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Abstract: Electricity has a crucial function in contemporary civilization. The power grid must be
stable to ensure the efficiency and dependability of electrical equipment. This implies that the high-
voltage equipment at the substation must be reliably operated. As a result, the appropriate and
dependable use of systems to monitor the operating status of high-voltage electrical equipment has
recently gained attention. Partial discharge (PD) analysis is one of the most promising solutions for
monitoring and diagnosing potential problems in insulation systems. Noise is a major challenge
in diagnosing and detecting defects when using this measurement. This study aims to denoise
PD signals using a data decomposition method, improved complete ensemble empirical mode
decomposition with adaptive noise algorithm, combined with statistical significance test to increase
noise reduction efficiency and to derive and visualize the Hilbert spectrum of the input signal in time-
frequency domain after filtering the noise. In the PD signal analysis, both artificial and experimental
signals were used as input signals in the decomposition method. For these signals, this study has
yielded significant improvement in the denoising and the PD detecting process indicated by statistical
measures. Thus, the signal decomposition by using the proposed method is proven to be a useful
tool for diagnosing the PD on high voltage equipment.

Keywords: empirical mode decomposition; EMD; intrinsic mode function; white noise; denoising
and filtering process

1. Introduction

The substation is a crucial part of the electrical system. It includes numerous expensive
and complex device such as transformers, power cables, circuit breakers, and so on. Faulty
primary equipment will result in serious losses, including damages in terms of repair and
replacement costs of damaged objects as well as income loss due to power outages. A more
critical problem is reduced power supply reliability due to frequent power interruptions [1].
Thus, maintenance and condition evaluation challenges are given much attention. The
trend from time-based maintenance to condition-based maintenance is an inevitable trend
to reduce unexpected system outages and improve power supply reliability [2].

Under the stress of electrical field strength, effects of environmental conditions such
as temperature and humidity, and other problems during operation, the insulation system
of primary equipment will degrade over time. Partial discharge (PD) measurement is
an efficient and highly sensitive method that demands experienced-operator skill in data
collection, processing, and analysis [3,4]. The collected signals in PD measurement are
usually in the form of oscillating pulses with a wide frequency range. These signals can
be represented as oscillating pulses in the time domain or as the spectrum produced by
transient pulses in the frequency domain [5,6]. There are a number of studies and articles
on frequency domain [7–9]. However, signal analysis in the frequency domain might result
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in information loss in the time domain [10]. In addition, there are also other problems
that cause difficulty and confusion such as selecting the appropriate parameter (midband
frequency, bandwidth, PD threshold, trigger, and so on) for the adaptive filter, which
may lead to misdiagnosis or unstable patterns if these parameters are set incorrectly [11].
In addition, PD pulses are a transient, nonlinear, and nonstationary signal [12,13] and
when comparing the performance of artificial neural networks, fast Fourier transform
(FFT), and discrete wavelet transform (DWT), FFT is unsuitable for non-stationary signal
processing [14]. Even though there are many noise-filtering tools in frequency domain,
such as three center frequencies of relation diagram, multi-channel synchronous of PD
measurement [15–17], and time resolved partial discharge (TRPD) [18,19], there are many
challenging to extract waveform characteristics of PD pulses.

To overcome those difficulties, recently several methods have been studied that can
analyze and generate signal on time-frequency domain such as wavelet transformation
(WT) [20,21] or other methods [22]. However, only the WT approach is insufficient to
denoise a nonstationary and nonlinear PD signal [23]. Although these methods achieve
certain results in removing noise from the signal, there are still many problems such
that it is difficult and confusing to choose wavelet basis functions, wavelet thresholds,
decomposition levels, and so on since it depends largely on human experience [12,24].

