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Abstract: To address time delay and noise problems in control systems, in this study, we integrated
an extended state filter for signal filtering into an active disturbance rejection control (ADRC) system
and derived an improved ADRC approach. In addition to the active anti-disturbance and active
tracking estimation functions of the existing ADRC, the proposed approach also includes active
filtering and active advance prediction functions, which can filter out the effect of measurement noise
on system state observation while reducing the delay between the system control output and the
detection of the sensor input. We verified through an evaluation in a simulation environment that the
proposed approach may be expected to achieve improved control accuracy and increase the stability
of closed-loop control systems.

Keywords: extended state filter; ADRC; predictive ADRC; closed-loop control

1. Introduction

In recent years, the theory of active disturbance rejection control (ADRC) technology
has been actively developed [1,2]. Several studies [3,4] have analyzed the frequency
approximation of ADRC control systems, and found that their stability margins are large
and their stability is less influenced by system parameters.

It is well known that phase delay is a key issue that affects the stability of control
systems. For example, the design of controllers for time-delay systems is very challenging
as the time delay induces an additional phase delay [5]. Similarly, if a time delay is present
between the input of the system sensing a signal and the output action of the controller, a
phase delay is also introduced, which leads to an increase in the control time uncertainty
and a decrease in the stability margin of the system, and may even cause the system to
become unstable. Predictive ADRC was proposed to reduce the time delay between the
system input and the controller output [6]. Additionally, random measurement noise is
prevalent in the sensing and detection systems of realistic controllers [7–9], which reduces
the observer bandwidth of ADRC. Furthermore, high-gain bandwidth introduces high-
frequency noise, which vastly degrades the control performance of a closed-loop system,
and may even destabilize the system.

The Kalman filter (KF), based on the least variance estimation, is an unbiased least
variance estimation only for linear systems with Gaussian white noise. Extended Kalman
filtering (EKF) is the application of the KF algorithm to linearized nonlinear systems.
However, it has some limitations in dealing with nonlinear uncertain systems, because EKF
is linearly expanded at the current estimate value of the state, which makes the linearization
error a higher-order term of the current estimate error. When the system linearization error
is large, the linearization error may become the main term in the system, which makes the
filter value diverge. Therefore, when the initial estimation error and noise term are large,
the stability of EKF is difficult to be guaranteed.
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An ESF considers the uncertainty, process noise, and measurement noise of the system.
Based on the idea of ESO, the total uncertain disturbance of the system is compensated,
and the nonlinear uncertain system is changed into a linear system. Considering the
process noise and measurement noise of the system at the same time, the ESF extended
observation filter is derived based on the optimal prediction and estimation correction
idea of the Kalman filter. ESO and KF are very mature algorithms. Using ESO disturbance
compensation, the uncertain nonlinear system can be compensated to a linear system.
Combined with KF filtering algorithm, it avoids the divergence and instability of the
system caused by the linearization error of EKF approximation.

To address the time delay and noise problems in control systems, in this study, we
derived a new anti-disturbance algorithm named EPADRC, the core idea of which is to
incorporate an extended state filter [10,11] used for signal filtering into the PADRC control
technology. This not only reduces the delay between the system output and the controller
output, but also enables adaptive adjustment of ADRC parameters, which reduces the
effect of random noise on the control system, because it performs the functions of active
filtering, active tracking estimation, active anti-disturbance, and active prediction.

Active disturbance rejection control algorithms have been widely used in engineering
and academia, but the traditional active disturbance rejection algorithm is basically used
in engineering at present. In view of the uncertainty, high-frequency process noise, and
measurement noise in practical control systems, this paper proposes for the first time an
intelligent combination of an ESF and PADRC to solve the problems of limited gain of ESO
that lead to low tracking and control accuracy of traditional ADRC and PADRC.

An extended state filter (ESF) serves as the core of predictive ADRC technology
(PADRC) with ESF, which is primarily used to filter the detection signal. However, in
the new ADRC technique EPADRC proposed in this work, the ESF can not only track
the system output signal and the differential state of each order, but also dynamically
reject random noise generated by sensors. Thus, the EPADRC can replace existing PADRC,
and the control performance can be guaranteed in the presence of the significant external
disturbances, which meet the specific requirements of power-electronics-based systems.

