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Abstract: Developing control methods that have the ability to preserve the stability and optimum
operation of a wind energy generation unit connected to power systems constitutes an essential
area of recent research in power systems control. The present work investigates a novel control of
a wind energy system connected to a power system through a static VAR compensator (SVC). This
advanced control is constructed via integration between the model predictive control (MPC) and an
artificial neural network (ANN) to collect all of their advantages. The conventional MPC needs a
high computational effort, or it can cause difficulties in implementation. These difficulties can be
eliminated by using Laguerre-based MPC (LMPC). The ANN has high performance in optimization
and modeling, but it is limited in improving dynamic performance. Conversely, MPC operation
improves dynamic performance. The integration between ANN and LMPC increases the ability
of the Neuro-MPC (LMPC-ANN) control system to conduct smooth tracking, overshoot reduction,
optimization, and modeling. The new control scheme has strong, robust properties. Additionally,
it can be applied to uncertainties and disturbances which result from high levels of wind speed
variation. For comparison purposes, the performance of the studied system is estimated at different
levels of wind speed based on different strategies, which are ANN only, Conventional MPC strategy,
MPC-LQG strategy, ANN- LQG strategy, and the proposed control. This comparison proved the
superiority of the proposed controller (LMPC-ANN) for improving the dynamic response where it
mitigates wind fluctuation effects while maintaining the power generated and generator terminal
voltage at optimum values.

Keywords: wind energy generation unit (WEGU); model predictive control (MPC); artificial neural
network (ANN); Laguerre-based model predictive control (LMPC); static VAR compensator (SVC)

1. Introduction

Nowadays, wind energy systems are the most successful resource of renewable en-
ergy systems, and their global power capacity is exponentially increasing [1]. Figure 1
summarizes the existing types of wind turbines [2], which are classified according to
the IEC.

1.1. Literature Review

The basic components of a wind energy generation unit are wind turbines followed by
the gear box and an asynchronous generator with reactive power compensation [3]. Generic
models of this system are given by IEC 61400-27-1 [4]. The main purpose of wind energy
control systems is that wind turbines withstand wind speed fluctuations. Additionally,
wind turbines operate within permissible limits at maximum values of generating power [5].
There are many types of control approaches to wind energy systems connected to the grid,
some of the main types are summarized as follows.

Energies 2022, 15, 5839. https://doi.org/10.3390/en15165839 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15165839
https://doi.org/10.3390/en15165839
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-0388-1160
https://orcid.org/0000-0002-9904-434X
https://orcid.org/0000-0001-9505-5386
https://doi.org/10.3390/en15165839
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15165839?type=check_update&version=2


Energies 2022, 15, 5839 2 of 24

Energies 2022, 15, x FOR PEER REVIEW 2 of 25 
 

 

Additionally, wind turbines operate within permissible limits at maximum values of gen-
erating power [5]. There are many types of control approaches to wind energy systems 
connected to the grid, some of the main types are summarized as follows. 

 
Figure 1. Wind turbine systems [2]: (a) Type1 (b) Type 2 (c) Type 3 (d) Type 4. 

Many studies have been carried out on wind energy conversion systems connected 
to the grid such as adaptive control which can be direct [6] or indirect control [7]. Addi-
tionally, feedforward control [8] or feedback control [9] may be used. Conventional con-
trol approaches such as Proportional Integral Derivative (PID) and (PI) [10,11], are the 
most widely used within wind energy conversion systems, but they are less robust, espe-
cially with high non-linearity and rapidly changing parameter systems. The artificial neu-
ral network approach was used for the optimization and modeling of wind turbine-gen-
erators systems [12–14]. The fuzzy logic control approach is used for adjusting the blade 
angle of the wind turbine to produce the optimum value of generating power [15]. Addi-
tionally, this approach can be used to damp the subsynchronous resonance [16] and im-
prove LVRT for wind energy conversion systems that are connected to power systems 
[17]. The SMC approach [18], has the ability to overcome uncertainties and problems, and 
also it has a simple design and easy implementation. The control approach via backstep-
ping [19], was designed and implemented to improve the performance of WECs con-
nected to the grid. The application of predictive control within different wind energy 
power systems is presented in [20]. In [21], PI, FC, ANN, SC, and backstepping, were ap-
plied to wind energy generation systems. The high performance of this system has been 
proven with artificial neural networks. Optimal control strategies such as MPC, H∞, and 
LQG controllers are more effective than standard PID controllers, particularly for remov-
ing oscillation [22]. In [23], PI, FC, and MPC were applied to wind energy generation sys-
tems. Also the results of comparison demonstrated that, the fast response of this system 
has been proven with MPC so in recent years more research focus has focused on it [24]. 
Advanced MPC strategies are used in MPC combined with other strategies such as hier-
archical MPC [25], multi-objective MPC [26], nonlinear MPC [27], and distributed MPC 
[28]. The MPC parameters are optimized by (PSO) [29]. In [30] a mix of adaptive model 

Figure 1. Wind turbine systems [2]: (a) Type1 (b) Type 2 (c) Type 3 (d) Type 4.