After the empirical mode decomposition (EMD) was introduced in 1998, there has been
many variations of EMD to improve noise filtering [25]. EMD based on wavelet threshold
denoising method may efficiently reduce noise with minimal signal distortion [26]. Wu
and Huang proposed Ensemble EMD (EEMD) in 2009 to overcome the frequency aliasing
problem [27]. On the other hand, the EEMD method has two drawbacks, which are the
decomposition is incomplete and the different realizations of signal mixed with white
noise could generate different numbers of intrinsic mode functions (IMFs), especially in the
low frequency [28]. The complete EEMD with adaptive noise (CEEMDAN) method was
introduced to effectively handle the EMD decomposition scale inconsistency [29]. To solve
the two disadvantages of EEMD method, Colominas et al. (2014) further improved the
CEEMDAN method and proposed the improved CEEMDAN (ICEEMDAN) method, which
uses the original signal as the target of IMF sifting [30]. The advantages of the ICEEM-
DAN method has been verified for nonlinear and non-stationary signals by numerous
publications in the field of fault diagnosis [31,32].

Noise is one of the unavoidable factors of PD measurement for both conventional
and non-conventional methods. Because primary equipment is connected to each other in
the substations, it is difficult to determine where PD originates. In addition, in substation
environments especially with transmission substations, the electrical field surrounding test
object also affects data collection and may lead to a large amount of noise mixed with the
PD signal. Various forms of noise may present during PD measurement, including white
noise, regular impulses, oscillatory. Because of its likeness to PD signal, white noise is the
most hardest to eliminate [3].

Therefore, this study aims to denoise PD signals using a data decomposition approach,
ICEEMDAN algorithm, and statistical significance test to enhance noise reduction efficiency,
and to create the Hilbert spectrum of the input signal in 3D after filtering the noise for visual
observation and improving diagnostic skills of operators. The results are also verified by
some quantitative evaluation parameters.

2. Partial Discharge (PD) Measurement

PD phenomenon occurs with signals in the form of electrical pulses, electromagnetic
wave, acoustic emission, and chemical reactions. As a result, various PD measurement
methods have been developed corresponding to the accompanying signal types, includ-
ing the conventional method (the electrical method) and non-conventional methods (the
electromagnetic method, the acoustic method, the optical method, and so on) [33–35].
It is necessary to have some information and comprehension of the PD processes while
analyzing and implementing measuring circuits, as well as when selecting appropriate
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sensors. The PD mechanism and its behavioral characteristics are detailed in Appendix A.1
of Appendix A.

2.1. Conventional Method

Conventional PD measurement is the method using electrical signals mentioned in
IEC 60270 standard [5], i.e., measuring the apparent charge in the measuring circuit. The
apparent charge is the charge if injected a pulse between the test object’s terminals in a
specific test circuit within a very short time, would provide the same value on measuring
instrument as the PD current pulse itself, the unit of measurement is usually pC. Con-
ventional measurement test circuit includes coupling capacitor connected in series with
coupling capacitor or test object, balanced circuit arrangement, polarity discrimination test
circuit. The most popular circuit measurement in the field is to connect coupling device to
coupling capacitor in series. The conventional method according to IEC 60270 is considered
as a proven effective method for performing PD measurements by many professionals,
applied engineers and in the field of academic research. This method can be applied on
all primary equipment (power transformer, circuit breaker, instrument transformer, power
cable and so on). The limitation of this method is that it requires to separate the test
subject from the grid and use an external source to generate high voltages to apply in the
insulation system of the test subject. Furthermore, this method is affected by high noise
levels. However, the outstanding advantage is the ability to quantify the amplitude of
the partial discharge quantity, determine the partial discharge inception voltage (PDIV),
partial discharge extinction voltage (PDEV) values to quickly distinguish the tested high
voltage equipment pass or no pass. Therefore, the conventional method is widely used as
an application for testing new electrical equipment after installation, acceptance factory
test, or laboratory applications.