2. Extended State Filter

ESFs are a new type of observer with filters proposed for certain multi-input and
multi-output (MIMO) nonlinear systems [12,13] with continuous uncertain dynamics and
discrete measurements containing noise. An ESF is both a filter and an observer. Although
the system contains nonlinear time-varying uncertainty, the covariance of the ESF filter
error converges, and the range of the filter error can be evaluated in real time by the
parameters (gain coefficients) of the ESF filter. Moreover, if the uncertainty is an invariant
constant value, an ESF can be proven to be a linear minimum variance filter.

Developed from the extended state observer (ESO) [14–16], an ESF improves the ESO
structure by considering the nature of measurement noise, uncertain dynamics, and discrete
errors present in the system, and automatically optimizes the parameters of ESO to form
the ESF. The authors of [17] derived the ESF through state estimation, tracking a MIMO
system from a rigorous mathematical perspective. The derivation is relatively complex
and technical. Hence, in this section, we consider single-input and single-output (SISO)
systems [18,19] as an example to derive a corresponding recursive ESF algorithm.

First, we consider an nth-order nonlinear time-varying uncertainty system.

.
x1 = x2.
x2 = x3
...
.
xn = f (x, w, t) + bu
yk = Cdx(kτ) + nk

(1)
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where x denotes the continuous state variable, y represents the discrete sampled measure-
ment output, τ is the sampling time, and nk is the measurement noise. This is a typical
hybrid system in which the observation equation is continuous and the measurement
equation is discrete. In this study, we focus primarily on the filtering characteristics of
the ESF under open-loop conditions, i.e., when u = 0. In this case, Equation (1) may be
rewritten as { .

x(t) = ACx(t) + Bc f (x, w, t)
yk = Cdx(kτ) + nk

(2)

where Ac =


0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
0 0 0 · · · 1
0 0 0 · · · 0


n×n

, Bc =


0
0
0
...
1


n×1

, Cd = [1 0 0 · · · 0]1×n.

From Equation (2) above, it may be deduced that the ESF filter was designed to
estimate the system state x(t) = [x1, x2, · · · , xn] and unknown disturbances f (x, w, t) from
discrete measurement outputs in the presence of uncertainty f (·) and measurement noise
nk. The uncertainty f (·) exists because computing the value of f (·) from the function
f (x, w, t) is impossible in practical engineering, even if the model of the function f (x, w, t)
is known, because the true value of the system state x(t) = [x1, x2, · · · , xn] is unknown.

Because filtering algorithms are usually implemented via numerical calculations
carried out by computers, for example, by ZOH or FOH methods, the hybrid system (2)
may be equivalently converted to the following discrete form.{

xk+1 = Adxk + Bd fk + wk
yk = Cdxk + nk

(3)

where xk =


x1,k
x2,k

...
xn,k

 =


x1(kτ)
x2(kτ)

...
xn(kτ)

, fk = f (xk, w, kτ),

Ad =



1 τ τ2

2! · · · τn−1

(n−1)!

0 1 τ · · · τn−2

(n−2)!
...

. . . . . .

0 0 0
. . . τ

0 0 0 · · · 1


n×n

, and Bd =



τn

n!
τn−1

(n−1)!
...

τ2

2!
τ


n×1

.

The discrete error wk satisfies [20].

wk =

(k+1)τ∫
kτ



((k+1)τ−t)n−1

(n−1)!
((k+1)τ−t)n−2

(n−2)!

...
(k + 1)τ − t

1


[ f (x(t), w, t)− fk]dt (4)

We assume that the measurement noise nk is a zero-mean Gaussian sequence. Taking
fk as an extended state, system (3) is equivalent to
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[

xk+1
fk+1

]
= A

[
xk
fk

]
+ BGk +

[
wk
0

]
yk = C

[
xk
fk

]
+ nk

(5)

where A =

[
Ad Bd
0 1

]
, Gk = fk+1 − fk, B =

[
0nx1

1

]
, and C = [Cd 0].