Many studies have been carried out on wind energy conversion systems connected
to the grid such as adaptive control which can be direct [6] or indirect control [7]. Addi-
tionally, feedforward control [8] or feedback control [9] may be used. Conventional control
approaches such as Proportional Integral Derivative (PID) and (PI) [10,11], are the most
widely used within wind energy conversion systems, but they are less robust, especially
with high non-linearity and rapidly changing parameter systems. The artificial neural
network approach was used for the optimization and modeling of wind turbine-generators
systems [12–14]. The fuzzy logic control approach is used for adjusting the blade angle of
the wind turbine to produce the optimum value of generating power [15]. Additionally,
this approach can be used to damp the subsynchronous resonance [16] and improve LVRT
for wind energy conversion systems that are connected to power systems [17]. The SMC
approach [18], has the ability to overcome uncertainties and problems, and also it has
a simple design and easy implementation. The control approach via backstepping [19],
was designed and implemented to improve the performance of WECs connected to the
grid. The application of predictive control within different wind energy power systems is
presented in [20]. In [21], PI, FC, ANN, SC, and backstepping, were applied to wind energy
generation systems. The high performance of this system has been proven with artificial
neural networks. Optimal control strategies such as MPC, H∞, and LQG controllers are
more effective than standard PID controllers, particularly for removing oscillation [22].
In [23], PI, FC, and MPC were applied to wind energy generation systems. Also the re-
sults of comparison demonstrated that, the fast response of this system has been proven
with MPC so in recent years more research focus has focused on it [24]. Advanced MPC
strategies are used in MPC combined with other strategies such as hierarchical MPC [25],
multi-objective MPC [26], nonlinear MPC [27], and distributed MPC [28]. The MPC param-
eters are optimized by (PSO) [29]. In [30] a mix of adaptive model predictive controller
(AMPC) and recursive polynomial model estimation is presented. The next generation of
controls [31] will be established in the mix of MPC–LQG.
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1.2. Research Gap and Motivation

Figure 2 presents several previous studies about wind energy generation control
strategies. It can mention some of the research gaps as follow:

(1) Most of the previous studies only concerned optimal control strategies or, only conven-
tional controllers or an intelligent control (e.g., PID and MPC controllers). However, a
few recent studies applied the advanced MPC controller.

(2) Advanced MPC strategies are used for MPC combined with heuristic, meta-heuristic,
or hierarchical algorithms. There is a good deal of possible integration between two
or more approaches as shown in Figure 2. That might produce the next generation of
controls to overcome the limitations of the previous control methods. Therefore, this
study applies hybrid MPC with an artificial neural network to improve performance
and smooth tracking.

(3) Most of the techniques in previous works were often based on simplified models of
the generator and the power electronics dynamics; their impact on the mechanical
stresses of the mechanical part of the system was ignored. In this work, however, we
consider a nonlinear model describing the dynamics of the wind turbine, the SCIG,
and the SVC, the latter is used to regulate the generator terminal voltage.

(4) The advanced MPC strategies have not been applied to all types of wind energy
generation units.

(5) The classical DMPC needs a high computational effort or can be difficult to imple-
ment, especially at high sampling frequency control; this can be solved by using
Laguerre networks.
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1.3. Contribution and Paper Organization

(1) This paper investigates a new hybrid control via predictive control Laguerre-based
MPC and artificial neural network (LMPC-ANN) approaches. To the best of the
authors’ knowledge, this scheme was not found in the WEC control systems literature.

(2) Complexity of MPC conventional algorithms is reduced by using MPC Laguerre-
based MPC which reduces the computational time and makes it easy to implement.

(3) The integration between ANN and MPC, increases the ability of the proposed control
system for smooth tracking, overshoot reduction, optimization, and modeling. In
addition, the new control scheme has strongly robust properties. Additionally, it can
be applied for uncertainties and disturbances which result from wind speed variation.

(4) The obtained results via the proposed controller show that it stabilizes the system
(the type 1 wind energy system connected to the grid, which suffers from instability
problems) and manages to render the states of the system the same as the normal
operating conditions, despite fluctuating wind speeds.

