which is used in the cash flow equation
as that charges are not really transacted since the cycle-cost factor is only used as a filter for
acceptable trades.

2.4.3. Multi-Objective Optimisation (MOO)

We used the multi-objective optimisation method known as epsilon constraint method
presented in [23]. Two objective functions that are optimized are the cost function defined
in (2) and the e BS5-total fynction defined in (29), which computes the annual depletion of



Energies 2022, 15, 5859

8 of 17

battery cycles. This method yields a Pareto optimal front for each battery capacity and
power parameter.

Algorithm 1 describes the MOO algorithm steps. First, from minimizing the cost
function and the e BS5-*tl function, solutions for e B55-tl are obtained. They are used
in a loop to define the range for € from er?l?f*mtal to P55l Eor each of the € values,
constraint on e BSS-total jg defined. With that new constraint, cost function is minimized and

optimisation results are saved.

Algorithm 1 MOO algorithm

Initialisation:
1: Solve minimizing cost function.
2: Set solution value of e B55-°%l a5 lower point of newly defined range.
3: Solve minimizing e P55l function.
4: Set solution value of e B55-°%l a5 upper point of previously defined range.
LOOP Process:
5. fori =1to 10 do
Compute:
i—1
6 — ( o BSS_total _ :iisr?)otal) =1 + nliisr?,total

Set a new constraint: e BSS-total < ¢

Solve minimizing cost function.
Save optimization results.

7: end for

8: return results for all 10 points

The MOO algorithm yields higher costs but longer battery lifetime with each step as
it has a lower amount of cycles to work with annually due to the € constraint. Note that
in the first optimisation point op;, there are no constraints on the battery cycle depletion,
therefore those results are equal to the simple linear optimisation approach. The MOO
yields lifetime T and IRR for optimal optimisation point op, as optimisation results.

3. Research Findings
3.1. Performance Comparison of MOO and Simple Linear Optimisation

The results of MOO for c-rates of 0.5 and 0.4 and capacities of 3000 kWh and 4000 kWh,
respectively, can be seen in Table 2 as examples. Note that IRR is increasing until opti-
mization points ops and opy. For the optimisation points in the specified range, it can
be concluded that battery lifetime extension generated by the imposed constraint on the
reduction in the number of battery cycles is enough to offset the lower savings (cash flows)
incurred by the same constraint. However, if battery calendar lifetime of 20 years is as-
sumed, new results are obtained and denoted by T’ and IRR’, where T” is the lower value
of battery calendar lifetime (20 years) or battery cycle lifetime (5000 cycles) and IRR’ is the
internal rate corresponding to the new lifetime T".
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Table 2. MOO effects for c-rates 0.4 and 0.5 in 2017.
Battery Capacity c-Rate Investment BSS Cash Flows Optim. T IRR T IRR’
(kWh) ©) ©) Points (Years) (%) (Years) (%)
531,144 op1 15.64 8.79% 15.64 8.79%
531,060 opy 17.60 9.62% 17.60 9.62%
530,783 op3 20.11 10.34% 20.00 10.31%
530,219 0pa 23.46 10.93% 20.00 10.29%
3000 0.5 4,425,000 529,203 ops 28.16 11.39% 20.00 10.27%
527,087 0p6 35.20 11.67% 20.00 10.21%
508,867 op7 46.93 11.43% 20.00 9.69%
463,718 ops 70.39 10.47% 20.00 8.39%
410,028 op9 140.79 9.27% 20.00 6.76%
569,140 op1 16.57 8.26% 16.57 8.26%
569,005 op2 18.64 9.04% 18.64 9.04%
568,580 op3 21.30 9.72% 20.00 9.42%
567,866 0pa 24.85 10.28% 20.00 9.40%
4000 0.4 5,040,000 566,558 ops 29.82 10.70% 20.00 9.37%
564,224 0p6 37.27 10.96% 20.00 9.31%
559,204 opy 49.70 11.03% 20.00 9.18%
510,663 ops 74.55 10.12% 20.00 7.93%
445,884 0p9 149.10 8.85% 20.00 6.18%

Internal rate of return

Results for c-rate of 0.5 and capacities 1000 kWh to 5000 kWh are shown in the Figure 1.
Optimisation points from op; to opg are presented, where op; is the optimisation point
with the lowest constraint on the reduction in the number of battery cycles (no constraint
to be precise), and opy is the point with the strictest constraint. It can be seen that, for
each capacity, IRR is increasing until the decreasing cash flows (generated by the lower
savings) are too small and cannot be compensated by longer battery lifetime. Therefore,
the improvement in profitability in respect to the simple linear optimisation can be noted
by comparing optimisation points in the figure to the op; which refers to the simple linear
optimisation, i.e., optimisation without constraints on the reduction in the number of
battery cycles.