Let the nominal model of the nonlinear function f (x, w, t) be f (x, t) and the relation-
ship of f (x, t) to the state variables be known in advance. Then, Gk, the nominal model of
Gk, is given as

Gk = G(xk, kτ) = f (Adxk + Bd f k, kτ + τ)− f (xk, kτ) (6)

Then, the state filter of the discrete system (5) is

zk+1 = Azk + BĜk − Kk(yk − Czk) (7)

where zk = (z1,k z2,k · · · zn+1,k)
T , which denotes the tracking estimates of the state vari-

ables x1, x2, · · · , xn and f (·) of system (5) at t = kτ, respectively. They are also referred
to as the filtered values (x̂k, f̂k). Equation (7) presents the extended state filter (ESF) of the
hybrid system (2).

The optimal solution of Kk, the gain of ESF, in Equation (7) is critical for the ESF
algorithm. The derivation of Kk based on the optimal recursion method and the proof of
stability of the ESF is given below.

Let the estimation error of LESO be ek+1 =

[
xk+1
Fk+1

]
−
[

x̂k
F̂k

]
, Then, the estimation error

satisfies the following equation:

ek+1 = (A + KkC)ek + Kknk +

[
wk
0

]
(8)

The estimation error is essentially a random variable, and since ek, wk, nk are indepen-
dent of each other, we consider its mean square error of the ESF:

E(ek+1eT
k+1) = (Ã + KkC̃)E(ekeT

k )(Ã + KkC̃)T + E

([
0

Gk

][
0

Gk

]T
)
+ KkE(nknT

k )K
T
k +

E

([
wk−1

0

][
wk−1

0

]T
)
+ E

(
(Ã + KkC̃)ek

[
0

Gk

]T
)
+ E

([
0

Gk

]
eT

k (Ã + LkC̃)
T
)

(9)
To find the optimal gain Kk, the extremum of tr(E(ekeT

k )) is calculated, which is
dtr(E(ekeT

k ))
dKk

= 0.

From dtr(AB)
dA = BT , dtr(ABAT)

dA = 2AB, eventually, the ESF observer gain Kk is recur-
sively given by

Kk = −APkCT
(

CPkCT +
Rk

1 + θ

)T
(10)

Pk+1 = (1 + θ)(A + KkC)Pk(A + KkC)T + KkRkKT
k +

1 + θ

θ
Qk (11)

Qk =

[
Q1k 0

0 Q2k

]
, Q1k =

q2
1,k,1

· · · 0

0
. . . 0

0 0 q2
1,k,n

, Q2k = q2
2,k (12)
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where [20]
P0 ≥ E[(Xk − zk)(Xk − zk)

T ] , Xk = (x1,k, x2,k, · · · , xn,k, fk)
T

Rk ≥ E(nknT
k )

q1,k,i ≥
∣∣wk,i

∣∣ , i = 1, 2, · · · , n (13)

q2,k ≥
∣∣ fk+1 − fk

∣∣
θ =

√
tr(Qw0 )

tr(P0)
> 0, where w0 is the initial discretization error of continuous system (1),

and Qw0 ≥ E
(
w0wT

0
)
.

Ĝk
∆
= sat(G̃k, q2,k), G̃k

∆
= G(x̂k, kτ), f̂0 = f̂ 0, here sat(a, b) = max{min{a, b},−b},

b > 0.
The stability analysis of the ESF:
If the noises nk and wk are negligible, since (A−KkC) is Hurwitz, there is certainty that

a unique positive definite matrix P exists, which satisfies (A− KkC)T P+ P(A−KkC) = −I.
The Lyapunov function is chosen as V(e) = eT Pe. Then, we can get

.
V(e) = ∂(V(e))

∂e
.
e

= 2eT P · .
e

= 2eT P · (A− KkC)e
= −‖e‖2 ≤ 0

So, lim
t→∞

(ei) = 0, i = 1, 2, . . . , n + 1.

If the noise of the system is to be considered, the Equation (8) is a stochastic system
and can be rewritten as:

ek+1 = Aek + W k (14)

where, A = (A + KkC), Wk = Kknk +

[
wk
0

]
.