The paper is sectioned as follows. Section 1 gives an overview of the approaches
and methodologies that are used in this study. Next, Section 2 explains and describes the
proposed MPC-based ANN scheme. Section 3 contains the simulation results and corre-
sponding discussion. Section 4 gives the conclusions and suggestions of this study. Finally,
the Appendix A describes the modeling of the system under study. Appendix B describes
system parameters. Appendix C describes MPC-LQG Controller. Appendix D describes
ANN-LQG Controller. Appendix E describes ANN for the LMPC-ANN Controller.

2. Materials and Methods

This section introduces the proposed methodology for controlling the wind energy
system type 1 introduced in Appendix A, which can deal with the operating condition
variability of the system according to the values of the wind speed. First, the control
objectives adopted in this work are presented. Then, we detail the proposed approach.

2.1. Control Objectives

The control objective of the wind energy system when the wind speed values are less
than the rated value, is to maximize the power extracted from the wind. On the other hand,
at wind speed values more than the rated value, it is required to stabilize the extracted
power to the rated value via the blade’s pitch angle actuator. Moreover, the FC-TCR is used
to regulate the voltage at the generator terminal. Next, we introduce the Neuro-Predictive
scheme for controlling the WES system.

2.2. Modeling of the System

The mathematical model of the system considered here is shown in Figure 3. It consists
of thirteen differential equations for all system components which are wind turbines,
SCIG, grid, overhead transmission lines, and SVC (fixed-capacitor (FC) and Thyristors
Controlled Reactor (TCR)). These are described in detail in Appendix A. This model can be
represented by:

.
xn = f (xn, un, v) (1)

where
v is the instantaneous average wind speed.
xn is the state vector of the systems.
un is the vector of the control inputs.

Where
un =

[
βr α

]T

In order to control the system using MPC-based linear control approach linearized
models should be obtained at each operating point corresponding to the value of the wind
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speed. We use the first order term of Taylor to approximate Equation (1) around a specified
operating point to establish a linearized model, this is represented by

px = Ax + Bu (2)

where
A, B are the system matrices given in Appendix A.
x =

[
∆isq ∆isd ∆irq ∆irq ∆ωr ∆Vsq ∆Vsd ∆ilq ∆ild ∆itq ∆itd ∆ωt ∆δ ∆β

]
T

u =
[
∆βr ∆α

]T .
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Figure 3. Neuro-Predictive configuration for controlling the WECS.

First, Figure 3 describes the configuration of the proposed scheme. The ANN is used
to estimate the value of the steady-state (x∗n, u∗n) at any operating point, that represents
the differential equations of the system as., ∆ f (x∗n, u∗n, v∗) = 0. The value of (x∗n, u∗n) can
be easily used to obtain the corresponding linearized model, which is used for the MPC
algorithm to compute the optimal control input. We train the ANN offline to learn the
steady-state values of the system given the wind speed. Using ANN in this scheme should
save the time to solve f (x∗n, u∗n, v∗) = 0, which otherwise should be performed online. At
any value of the wind speed, the value of (x∗n, u∗n) drives the MPC to produce the optimal
incremental values of the inputs to provide the control input to the plant of each instant as
shown in Figure 3.

2.3. Training the ANN

Given a set of data (x∗n, u∗n, v∗) for the wind speeds more than rated value, the ANN
process as shown in Figure 4, can be trained off-line to learn the relation between v∗

and (x∗n, u∗n). It turns out that a single layer feedforward ANN with hyperbolic tan as
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an activation function was able to learn reasonably well such input-output relation. The
Matlab neural network toolbox has been used to pre-process the data, train, and validate
the ANN (Appendix E).
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2.4. MPC-Based Laguerre Function

In this section, we continue to describe the new hybrid control via predictive control
Laguerre-based MPC and artificial neural network (LMPC-ANN). For the construction of
the proposed controller, the mathematical model of the wind energy generation unit should
be put in the discrete state space form as follows [32].

xm(k + 1) = Am × xm(k) + Bm × u(k) (3)

ym(k) = Cm × xm(k) (4)

where: xm(k) ∈ Rnx , u(k) ∈ Rnu and y(k) ∈ Rny Rny are the system state, input, and output,
respectively, at a sampling instant k, Am, Bm, Cm are the state-space matrices.