12.0%
11.5%
11.0%
10.5%
10.0%

95%

9.0%

8.5%

8.0%

opl op2 op3 op4 op5 op6é op7 op8 op9
Optimisation points
Capacity (kWh)  =—#=1000 =#=2000 3000 4000 == 5000

Figure 1. MOO effects for c-rate of 0.5 and battery capacities 1000-5000 kWh.

The comparison of the simple linear optimisation method and the MOO can easily be
made by looking at the Figures A1 and A2 provided in the Appendix A.2, which show that
the MOO not only outperforms the simple linear optimisation, but also smooths out the
IRR estimates. This is related to the fact that simple linear optimisation enters all profitable
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trades in the analysed year but doesn’t take into account the battery depletion of the trades,
which shortens the battery cycle lifetime.

3.2. Performance Comparison of MOO and CC

We now turn the focus to the differences in performance between the CC and the
MOQO. Data on profitability for both methods for various c-rates and battery capacities are
presented in Table 3 and show that both methods yield very similar results. Additionally,
differences in profitability between the MOO and the CC in 2021 are shown in Figure 2.

Table 3. Performance comparison (profitability measured by IRR) of CC and MOO.

2017 Cycle-Cost Model MOO Model
Battery Capacity (kWh)
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
c-Rate
0.1 6.42%  6.26% 6.16% 6.08% 6.03% 648% 633% 624% 6.17%  6.12%
0.2 927%  9.00% 885% 875%  8.67%  932% 9.07%  893% 884%  8.77%
0.3 10.85% 10.52% 10.36% 10.21% 10.06% 10.89% 10.56% 10.40% 10.26% 10.10%
0.4 11.80% 11.46% 11.25% 11.03% 10.89% 11.80% 11.47% 11.24% 11.03% 10.87%
0.5 12.40% 12.05% 11.72% 11.51% 11.38% 12.40% 12.05% 11.67% 11.51% 11.34%
0.6 12.24% 11.76% 11.46% 11.24% 11.10% 12.22% 11.76% 11.41% 11.19% 11.09%
0.7 11.89% 11.46% 11.18% 10.96% 10.83% 11.88% 11.37% 11.12% 10.92% 10.80%
0.8 11.58% 11.19% 10.93% 10.73% 10.61% 11.50% 11.11% 10.88% 10.69% 10.59%
0.9 11.31% 10.96% 10.72% 10.54% 10.43% 11.23% 10.89% 10.69% 10.51% 10.42%
1 11.09% 10.76% 10.55% 10.38% 10.27% 11.02% 10.71% 10.52% 10.37% 10.28%
2021 Cycle-Cost Model MOO Model
Battery Capacity (kWh)
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
c-Rate
0.1 776%  771%  7.66%  7.62% 7.59% 7.97% 792% 7.87% 7.83% 7.80%
0.2 11.06% 10.93% 10.86% 10.82% 10.79% 11.18% 11.04% 10.97% 10.93% 10.89%
0.3 12.85% 12.70% 12.63% 12.58% 12.55% 12.93% 12.77% 12.70% 12.65% 12.61%
0.4 13.98% 13.82% 13.75% 13.70% 13.50% 14.01% 13.85% 13.78% 13.71% 13.51%
0.5 14.74% 14.58% 14.40% 14.16% 13.97% 14.74% 14.59% 14.40% 14.15% 13.95%
0.6 14.46% 14.09% 13.89% 13.66% 13.50% 14.37% 14.00% 13.81% 13.60% 13.45%
0.7 13.99% 13.65% 13.47% 13.27% 13.12% 13.82% 13.45% 13.22% 12.98% 12.87%
0.8 13.61% 13.30% 13.13% 12.94% 12.81% 13.59% 13.26% 13.08% 12.88% 12.71%
0.9 13.30% 13.01% 12.85% 12.68% 12.56% 13.31% 13.02% 12.87% 12.69% 12.56%
1 13.03% 12.76% 12.61% 12.45% 12.34% 13.01% 12.75% 12.62% 12.48% 12.38%
1.0%
0.8%
E‘ 0.6%
 04%
E; 02% I i
=1 -
£ 00% ! I I [ | [ ] e o | I =g S
-0.2% '
-0.4%
01 02 03 04 05 06 07 08 09 1
c-rate
Capacity (kWh) m 1000  m 2000 3000 4000  m 5000