If a real number α is given, and α ≥ 1, there exist two positive definite symmetric
matrices Q1, Q2, and let 

Q1 = R−1/2Q1R1/2

Q2 = R1
1/2Q2R1

−1/2

V(ek, Wk) = eT
k Q−1

1ek + WT
k Q2Wk

(15)

where R and R1 are angular moments.
Assuming that the above Equation (15) can ensure that the following formula holds,

E
(
V(ek+1, Wk+1)

)
< αE

(
V(ek, Wk)

)
(16)

Then by recursion, we can get:

E
(
V(ek, Wk)

)
< αkE

(
V(e0, W0)

)
(17)

Additionally, the mathematical expectation of V(e0, W0) satisfies the following equation:

E
(
V(e0, W0)

)
= E

(
eT

0 Q−1
1 e0 + WT

0 Q2W0

)
≤ λmax

(
Q−1

1

)
eT

0 Rek + λmax(Q2)W
T
0 R1W0

≤ λmax

(
Q−1

1

)
+ λmax(Q2)

(18)

where λmax(A), λmin(A) are the largest and smallest eigenvalues of the real symmetric
matrix A, respectively.
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In addition, the mathematical expectation of V(ek, Wk) satisfies:

E
(
V(ek, Wk)

)
= E

(
eT

k Q−1
1 ek + WT

k Q2Wk

)
≥ λmin

(
Q−1

1

)
E
(

eT
k · R · ek

)
(19)

From Equations (17)–(19), we can get

E
(
eT

k · R · ek
)

<
λmax(Q−1

1 )+λmax(Q2)

λmin(Q−1
1 )

αk

= λmax(Q1)
(

1
λmin(Q1)

+ λmax(Q2)
)

αk
(20)

Since there is always a real number c1, c1 > 0, satisfying

1
λmin(Q1)

+ λmax(Q2) <
c1

λmax(Q1)
α−k (21)

From Equations (20) and (21), it can be deduced that:

E
(

eT
k · R · ek

)
< c1 (22)

Equation (22) shows that the state tracking error of the ESF is bounded, thus proving
the stability of the ESF.

The gain of LESO is based on the same pole allocation in [21]. It is known that the
convergence of ESO is lim

t→∞
|ei| ≤ ρ, i = 1, 2, . . . , n + 1, where ρ is a small positive number.

In addition, the literature [22] provides the following convergence formula for a LESO
stability proof:

lim
t→∞

(ei) ≤ O(max
{

lnωe
ωe

, 1
ωe

}
), i = 1, 2, . . . , n + 1, where ωe is the bandwidth of LESO.

Additionally, for the stability of generalized ESO, the convergence conclusion is as
follows in reference [23]:

lim
t→∞

(ei) ≤ O
(
εn+1−i), i = 1, 2, . . . , n + 1, where ε < 1.

In summary, the convergences of [21–23] mentioned above are proved, and ESF is
based on the minimum variance of e to obtain the gain. It can be seen that lim

t→∞
(ei) = 0,

i = 1, 2, . . . , n + 1.
Equations (10)–(13) constitute the ESF parametric self-seeking algorithm, which has

the following important properties and advantages.

1. The mean squared error of the estimation error of the ESF is bounded regardless of
whether the system is linear or nonlinear, time-variant or time-invariant, whether the
dynamic model is known, and whether it contains measurement noise. Furthermore,
the upper bound of the covariance matrix of the estimation error can be obtained
online in real time by the parameter Pk. As is well known, in practical engineering,
obtaining the exact value of the estimation error is impossible, because the state of
the system is unknown. Thus, ESFs can obtain the estimation error evaluation online,
which is of great significance in engineering.

2. ESF can actively estimate the nonlinear part of the system (2), whereas other existing
filters usually require an accurate model of the nonlinear part. Hence, ESF provides a
new approach to deal with nonlinear unknown dynamics, whereas other filters have
divergent filter values for large ranges of uncertain systems.

3. Using ESO disturbance compensation principle, ESFs transform the uncertain non-
linear system into a linear system. Combined with a KF filtering algorithm, it avoids
the divergence and instability of the system caused by the linearization error of
EKF approximation.

In this way, another salient advantage of the ESF over the extended Kalman filter
(EKF) is that it does not require linearization of the system model, which avoids complex
computations and linearization errors. In fact, the convergence of the traditional EKF is



Energies 2022, 15, 5799 7 of 19

only guaranteed for approximately linear systems. The ESF is not subject to this limitation,
because it inherits the core idea of ESO—extending the nonlinear part into a new state. That
is, ESF guarantees consistency (i.e., Sk=̂E(xk − x̂k)(xk − x̂k)

T ≤ Pk), whereas EKF does not
guarantee consistency, and its estimation error may be divergent.