In order to include embedded integral action for the control design, we augment the
model as follows [33]

x(k + 1) = A× x(k) + B× u(k) (5)

y(k) = C× x(k) (6)

where
x(k + 1) = [∆xm(k) y(k)]T (7)

∆xm(k) = xm(k)− xm(k− 1) (8)
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∆u(k) = u(k)− u(k− 1) (9)

A =

[
Am 0T

m
Cm Am I

]
(10)

B =

[
Bm

CmBm

]
(11)

Am =
[
0m I

]
(12)

where I is the identity matrix. 0m is the matrix with zero entries with appropriate dimensions.
The standard MPC problem is to minimize at each sampling instant the cost function

J =
Np

∑
m=1

x(ki + m|ki )
TQx(ki + m|ki )

T + ∆UTUR∆U (13)

Over the parameter vector of the control sequence ∆U, where

∆U = [∆u(ki) ∆u(ki + 1) . . . . . . ∆u(ki + Nc − 1)]T (14)

Np and Nc are, respectively, the prediction and control horizons, Np > Nc, x(ki + m|ki) is
the predicted state variable vector at the sampling instant, given current state x(ki), Q = C>C
and R > 0 are weighting matrices, with Q has the dimension of x and R has a dimension of
∆u Q and R are used to tune the performance of the controller and they are varied based
on two arbitrary constants (alpha, lambda) as described in [33].

A closed-form solution to this problem can be obtained, and the receding horizon
principle is applied, i.e., the first sample of the sequence ∆U is implemented. Moreover,
input-output constraints can be easily included, in this case, the optimal solutions are
obtained using quadratic programming. Next, the MPC design procedure is generalized by
introducing a set of discrete orthonormal basis functions into the design. Such generaliza-
tion will help to reformulate the predictive control problem to simplify the solutions and
tune the predictive control system.

Furthermore, a long control horizon can be realized without using a large number of
parameters, which can lead to an appropriate MPC approach in the case of rapid sampling,
complicated process dynamics and/or high demands on closed-loop performance, and
cheap computational load for online implementation. Moreover, it predicts numerically
conditioned solutions than those of the basic approach. The basic idea is to approximate the
sequence ∆u(ki) ∆u(ki + 1) . . . . . . ∆u(ki + Nc − 1) by a set of discrete Laguerre functions,
see [Wang Book] for justifying the use of such functions. The block diagram z-transform
of discrete-time Laguerre network [34] is shown in Figure 5, which is based on the follow-
ing relations:

Γk(z) = Γk−1(z)
z−1 − a

1− az−1 (15)

Γ1(z) =

√
1− a2

1− az− 0
(16)

where a is the pole of the discrete-time Laguerre network, and a < 1 for the stability of the
network. The parameter a is selected by the user, which is referred to as the scaling factor.
The Laguerre networks are known for their orthonormality. For MPC design, the Laguerre
functions [33,34] are used in the time domain. Based on the relation (29), the set of Laguerre
functions can be described by the difference equation

L(k + 1) = Al L(k) (17)

L(k) = [l1(k) l2(k) . . . . . . lN(k)]
T (18)
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with li(k) is the inverse z-transform Γi(z), and the matrix Al ∈ RN × N is given by

Al =



a 0 0 . . . 0
β1 a 0 . . . 0
−aβ1 β1 a . . . 0
a2β1

:
−aβ1

:
β1
:

. . .
:

0
:

(−1)N−2aN−1β1 (−1)N−3aN−3β1 . . . β1 a

 (19)

with β1 = 1 − a2 and N is the number of terms used in the Laguerre network. So, this
implies the initial condition

L(0) =
√

β1
[
1 −a a2 a3 . . . (−1)N−1aN−1

]T
(20)
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The Laguerre networks are commonly used in system identification to capture the
dynamic response of a system. Similarly, the control sequence in ∆U can be approximated
by a set of Laguerre functions as follows

∆u(ki + k) =
N

∑
j=1

cj(ki)lj(k) = L(k)Tη (21)

with ki being the initial time of the moving horizon window and k being the future sampling
instant and η =

[
c1 c2 c3 c4 . . . . . . cN

]T , with c1, c2, . . . . . . cN are the coefficients
of the Laguerre series expansion. Therefore, given the state-space realization (2a − b) with
the initial state variable x(ki), the prediction of the future state variable, x(ki + m|ki) at a
sampling instant m ki in terms of Laguerre functions can be represented by

x(ki + m|ki ) = Amx(ki) +
m−1

∑
i=0

Am−i−1BL(i)Tη (22)

where ∆u(ki + i) is replaced by L(i)Tη. Similarly, the prediction for the plant output at
future sample m, i.e., y (ki + m|ki) can be represented. This shows that both the predictions
of the state variables and the output variables are expressed in terms of the coefficient
vector η of the Laguerre network instead of ∆U. Thus, η will be optimized and computed
in the MPC design. Now, the cost function can be rewritten in terms of η as