2.2. Non-Conventionalconventional Method

The most notable advantage of the non-conventional method is that there is no need
to separate the test subject from the grid, and it does not affect the test object as well as the
operating system. There are many ways to collect PD signals by non-conventional method
such as using high frequency current transformer (HFCT) sensor [6], transient earth voltage
(TEV) sensor [36], acoustic emission (AE) sensor [37]. The common way is to use HFCT to
measure the PD signal through the grounding or neutral system of high-voltage electrical
equipment. When performing partial discharge measurements in the field, there are many
factors that affect the measurement and data collection process, thereby indirectly affecting
the ability to diagnose and evaluate the insulation system of primary equipment. The
disadvantage is that there are no standard evaluation thresholds to confirm whether the
test object passes or not.

3. Materials and Methods
3.1. Materials

Typical PD pulse shapes from RLC detector circuit is an oscillating pulse with a
damping amplitude [38]. To demonstrate the efficiency to filter noise with a signal shaped
like a PD signal, this paper uses a damped oscillator signal generated from the arbitrary
function generator (AFG) with eight pulses blended with white noise. In addition, to
consider the adaptation of the proposed method to a real signal that have nonlinear and
nonstationary properties, a case study was conducted to collect the experimental signal.
A defect was created by cutting a 3-mm deep hold on cross linked polyethylene (XLPE)
insulation of medium voltage cable (Uo = 12.7 kV), then applying a test voltage of 12.7 kV
to cable insulation and acquiring the PD signal with an HFCT sensor. The PD signal was
then mixed with white noise to disrupt the signal. The white noise magnitude added to the
artificial signal and the experimental signal is 0.5 (normalized) and 0.005 (V), respectively.



Energies 2022, 15, 5819 4 of 17

3.2. Methods
3.2.1. Empirical Mode Decomposition (EMD)

A decomposition is a separation of a signal into different components, then analyze
the newly obtained components to gain new insight into the features inherent in the whole
data. There are several methods to perform such a decomposition and the EMD is one of
them. The most popular decomposition method is the Fourier transform that is a coordinate
transformation projecting a data onto an orthogonal basis system with sines and cosines. It
covers all frequencies that could be contained in the data [39]. In a strict sense, the Fourier
transform is only valid for linear and stationary data, however, nearly all of the practical
data are non-linear and non-stationary [40]. The wavelet transform is an extension of the
Fourier transform [41]. In addition to indicating which frequencies are significant, it also
displays the time the event happened; nonetheless, its limitations have been evaluated [23].

Huang et al. were the first to propose the EMD approach in 1998 [42]. In contrast
to most other decompositions, the EMD is empirical based on a concise mathematical
foundation but the data itself dictate the decomposition. However, this method was first
proved mathematically [43] and so far there have been many variations of EMD.

The modes produced by the EMD are called intrinsic mode function (IMF). The IMF is
described as follows: “An intrinsic mode function is a function that satisfies two conditions:
(1) In the whole data set, the number of extrema and the number of zero crossings must
either equal or differ at most by one; and (2) at any point, the mean value of the envelope
defined by the local maxima and the envelope defined by the local minima is zero.” [43].
After decomposing a signal into a set of IMFs in ascending order, the IMFs will show the
corresponding descending frequency and each IMF will display the specific information
of the signal in the time domain. Thus, the decomposed signal includes both time and
frequency domain information. This method is performed according to the following
steps [30,42]:

Step 1. Set k = 0 and find all extrema of ro = x.
Step 2. Interpolate between minima (maxima) of rk to obtain the lower (upper) enve-

lope emin (emax).
Step 3. Compute the mean envelope m = (emin + emax)/2.
Step 4. Compute the IMF candidate dk+1 = rk − m. IMF candidate is the result of the first

sifting process
Step 5. Is dk+1 an IMF? An IMF is an IMF candidate that satisfy two conditions of an IMF.