Figure 2. Difference in profitability between MOO and CC approaches (IRR of CC is subtracted from
IRR of MOO) in 2021 and battery capacity price of 400 €/kWh.
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One can observe from the Table 3 that the optimal c-rate exists. For both years and
analysed methods it is the c-rate of 0.5. Note that profitability is increasing as the battery
capacity is decreasing, therefore there is no optimum regarding the battery capacity. It
can be seen that in 2017 there are almost no differences in estimated profitability rates.
However, the results for 2021 are inconclusive. For lower c-rates MOO seems to yield better
results while CC seems to perform better for c-rates in the range between 0.6 and 0.8.

Although the results for MOO and CC are similar, MOO should be more robust to
changes in the market conditions (electricity price level and volatility of electricity prices)
or lower battery storage cost. The reasoning comes from the methods themselves as the
CC attempts to take into account cycle reduction by penalising trades and entering only
the trades which are above the cycle-cost threshold. As can be seen from the above results
increase in the electricity prices accompanied by greater volatility in 2021 created more
favourable conditions for BSS. Apart from a jump in profitability relative to 2017 for both
methods, the stated factors also caused the increase in differences in the results of the
analysed methods. If the market conditions continued to further develop in favour of the
BSS or the battery capacity prices fell, thus creating even more profitable opportunities,
the cycle-cost threshold could easily become irrevelant as it could be expected that a large
portion of trades would be positioned above it. In that case, a similar problem to the one in
simple linear optimisation would occur, the battery would enter too many trades and use
up a lot of its lifetime on suboptimal but above-the-limit trades.

Therefore, we further analyse the effect of a drop in price of battery storage capacity
in order to test the hypothesised CC weakness and MOO robustness. The results for 2017
and 2021 and a price of 100 €/kWh (instead of 400 €/kWh) are shown in Table 4 (the price
of 400 €/kW regarding battery power was kept the same).

Table 4. Performance comparison (profitability measured by IRR) of CC and MOO for battery
capacity price of 100 €/kWh.

2017 Cycle-Cost Model MOO Model
Battery Capacity (kWh)
Rat 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
c-Rate
0.1 12.42% 12.11% 11.93% 11.79% 11.69% 12.66% 12.38% 12.21% 12.09% 12.01%
0.2 14.38% 13.98% 13.76% 13.62% 13.51% 14.64% 14.27% 14.07% 13.94% 13.84%
0.3 15.08% 14.63% 14.40% 14.19% 13.97% 15.33% 14.91% 14.69% 14.51% 14.30%
04 1533% 14.88% 14.56% 14.27% 14.10% 15.59% 15.17% 14.89% 14.60% 14.42%
0.5 15.40% 14.91% 14.50% 14.27% 14.11% 15.67% 15.24% 14.84% 14.58% 14.42%
0.6 14.72% 14.11% 13.70% 13.47% 13.32% 14.98% 14.39% 14.04% 13.78% 13.62%
0.7 13.97% 13.43% 13.03% 12.78% 12.64% 1420% 13.66% 13.36% 13.11% 12.96%
0.8 13.36% 12.86% 12.49% 12.25% 12.11% 13.54% 13.09% 12.81% 12.59% 12.46%
0.9 12.86% 12.41% 12.06% 11.84% 11.72% 13.02% 12.63% 12.38% 12.18% 12.06%
1 12.45% 12.04% 11.71% 11.51% 11.40% 12.60% 12.26% 12.03% 11.85% 11.74%
2021 Cycle-Cost Model MOO Model
Battery Capacity (kWh)
cRate 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
0.1 1597% 15.87% 15.78% 15.70% 15.64% 16.03% 15.93% 15.83% 15.75% 15.70%
0.2 17.86% 17.65% 17.53% 17.46% 17.42% 17.85% 17.63% 17.52% 17.45% 17.41%
0.3 18.21% 17.98% 17.88% 17.81% 17.76% 18.35% 18.13% 18.03% 17.96% 17.92%
04 18.23% 18.01% 1791% 17.85% 17.60% 18.49% 18.29% 18.20% 18.14% 17.89%
0.5 18.15% 17.94% 17.72% 17.43% 17.23% 18.61% 18.41% 18.17% 17.85% 17.62%
0.6 16.69% 16.20% 15.97% 15.75% 15.60% 17.68% 17.23% 17.00% 16.73% 16.54%
0.7 15.01% 14.57% 14.40% 14.25% 14.15% 16.53% 16.14% 15.94% 15.73% 15.58%
0.8 13.43% 13.03% 12.93% 12.85% 12.84% 15.87% 15.49% 1527% 15.04% 14.84%
0.9 11.90% 11.54% 11.57% 11.57% 11.65% 15.34% 15.02% 14.83% 14.63% 14.47%