J =
Np

∑
m=1

x(ki + m|ki )
TQx(ki + m|ki )

T + ηTURLη (23)

In order to obtain η that minimizes the cost function, we solve the partial derivative

∂J
∂η

= 0 (24)

for η consequently, the optimal solution of η is given by [35]

η = −Ω−1Ψx(ki) (25)
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let

Ω =
Np

∑
m=1

ϕ(m)Qϕ(m)T + RL (26)

Ψ =
Np

∑
m=1

ϕ(m)QAm (27)

ϕ(m)T =
m−1

∑
i=0

Am−i−1BL(i)T (28)

Finally, by implementing the receding horizon principle, the control law a sampling
instant ki, which should be implemented online is given by

∆u(ki) == L(0)Tη (29)

where L(0)T is computed from (13), which can be considered as at a time-varying state
feedback policy where A, B, Q and R are calculated via the discreet matrices model [33].
This controller deals adaption of control signals via ANN. The ANN and the predictive
control-based Laguerre function are used for optimal control of a wind energy system.
Figure 6 presents a flowchart of integration between two strategies that were discussed
in this section to produce the proposed controller performance. Additionally, it can be
summarized in the following steps:

Step 1: Enter the system parameters (Appendix B), design parameters of the proposed
controller (Table 1), and the inputs of the wind energy conversion system.

Step 2: Construct a set of data that contains the wind speed values and the corresponding
values of blades pitch and firing angle of SVC for optimum power and voltage generation.

Step 3: Construct, train, and test an ANN via the set data in step 2.

Step 4: If there is no change in the system parameters go to step 5, or repeat step 2 and
step 3.

Step 5: Estimate the mathematical model of the system (Equation (2)) with consideration for
all uncertainties and nonlinearities. It is estimated via thirteen differential equations
for all system components which are given in Appendix A.

Step 6: Estimate the augment discrete model at specified times and corresponding operating
conditions by using step 5 and equations 2 to 12 including ANN.

Step 7: Calculate the Laguerre function L(K) and L(0) via equations 15 to 20.

Step 8: Calculate the coefficient vector η of the Laguerre network equations 25 to 28.

Step 9: Calculate the Laguerre control signals via the augment discrete model with
including ANN as: ∆u(ki) == L(0)Tη

Step 10: Calculate the control signals of ANN uANN(ki) = f (v)

Step 11: Calculate the optimum control signals uop(ki)= uANN(ki)+ ∆u(ki)

Step 12: Repeat steps 5 to 10 for the next instant until it reaches the N sample.

Step 13: End.
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Table 1. Shows the initial values for designing the of the neuro-predictive controller.

Parameter for Designing The Values

lambda= 0.9
alpha 1.5

B1
Time sampling 0.01

the number of terms for each input (N) 10
prediction horizon (Np) 5

contains the Laguerre pole locations for each input (a) 0.9
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3. Results and Discussion

In this section, the neuro-predictive (LMPC-ANN) controller is applied to a 3 MW
wind energy generation unit connected to a power system through SVC, as shown in
Figure 3. All constants of the system elements are given in Appendix B. Table 1 shows the
initial values for the design of the neuro-predictive controller. There are three time zones
used to study the effectiveness of the controller as follow:

REGION A (before gust): in this region, wind speed values are within a normal variation
zone as shown in Figure 7; measurements are taken within the first two seconds.
REGION B (during gust): this region is measured during wind gusts which are sudden
variations in the wind speed as shown in Figure 7. Values are between t = 2 to t = 4 in
this system.
REGION C (after gust): this region is measured after wind gusts, the value of wind
speed returns to the normal variation as is shown in Figure 7; they are measured as
between t = 4 s and t = 6 s.
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Figure 7. Fluctuating wind speed.

The performance of the studied system is estimated based on different strategies,
which are:

• The ANN only
• Conventional MPC [20] strategy is given in Appendix C
• Adaptive ANN-LQG [36] strategy is given in Appendix C
• Conventional MPC-LQG [31] strategy is given in Appendix D
• The proposed controller is neuro-predictive (LMPC-ANN)
• Figures 8–11 show the response of the system with different controllers in terms of the

deviations of the rotor speed (∆ωr), shaft deflection angle (∆δ), stator voltage (∆Vs),
and generated power (∆Pg)
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Figure 8. Rotor speed deviation response.
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Figure 9. Stator voltage deviation response.
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Figure 11. Generated power deviation response.