Yes. Save dk+1, compute the residue rk+1 = x −
k
∑

i=1
di, do k = k + 1, and treat rk as

input data in step 2. No. Treat dk+1 as input data in step 2.
Step 6. Continue until the final residue rk satisfies the predefined stopping criterion.

The predefined stopping criterion is based on two thresholds θ1 and θ2. Stop condition
will be implemented as follows: Calculate the mode amplitude a(t) = (emin − emax)/2 and the
evaluation function σ(t) = |m/a(t)| sifting process will be repeated if σ(t) < θ1 for some
prescribed fraction (1-α) of the total duration, and σ(t) < θ2 for the remaining fraction. In
this study, set α = 0.05, θ1 = 0.05, and θ2 = 0.5.

Steps 2 to 5 are the steps to find out the IMF modes, this process is called the
sifting process.

3.2.2. Improved CEEMDAN (ICEEMDAN)

The ICEEMDAN algorithm is presented as follows [30].
Ek(·) is the EMD operator which create the kth mode. w(i) is the white noise. M(·) is

the local mean operator.

Step 1. Determine the local means of I realization using EMD x(i) = x + βoE1(w(i)) to get the
first residual r1 = 〈M1(w(1))〉, where I is the number of realization in the ensemble
and the magnitude of additional noise β > 0.

Step 2. In the first phase (k = 1) compute the first mode: d̃1 = x − r1.
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Step 3. Estimate the second residue as the average of local means of the realizations
r1 + β1E2(w(i)) and define the second mode: d̃2 = r1 − r2 = r1 − 〈M (r1 + β1E2(w(i)))〉.

Step 4. For k = 3, . . . , K calculate the kth residue rk = 〈M(rk−1 + βk−1 Ek(w(i)))〉.
Step 5. Compute the kth mode d̃k = rk−1 − rk
Step 6. Go to step 4 for next k.

Constants βk = εkstd(rk) are selected to achieve a desired signal-to-noise ration (SNR)
between the additional noise and the residue to which the noise is added. Figure 1 illustrates
the ICEEMDAN algorithm flowchart.
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3.2.3. Statistical Significance Test (SST)

After decomposing the original signal into IMFs using ICEEMDAN, these IMFs will
contain both significant information and less significant information. IMFs containing less
significant information are considered noise and should be removed. To determine which
IMFs provides significant information to keep and which IMFs contain less information
to remove, statistical significance test was introduced by Wu and Huang (2004). First,
decompose the dataset of white noise which targeted into IMFs. Second, choose the confi-
dence level and determine the upper and lower bounds. Finally, compare the IMF’s energy
density from the data with the spread functions; the IMFs that have their energy located
above the upper bound and below the lower bound should be providing information at
that confidence level. After applying the statistical significant test, remove the IMFs which
have their energy located inside the spread lines (non-significant IMFs) and reconstruct a
signal by combining those significant IMFs only above and below the confidence level [28].
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The spread lines may be adjusted based on the properties of the signal and the experience
of user; for further information, see Appendix A.2 of Appendix A.

4. Results
4.1. Artificial Signal

To check the advantages of the mentioned method, this study will analyze the artificial
signal to simulate a PD phenomenon. This artificial signal is a damped oscillatory pulse
which is generated by an arbitrary function generator then it is mixed with white noise
as Figures 2a and 2b, respectively. The unit of the artificial signals has been normalized.
The sample rate of the artificial signal is 1024 Hz. The intrinsic mode functions of the
mixed signal in Figure 2b are presented in Figure 3. As shown in Figure 3, the PD signal
fundamentally appears in the IMF4–IMF7 and the white noise signal is primarily localized
in the high frequency IMF1–IMF3. The IMF8–IM11 contain the interference signals of
different frequencies at low energy.
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In the statistical significance test, we choose the confidence limit of 99% and determine
the upper and lower bounds. These bounds are the energy-density spread function of
the IMF components which are derived from the probability distribution. As shown in
Figure 4a, there are some IMFs that have their energy located above the upper bound
should be containing information, the others locate between two spread lines or locate very
close these bounds may contain noisy information or contain insignificant information and
should be removed. To enhance noise filtering capability, these boundaries are extended
by 0.5 axial units. Therefore, the IMF1, IMF2, IMF3, IMF10, IMF11 are eliminated as in
Figure 4b.
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As seen in the reconstructed signal after denoising in Figure 5a, the waveform with the
proposed method is closer to the original signal. Both noise reduction and preserving the
original signal’s properties yield good results. Figure 5b depicts the Hilbert spectrum of the
de-noised signal in the time-frequency domain to assist with visualization. The extensive
details about the artificial PD signal’s frequency, timing, and pattern, can be notified.
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Some common evaluation parameters are used to estimate the effectiveness of the
suggested de-noising method [44,45], including:

1. The SNR of the input and output were determined using (1) and (2). The difference of
SNR values was also computed using (3).

SNRinput = 10 log ∑n
i=1 s2(i)

∑n
i=1(N(n))2 (1)

SNRoutput = 10 log ∑n
i=1 s2(i)

∑n
i=1(s(i)− ŝ(i))2 (2)

∆SNR= SNRoutput −SNRinput (3)

where s(i) is the original PD signal, ŝ(i) is the de-noised signal and N(n) is the white noise.

2. Mean square error (MSE) is applied to compare the consistency between the original
signal and the de-noised signal. The lower the MSE, the closer the original and the
de-noised signals are;

MSE =
1
n

n

∑
i=1

(
|s(i)− ŝ(i)|2

)
(4)

3. Normalized correlation coefficient (NCC) is a widely used criteria for determining
signal similarity, having a value range of 0 to 1. The higher the NCC number, the
more similar the two signals are;

NCC =
∑n

i=1 s.ŝ(i)√
∑n

i=1 s2 ∑n
i=1 ŝ2

(5)

Figure 6 provides a quantitative overview of the input and output SNR with respect
to the magnitude of white noise added to the original signal. Figure 6a indicates that the
maximum ∆SNR was around 9.6 dB, and the minimum was approximately 4.8 dB, with an
average of 8.3 dB. This demonstrates that, even when diverse noise amplitudes are used to
disrupt the PD signal, the presented approach still has significant noise filtering capabilities,
even when the SNRinput is negative. Figure 6b,c shows how the assessment parameters for
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the proposed algorithms’ de-noising performance change with SNR. With varying SNR,
the NCC results are almost equal to one and the MSE values are low, suggesting that the
signal after denoising is nearly similar to the original signal.
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Figure 6. (a) The difference of input and output SNR, (b) NCC, and (c) MSE with varying
SNR, respectively.

4.2. Experimental Signal

The acquisition diagram for the experimental PD signal is described in Appendix A.3
of Appendix A. The sample rate of the simulate signal is 108 Hz. The experimental PD
signal demonstrated in Figure 7a is a typical signal when measuring PD on power cables
due to the reflective properties of the power cable. If PD activity occurs in a power cable,
two current pulses are generated. One signal travels to the beginning of the cable, while
the other travels to the end and is reflected backward with diminished amplitude [46]. Due
to the low level of noise interference in the laboratory condition and to keep the test results
as close as possible to the PD in the field, the PD signal acquired by the experimental test
is processed by adding the white noise as indicated in Figure 7b. Figure 8 displays the
IMFs, where the noise signal is substantially concentrated in the IMF1–IMF2 and the PD
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signal is mostly present in the IMF4–IMF6. IMF3 obtains the original pulse’s properties
but not the reflected pulse’s characteristic, and it also includes a considerable quantity of
noise. The remaining IMFs with higher frequencies have low energies and unclear signal
properties. The statistical significance test result in Figure 9a depicts the energy density of
12 IMFs, except the residual (IMF13). Consequently, the denoise technique eliminates the
IMF1–IMF3, IMF9, and IMF 12 as shown in Figure 9b.
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Figure 9. (a) The statistical significance test results for the IMFs (IMF1–12 from left to right) of the
experimental signal, and (b) the result after removing insignificant IMFs.