1

10.43% 10.14% 10.27% 10.41% 10.57% 14.85% 14.56% 14.40% 14.23% 14.10%
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Internal rate of return

Again, the results show decreasing profitability with the increase in battery capacity
while the optimal c-rates are 0.4 and 0.5 for 2017 and 2021, respectively (one notable
exception being the c-rate 0.3 for 2021 and 5000 kWh). Results for 2017 show that the MOO
constantly outperforms the CC but the differences are small, around 0.2-0.3%. However,
it can be seen that, in 2021, MOO yields better results with growing outperformance for
higher c-rates as depicted in Figure 3. The findings suggest that with higher c-rate it
is easier to exploit the market opportunities to a greater extent by relying on the MOO
rather than the CC. This can be traced back to the fact that MOO picks the best trades
with constraint on e B55-°%l and with different constraints for different optimisation points
(the best optimisation point is then chosen), while the CC enters all the trades for which
contribution to earnings is above the cycle-cost limit, which can hurt overall profitability
by decreasing battery cycle lifetime.

5.0%

3.5%
3.0%
25%

20%

15% l
1.0%
0.5% - I I i

. T (] , .

0.0%

-0.5%
01 02 03 04 05 0.6 0.7 08 09 1
c-rate

Capacity (kWh) | 1000 m 2000 3000 4000 m 5000

Figure 3. Difference in profitability between MOO and CC approaches (IRR of CC is subtracted from
IRR of MOO) in 2021 and battery capacity price of 100 €/kWh.

Given the current development of market conditions and the advocated clean energy
transition, both of the analysed factors under which the CC can yield suboptimal results
may prove to play a prominent role in the near future.

3.3. MOO Performance Under Real-World Assumptions

Finally, in this research we report the results related to the introduction of real-world
assumptions which decrease profitability. For this purpose, the battery capacity price is
set back to 400 €/kWh. Performances in both 2017 and 2021 are presented and compared
in Table 5.

Table 5. Introduction of real-world assumptions and decreasing profitability, comparison of 2017 and
2021 MOO performance (c-rate = 0.5).

Battery Capacity (kWh)

IRR SoC 0-100
IRR’” SoC 0-100
IRR” SoC 10-90
IRR” SoC 20-80

2017 2021
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
12.40%  12.05% 11.67% 11.51% 11.34%  14.74%  14.59% 14.40% 14.15%  13.95%
11.06%  10.69%  10.31%  10.03%  9.86%  13.92% 13.74% 13.54% 13.25%  13.04%
10.08%  9.72% 9.36% 9.09% 893%  12.81%  12.64% 1245% 12.18%  11.97%
8.64% 8.31% 7.96% 7.71% 7.56% 11.20%  11.05% 10.87%  10.61%  10.41%

IRR SoC 0-100 is the IRR obtained with the MOO method, IRR” SoC 0-100 is the
IRR obtained with the MOO under the assumption of calendar lifetime of 20 years and
finally (as explained at the beginning of this section when discussing results referring to
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Table 2, IRR’ SoC 10-90 and IRR’ SoC 20-80 are IRRs obtained with the MOO under the
assumption of calendar lifetime of 20 years and restrictions on battery state of charge of
10-90% and 20-80%, respectively. IRR estimates regarding the introduction of the state of
charge assumptions were obtained by increasing the battery investment costs so that the
battery capacity reported in the table refers to the net battery capacity available.