In the previous figures, the system performance before a gust with different controllers
is shown. We can notice that the system with only ANN suffers from instability problems,
and it cannot dampen the oscillation result from the normal fluctuation of wind speed. On
the other hand, the systems with MPC, ANN-LQG, and MPC-LQG have a better dynamic
response than in the previous case. The systems with LMPC-ANN achieve the best dynamic
response in comparison to the other modern controllers such as ANN-LQG and MPC-LQG.
Additionally, the same figures show that the systems with only ANN during the gust have
high oscillation with the largest value of max overshoot due to gust fluctuation of wind
speed, on other hand the systems with conventional MPC, ANN-LQG, and MPC-LQG
have a slightly better dynamic response than in the previous case. Regardless, the system
with LMPC-ANN still demonstrates the best dynamic response in comparison to the other
modern controllers (ANN-LQG and MPC-LQG). Furthermore, the system behavior after
gusts return is approximately the same as before with different controllers. To summarize
the analysis of these results, Figures 12 and 13 show the maximum values of overshoot in
generating power and voltage in different cases, the wind fluctuation effects are mitigated
while maintaining the power generated and generator terminal voltage at optimum values.
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Figure 12. Max overshoot in generation power at different operating modes.
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Figure 13. Max overshoot in generated voltages at different operating modes.

Tables 2 and 3 highlight the effectiveness of the proposed neuro-predictive control
compared to the other strategies in reducing the maximum overshoot of generating power
and voltage. It is clear from Tables 2 and 3 that the reduction in maximum overshoot of
generating power and voltage with proposed neuro-predictive control is better compared
to the best results obtained through the other modern control strategies.

Table 2. Max overshoot percentage of generated power deviation at different operating modes and
different control strategies.

Modes
Strategies System with a

ANN Only
System with a

Conventional MPC
System with a
ANN + LQG

System with a
MPC + LQG

System with
Proposed Controller

Before gust 0.420343 0.146984 0.081155 0.079956 6.24 × 10−3

During gust 2.175327 0.932889 0.813277 0.718984 0.06642
Under guest 0.353782 0.214282 0.127183 0.076006 0.014257

Table 3. Max overshoot percentage of generated voltages deviation at different operating modes and
different control strategies.

Modes
Strategies System with a

ANN only
System with a

Conventional MPC
System with a
ANN + LQG

System with a
MPC + LQG

System with
Proposed Controller

Before gust 0.024803 0.008639 0.004951 8.85 × 10−5 7.741 ×10−5

During gust 0.125297 0.054231 0.047579 0.000287 0.00162
Under guest 0.020834 0.012588 0.006347 6.26552 × 10−5 0.000171

Generally, it is clear that the responses of the system without a controller oscillate
highly. On the other hand, the system with the NEURO-MPC controller can stabilize the
system and dampen the oscillations. However, the responses with the proposed controller
outperform those with the modern controllers, especially ANN-LQG and MPC-LQG. The
oscillations with the proposed gust died out within less than 0.9 sec. The obtained results
show that the proposed control stabilizes the system and renders the system states at the
normal operating conditions at all levels of fluctuating wind speeds.

4. Conclusions

In this work, a predictive control scheme based on an artificial neural network has
been proposed to control a wind-driven squirrel cage induction generator (SCIG) system
connected to a grid. The ANN is used to obtain the steady-state values of the system,
corresponding to any values of the wind speed to complete the associated linearized model
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of the system. The control objective is to mitigate wind fluctuation effects by regulating the
rated power generated by the system while maintaining its terminal voltage at the rated
value. For this purpose, a predictive control scheme is designed based on orthonormal
Laguerre functions. The predictive control is integrated with the ANN. The use of the
ANN can simplify the online computation of the operating points. The proposed predictive
control shows a better response in comparison with a conventional controller, which can
improve the power system stability, and reliability and increase the operational lifetime.

The proposed controller can adapt its operation according to the wind speeds and
hence can achieve optimal performance at any value of the wind speed. The system
with such predictive control has been tested under fluctuating wind speeds. From the
present analysis, the obtained results show that the system without controllers suffers
from instability problems, on other hand, the proposed control stabilizes the system and
manages to render the system states at the normal operating conditions at different values
of the wind speeds. The future expansion of this work, would be to investigate the neuro-
predictive scheme’s impact on different types of wind energy systems. Additionally, to
observe it applied to different types of renewable energy systems.
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Nomenclatures
SYMPOL DESCRIBTION
(MPC) Model predictive control
(ANN) Artificial neural network
(SVC) Static VAR compensator
(SCIG) Squirrel cage induction generator
(FC-TCR) Fixed-capacitor Thyristors controlled reactor
(WECS) Wind energy conversion system
v is the instantaneous average wind speed
xn is the state vector of the systems
un is the vector of the control inputs such
β Blades pitch angle
α Firing angle
A, B are the system matrices
isd The d component of stator current
isq The q component of stator current
irq The q component of rotor current
ωr Wind turbine angular speed
ild The d component of TCR current
ilq The q component of TCR current
itd The d component of T.L current
itq The q component of T.L current
Xm Magnetizing reactance
Am, Bm, Cm are the state-space matrices