Figure 10 illustrates the outcome of reconstructing the signal from the significant IMFs
containing the PD information. The white noise is effectively suppressed. In addition, the
signal after denoising still has the PD pulse properties, especially the low amplitude re-
flected pulses at the end of signal. The PD pattern is clearly visible on the Hilbert spectrum.
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(a) 

Figure 10. The results of the reconstructed experimental signal after denoising: (a) in the time domain,
and (b) the Hilbert spectrum in the time-frequency domain.

As may be observed, the signal in the time domain after denoising with the suggested
approach is almost identical to the waveform of the original signal. Furthermore, the
Hilbert spectrum provides us with comprehensive information on the PD phenomena in
both the time-frequency domain. These results demonstrate that the proposed method
is highly efficient in terms of detecting and extracting PD signals. Figure 11 displays the
quantitative results of the described technique for the experimental signal in the laboratory.
The quantitative computation results further indicate that the high efficacy of the applied
method with the average of ∆SNR is 5.8 dB. Other evaluation indices, as shown in Figure 11,
also provide good results.
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5. Conclusions

Many studies have applied decomposition algorithms for investigating nonlinear and
non-stationary signals, and it can be stated that the ICEEMDAN algorithm has a clear
advantage [28,30,44,47]. This study combines the ICEEMDAN algorithm with the statistical
significance test to depict their efficacy in denoising for PD measurements. It can be inferred
that the mentioned method successfully filters the white noise from the PD signal and
provides the following substantial benefits.

1. The proposed method effectively removes white noise while keeping and isolating
the characteristics of the PD signal.

2. The ICEEMDAN algorithm, in conjunction with the statistically significant test ap-
proach, reduces the difficulty of picking significant IMFs and discarding insignifi-
cant IMFs.

3. The high SNR, delta SNR, and NCC parameters show that this method is very effective
even when the signal amplitude is very low and the SNRinput is negative.
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The Hilbert spectrum in time-frequency domain of denoised signal is very useful for
quick fault categorization.

To accurately diagnose PD phenomenon in high voltage devices, it is necessary to
collect signals of such defect types which will be addressed in future work. The findings
described in this research are meant to lay the framework for future experimental studies.
In future works, typical types of PD in the laboratory such as corona discharge, void
discharge, internal discharge, and so on will be conducted and PD signals will be collected
using conventional methods based on IEC 60270 standard to form a database for PD pattern
analysis using machine learning algorithm.
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ogy, H.S.L.; validation, H.S.L.; writing—original draft preparation, V.C.T.; writing—review and
editing, H.S.L.; supervision, H.S.L. All authors have read and agreed to the published version of
the manuscript.
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Appendix A

Appendix A.1. Partial Discharge Mechanism

PD is the breakdown of a small part of the insulation of an insulating system under
high voltage stress, which over time gradually evolves into a fault. Definition from IEC
60270 standard, PD is “localized electrical discharge that only partially bridges the insu-
lation between conductors, and which can or cannot occur adjacent to a conductor” [5].
Partial discharge is a complex and unpredictable phenomenon because the primary equip-
ment can be badly affected by thermal, mechanical, electrical, and environmental stresses
due to overload, moisture, heat, and other critical operational conditions [48]. To simplify
the operation of PDs, Figure A1 shows the dielectric of a capacitor includes a gas void
and illustrates the sequence of breakdown under sinusoidal alternating voltage [49]. If the
electric field strength in the insulation becomes higher than the dielectric strength of the
gas inside the void, the total breakdown will appear inside the void. In this moment, the
voltage of Cc drops to zero, current pulse appears, then the discharge is extinguished. The
process is repeated when the electric field strength in the insulation becomes again higher
than the dielectric strength of the gas inside the void. This process appears at the zero
crosses of Va and depends on the voltage gradient (around the peaks the voltage gradient
tends to zero). The equations and formulas for calculating the apparent charge value and
how to choose the capacitance of the coupling capacitor are detailed in [49,50].
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Figure A1. Partial discharge mechanism: (a) Scheme of an insulation system comprising a cavity;
(b) sequence of cavity breakdown under alternating voltages [49,51].