As should be expected, each new restriction decreases the profitability. Higher prof-
itabilities in 2021 can be observed due to better market conditions for BSS in terms of price
level and volatility. The increase is relevant since further reduction in profitability is to be
expected in the event that forecasting of model variables is introduced.

4. Discussion and Conclusions

The paper proposes a new approach to BSS profitability assessment. Based on the IRR
as a profitability measure, the advocated MOO is compared to simple linear optimisation
and to the popular cycle-cost linear optimisation (CC). The conducted analysis demon-
strates how MOO is able to outperform the simple linear optimisation and that it also
smooths out the IRR estimates. The findings further show that MOO and CC yield similar
results, especially in 2017 and with battery capacity price fixed at 400 €/kWh. Nevertheless,
the results for 2021 indicate that market conditions leading to higher BSS profitability
(related to higher electricity prices and greater volatility) could cause performance dete-
rioration of the CC. We argue that this is due to cycle-cost threshold which can become
irrelevant as the large proportion of BSS trades above the imposed limit becomes available
under such conditions. We provide evidence supporting this line of reasoning by reporting
the results of the analysis with a decreased battery capacity price fixed at 100 €/kWh which
further significantly increases the BSS profitability. With this change in inputs the findings
show that MOO constantly outperforms CC in 2017, albeit by a small margin (0.2-0.3%).
However, in 2021 we provide evidence of strong MOO outperformance showing that the
MOO performance is therefore more robust to the changes in factors which increase the
BSS profitability. Our research also demonstrates that an optimal c-rate for BSS exists (at or
close to 0.5) and that the BSS profitability falls with the increase in battery capacity. Lastly,
our analysis reports the size of a drop in BSS profitability when real-world assumptions
related to battery calendar lifetime of 20 years and SoC are introduced.

Although there are many papers analysing BSS viability, few papers employ IRR as a
profitability measure, complicating direct comparisons with other papers. Furthermore,
some papers which seem quite similar in addressing battery usage and other optimisation
issues still differ in other ways, e.g., whether the analysis was based on a simulation or real
data (and what revenue streams were analysed), whether the analysis was the result of
forecasting or perfect foresight conditions, etc. Nevertheless, some comments on various
findings are summarized here. Given the perfect foresight setting and the revenue stream
analysed the results in this study are probably most comparable to the [12] and corroborate
their findings that the BSS profitability is “considerably sensitive to variations in battery
price and lifetime”. Also similar in the above aspects is the paper by [14]. Our findings
also corroborate their findings regarding the existence of optimal c-rate and increasing
profitability with a fall in battery capacity. Papers rarely include the IRR as a profitability
measure. One such is [16], who report IRR in the range from 6.4% to 21.9% by varying
remuneration tariffs and the rate of increase in electricity prices. Such results are similar
to the ones obtained in this research, and both papers provide evidence that the BSS
performs better in the rising electricity prices environment. Ref. [21] report lower IRR
values (6.49% and 7.02%) but rely on stochastic modelling rather than on real measurement
data. However, in their analysis they advocate the use of MOO in order to optimise the
potential trade-off regarding economic and technical aspects of BSS utilisation. Based on
this, but also encouraged by the previously mentioned research such as [20,24] in this
research we focused on the comparison of MOO and CC profitability estimates.

Practical implications of this study are many, owing mostly to the already highlighted
advantages of IRR over other profitability measures, especially the popular NPV. Due to
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IRR being a relative measure of profitability it is easier to compare the results with other
research papers and any discount rate below the obtained IRR must yield a positive NPV.
Furthermore, the results in this research are based on optimisation of real measurement
data, while real-world assumptions regarding battery SoC, cycle- and calendar-lifetime are
also considered. The advocated methodological framework in this paper can therefore make
future research more comparable and facilitate focus on specific optimisation problems. This
could in turn also foster the green transition by attracting further investment.