I and 0m
represent, respectively, the identity matrix and a matrix with zero
entries with appropriate dimensions.

∆U The control sequence
Nc Control horizon
Np Prediction horizon

x(ki + m|ki)
Predicted state variable vector at sample time m, given current state
x(ki)

η Parameter vector in the Laguerre expansion
c1, c2, · · ·,cN are the coefficients of the Laguerre series expansion.
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SYMPOL DESCRIBTION
∆ Deflection angle of the drive shaft,
Ψ. Ω MPC cost function matrices
Vs The stator voltage terminal
Pg generated power
Q and R are used to tune the performance of the controller
(FC) Fixed-capacitor
(TCR) Thyristors controlled reactor
Tg Induction generator torque
Neuro-LQR The conventional controller
y Output signal
Ds Damping Ds constant
Gr Gear box ratio
Ks The spring constant
p Pairs no of pole
ωg Induction generator angular speed
Jg Entire constant generator
ωt Wind turbine angular speed
Tt Wind turbine torque
λ Tip speed ratio
Vw Wind speed
ωs Stator speed
S Slip of the machine
Xe Equivalent reactance of the transmission line
Vsd The d component of stator voltage
Re Equivalent resistance of the transmission line
Vsq The q components of stator voltage
Xc Equivalent reactance of the FC
Xl Equivalent reactance of the TCR
Rr Rotor resistance
p Differentiation operator
L Discrete and continuous-time Laguerre functions in vector form

Appendix A. Modeling of a Wind Energy System Type 1

The schematic diagram of the system considered here is shown in Figure 2. It consists
of a horizontal axis type of wind turbine and a SCIG connected to the grid via an overhead
transmission line through SVC (fixed-capacitor (FC) and Thyristors controlled reactor
(TCR)) [32]. Next, the dynamics of each component of this system are described.

Appendix A.1. Wind Turbine

The wind turbine model describes the aerodynamics, mechanics, and pitch actuator
dynamics of the system as shown in Figure 4.

Equations (A1) and (A2) describe the dynamics of the generator and rotor sides,
respectively [37]:

pωg =
1
Jg
(Tsg − Tg) (A1)

pωt =
1
Jt
(Tt − Tst) (A2)

where p is differentiation operator, ωg and ωt are the angular speeds on the generator and
rotor sides, respectively, Jg, Jt are the inertias, Tg, Tt are the generator and turbine torques
and Tsg, Tst are the transmitted torques via the gear ratio (Gr) as

Tsg =
Tst

Gr
(A3)

The torque Tst is given by
Tst = Ds pδ + Ksδ (A4)

where Ds and Ks are constants terms and δ represents the deflection of the drive shaft.
Wind turbines can be characterized by using non-dimensional curves.
The developed torque is given as:

Tt =
0.5ρARCpV2

w

λ
(A5)
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where A is the swept area, ρ is the air density, Cp is power coefficient, λ is tip speed ratio
which is given by

λ =
ωtR
Vw

(A6)

R is the rotor radius of the turbine

Cp = (0.44− 0.0167β) sin( π(λ−3)
15−0.3β )− 0.00184β(λ− 3)

ωg = ωr
P

ωr = (1− S)ωs jj
(A7)

The pitch angle actuator represented by [38]

pβ = − 1
Tb

β +
1
Tb

βr (A8)

where βr is the control input of the wind turbine and Tb is a constant.
Finally, Equation (8) describes dynamics of twist of rotor shaft:

pδ = ωt −
ωg

Gr
(A9)