Appendix A.2. Spread of Energy

Figure A2 plots the spread lines for the first and 99th of white noise samples. The
groups of the dots from upper left to the lower right are the energy density as a function of
the averaged period for IMFs 1–9 for all 1000 samples with an identical length of 1000 data
points. The superimposed black dots are the energy density as a function of the averaged
period for IMFs 2–9 for a single sample with 106 data points. The bold blue dashed
lines and the thin black dashed lines are the first and 99th percentiles calculated from
Equations (3.6) and (3.7), respectively in [52].

As shown in Figure A2, there are still certain cases when the energy density of some
IMFs is very near to its spread function. For example, a short distance below or beyond
the bounds, as seen by the red circle. These spread lines can be adjusted by changing the
confidence level, which is decided by signal characteristics and operator experience. During
denoising for artificial signals, to enhance noise filtering capability, these boundaries are
extended by 0.5 axial units.

Energies 2022, 15, x FOR PEER REVIEW 15 of 18 
 

 

the bounds, as seen by the red circle. These spread lines can be adjusted by changing the 
confidence level, which is decided by signal characteristics and operator experience. Dur-
ing denoising for artificial signals, to enhance noise filtering capability, these boundaries 
are extended by 0.5 axial units. 

 
Figure A2. The spread functions and the energy density of white noise used to determine the statis-
tical significance of IMFs. 

A.3. Experimental PD Signal Diagram; 
In the laboratory, a real power cable PD signal is used to demonstrate the ability to 

filter noise and get the Hilbert spectrum. PD measurement diagram is shown in Figure 
A3. The PD test circuit at the HV laboratory is comprised of the following components: a 
high voltage source, a PD signal acquisition device using HFCT sensor, and a defected 
power cable. The defect is generated by cutting the XLPE insulation of the cable to a depth 
of 3 mm. The voltage from the high voltage source would be increased until PD occurred, 
and PD signals appear on PD signal acquisition device. In this test, it cannot be ruled out 
that the PD source may originate from the power supply. However, the signal’s properties 
indicate that it is propagated in the cable insulation environment. 

Test object is a medium voltage cable with cable type 12.7/22(24) kV—single core, 
nominal area is 1 × 70 mm2, and dimension conductor is 9.7 mm. 

 
Figure A3. Wiring diagram of the PD measurement on power cable used in this study. 

  

Figure A2. The spread functions and the energy density of white noise used to determine the
statistical significance of IMFs.



Energies 2022, 15, 5819 15 of 17

Appendix A.3. Experimental PD Signal Diagram;

In the laboratory, a real power cable PD signal is used to demonstrate the ability to
filter noise and get the Hilbert spectrum. PD measurement diagram is shown in Figure A3.
The PD test circuit at the HV laboratory is comprised of the following components: a high
voltage source, a PD signal acquisition device using HFCT sensor, and a defected power
cable. The defect is generated by cutting the XLPE insulation of the cable to a depth of
3 mm. The voltage from the high voltage source would be increased until PD occurred,
and PD signals appear on PD signal acquisition device. In this test, it cannot be ruled out
that the PD source may originate from the power supply. However, the signal’s properties
indicate that it is propagated in the cable insulation environment.

Test object is a medium voltage cable with cable type 12.7/22(24) kV—single core,
nominal area is 1 × 70 mm2, and dimension conductor is 9.7 mm.
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