Limitations of this research include the analysis being conducted under perfect fore-
sight conditions, the assumption of constant cash flows generated over battery lifetime
based on the optimisation related to one year, and the fact that the analysis included only
one power market. However, most importantly, even though the research methodology is
built around the IRR as a profitability measure it did not address the non-linear nature of
IRR estimation. The compared IRR estimates in the analysis were obtained in the two-step
process in which the linear optimisation methods are limited to the cash flow estimation
(the first step of the process). A much more challenging optimisation method could attempt
to estimate the IRR by employing a non-linear optimisation method. This should result in
the most accurate IRR estimation and also enable the IRR to be estimated in a single step.

Future work could also apply the proposed methods to examine the BSS profitability
by relaxing the perfect foresight assumption. The extent to which a reduction in IRR due to
forecasting error can be compensated by higher profitability under more favourable market
conditions such as in 2021 would provide a valuable insight. Also, whether MOO or CC
yields more robust results when forecasting is considered requires additional testing.
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The following abbreviations are used in this manuscript:

BSS Battery storage system

CcC Linear optimisation with battery cycle-cost penalty
FCR Frequency containment reserve

IRR Internal rate of return

MOO  Multi-objective optimisation

NPV  Net present value

PV Photovoltaics

SoC State of charge
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Nomenclature

Sets and indices

Qv
Qh
04

Parameters
f FCR

f cc
dw h
!
dis
C fees
p peak

Variables
el

Cw,h

C peak

R FCR
w

BSS_prod
w,h,q
pv_prod
w,h,q
pv_grid
ew,h,%
pv_BSS
e
w,h,q
grid_prod
ew,h,c?
grid_BSS
w,h,
gri
ew,h

s

ew,h,q

pFCR
w

soefCR

P peak
ch

w,h,q

P dis
w,h,q

50€uw,h,q

CF

i

Xw,hg

vy w,h,q

Set of weeks, running from 1 to 52
Set of hours, running from 1 to 168
Set of quarter-hour periods, running from 1 to 4

FCR cycle degradation factor (kWh/kW)
Cycle-cost factor (€/kWh)

Demand from 50 industrial plants (kWh)
Charging efficiency coefficient
Discharging efficiency coefficient

Fees for supplying electricity (€/kWh)
Peak power price (€/kW)

Day-ahead market price (€/kWh)
Intraday market price (€/kWh)

FCR market price (€/kW)

Utilized PV generation (kWh)

Installed BSS power (kW)

Installed BSS capacity (kWh)

Cost of purchased electricity (€)

Cost of peak power (€)

Revenue from FCR (€)

Electricity injected from BSS to industrial plants (kWh)
Electricity injected from PV to industrial plants (kWh)
Electricity injected from PV to the grid (kWh)

Electricity injected from PV to BSS (kWh)

Electricity injected from the grid to industrial plants (kWh)
Electricity injected from the grid to BSS (kWh)

Electricity traded in the day-ahead and intraday market (kWh)
Electricity traded in the day-ahead market (kWh)

Electricity traded in the intraday market (kWh)
Power provided for FCR (kW)

Capacity provided for FCR (kWh)

Peak power (kW)

BSS charging power (kW)

BSS discharging power (kW)

BSS state of energy (kWh)

Annual net cash flow (€)

Internal rate of return (%)

Binary variable for (dis)charging constraints
Binary variable for trading constraints
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Appendix A
Appendix A.1

Table Al. Parameters values and description table.

Parameter Description Value
ueh Charging efficiency coefficient 0.93
dis Discharging efficiency coefficient 1.075
p Peak Peak power price 44.5 €/kW
C fees Fees for supplying electricity 0.15 €/kWh
fFCR FCR cycle degradation factor 4.8897 kWh/kW (per week)
fe Cycle-cost factor 0.08 €/kWh
n Battery FCR power to capacity ratio 2 kWh/kW

Appendix A.2
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Figure A1. IRR estimation results for 2017 (simple linear optimisation approach).
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Figure A2. IRR estimation results for 2017 (MOO approach).
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