Appendix A.2. The SCIG

The SCIG dynamic model in the d- and q-axis synchronous reference frame is given as
follows [39]:

pisq = −A1Rsisq − (ωb − A2ωrLm)isd + A2Rrirq −ωrLm A1ird + A1Vsq (A10)

pisd = (ωb + ωr A2Lm)isq − A1Rsisd + ωr A1Lmirq + Rr A2ird + A1Vsd (A11)

pirq = −A2Rsisq + ωrLs A2isd + (−ωb + ωrLs A1)ird − A3irq − A2Vsq (A12)

pird = −ωrLs A2 + A2Rsisd(ωb −ωrLs A1)irq − A3ird − A2Vsd (A13)

where
A1 = Lr/L2

m − LsLr

A2 = Lm/L2
m − LsLr

A3 = Rr(1 + A2Lm)/Lr

where: the electromagnetic torque of the generator can be expressed as:

Tg =
3PLm

2
(isqird − isdirq) (A14)

Appendix A.3. SVC Model

FC-TCR -SVC [40] is used to regulate the generator terminal voltage by adjusting the
Thyristor gating angle of the TCR branch. Consequently, its equivalent reactance provides
the desired terminal voltage. The relation between the current and voltage of FC-TCR in
the d- and q-axis synchronous reference frame can be given by

pilq =
ωb
Xl

Vsq −ωbild (A15)

pild =
ωb
Xl

Vsd + ωbilq (A16)

pVsq = ωbXcicq −ωbVsd (A17)
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pVsd = ωbXcicd + ωbVsq (A18)

Appendix A.4. Transmission Line Model

Finally, the dynamics of the transmission line can be described by [39]:

pitq =
ωb
Xe

(Vsq −Vbq)−
Reωb

Xe
itq −ωbitd (A19)

pitd =
ωb
Xe

(Vsd −Vbd)−
Reωb

Xe
itd + ωbitq (A20)

Appendix B. System Parameters Data

A. Induction Generator Parameters
4 poles, 6.6 Kv, 60 Hz.
Xm = 4.161 pu.;
X1s = 0.135 pu.;
X1r = 0.075 pu.;
Rs = 0.0059 pu.;
Rr = 0.0339 pu.;
Hg = 1.975 s:
B. Static VAR Compensator Parameters
Xlmax = 4:0 pu.; Xc = 3:8 pu.
C. Transmission Line Parameters
Xe = 0.15 pu.;
Re = 0.015 pu.;
V = 1.04 pu.
D. Wind Turbine Parameters
Horizontal axis wind turbine (6 MW)
Ht = 16:72 s;
R = 200 ft;
Gr = 103:6

Appendix C. MPC-LQG Controller

In this method, the MPC-LQG controller combines MPC and LQG controllers. In
addition, the controller depends on the control horizon (M), prediction horizon (P), and
sampling time (ts). The conventional MPC controller is illustrated in the Figure A1.
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The controller blends the merits of the MPC and LQG approach. The design process
of the proposed MPC-LQG controller has been conducted in MATLAB software using the
MPC toolbox and the LQR function.

Where
xp (k + 1) = Apxp(k) + BPUu(k) + Bpvv(k) + Bpdd(k)

yp(k) = Cpxp(k) + Dpuv(k) + Dpvu(k) + Dpdd(k)

Cp = s−1
0 .C

The goal of reducing the quadratic cost function was accomplished by achieving the
optimal solution as follows

J =
∫ t f

to
(

,
xQx + uRu + 2XNu)dt

Here, QLQG and RLQG are the weight and the control matrices, respectively. Then, to
reduce the value of J, it is necessary to select the optimum value of the K control input.

u(t) = −k(t)x(t)

The LQG together with the predictive control-based Laguerre function are used for
optimal control of a wind energy system. Figure A2 presents a flowchart of the in-
tegration between two strategies which were discussed [31] to produce the proposed
controller performance.
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Appendix D. Adaptive ANN-LQG

The Neuro-Adaptive Control outline [40], strategies is designed based on the LQG con-
troller. There are two ANNs to adapt the control signal online with wind speed variations
as shown in Figure A3,. One of them is ANN1, which is trained as presented in Section 2.
The other one is ANN2, which is trained via LQG gain computation at any possible value
of wind speeds. Figure A4 shows the flow chart of the ANN-LQG controller.
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Appendix E. Artificial Neural Network for the LMPC-ANN Controller

The following Figure A5 and Table A1 can be described the construction and properties
of the ANN which is used for the proposed controller
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Figure A7. Neural network training states.

The resulting weight matrices and biases of this ANN are given by:

b1 =


10.5628
0.6878
4.0000
1.5718


w1 = [ −0.625 − 0.33130 − 0.163 − 2.445 − 12.20]t

b2 =

[
2.129

4.5646

]

w2 =

[
−0.0001 0.0064 0.00001 − 0.6337 − 1.6386
−0.0320 − 1.3092 − 11.1940 − 1.1208 4.9879

]t
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