4. The smaller the choice of (P0, Qk, Rk) when Equation (13) is satisfied, the smaller the
PK and the better the designed ESF, as may be observed from Equation (12). Thus, P0,
a diagonal array, is taken as small as possible to exceed the required variance of the
initial estimation error, which is physically meaningful.

5. When the nonlinear uncertainty function is constant and the initial value of the system
state variable is known, the ESF is the linear minimum variance filter. That is, when
f (x, t) ≡ f0, Ev0 = E(X0 − z0) = 0, P0 = Ev0v0

T , the ESF is the linear minimum
variance estimator of (xk, fk)

T . Conversely, the ESF is the optimal tracking estimator
for a system under constant total perturbations.

6. If Qk ≡ Q, Rk ≡ R , ∀k > 1, then lim
k→∞

Pk = P, where P is the unique solution to the

following Riccati equation.

P = −(1 + θ)

[
APCT

(
CPCT +

1
1 + θ

R
)−1

CPAT − APAT

]
+

1 + θ

θ
Q (23)

It can be concluded that if Rk and Qk are consistently bounded, and their bounded
values are R and Q, respectively, then the consistent bound P of Pk is the solution to the
Riccati Equation (23) above.

Further analysis indicates that the EKF observer gain matrix Kk also converges to a
constant matrix

P = −(1 + θ)APCT
(

CPCT +
1

1 + θ
R
)−1

CPAT (24)

which is defined as the stability factor of the ESF. Additionally, θ is chosen based on the
principle that P is minimized according to Equation (13).

As may be deduced from this analysis, the purpose of considering the extended state
in ESF is to estimate the uncertainty term in the model in real time. Thus, its tracking
estimation of the state variables is not affected by the bias resulting from the uncertainty
and nonlinearity of the model, because linearization processing is not required. Hence, a
filter designed in this manner does not depend on the exact model of the system, thereby
avoiding the complex calculations and linearization error involved. Thus, the filter is a
self-adaptive filter with self-seeking optimization, which can ensure the convergence and
tracking by the filter of the state variables submerged in the measurement noise.

3. EPADRC Algorithm Incorporating ESF Filtering

A practical discrete system implementation would involve a strict time constraint such
that the delay between the sensor input and the controller output should be as small as
possible, which implies that the computational time consumption of the controller should
be minimized. Owing to the observer-based approach, the ADRC controller has a greater
computational complexity than the conventional proportional-integral-derivative (PID)
controller. Thus, we aim to reduce the computational complexity of ADRC, and propose
improved methods to reduce the delay between input and output in this work.

Furthermore, as random measurement noise is prevalent in the sensing and detection
system of the real controller, a high-gain bandwidth introduces high-frequency noise, which
significantly degrades the control performance of closed-loop systems, and can lead to
system instability. Thus, such noise reduces the observer bandwidth of ADRC.

In this section, we describe our approach to fuse the ESF filter with the PADRC
control technology to constitute a new anti-disturbance control technology. Because this
new technology is the first new ADRC control technology proposed in this work, we
refer to it hereafter as EPADRC control technology. In this section, we introduce the
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derivation process of EPADRC, and present that the results of simulations conducted
verify that EPADRC can perform active filtering, active tracking estimation, active anti-
disturbance, and active prediction, among other functions, as well as highly dynamic and
high-accuracy performance.

3.1. Predictive ADRC Techniques

For nonlinear uncertain systems, compared to traditional ADRC, the PADRC has the
advantage of leading the phase and reducing the input and output delay of the entire
system. The literature [24] adopts the ZOH method to realize advanced observation of ESO,
while PADRC is advanced predictive control of the whole control algorithm, including not
only advanced prediction of the ESO part, but also advanced predictive control processing
of the control law calculation part.

In applications with a fixed sampling frequency, the performance of the controller
can be improved by reducing the delay between obtaining the system output signal and
refreshing the controller output signal (which is also the system input signal) within a
single sampling cycle. The input-output lag does not necessarily depend on the entire
computation of the controller algorithm, but rather on the necessary computation required
to obtain the controller output, whereby the tedious and complex computation can be per-
formed whenever possible in the remaining time of the sampling cycle after the controller
output refresh. Thus, we propose a PADRC control technique with prediction followed
by correction.

We consider a second-order nonlinear time-varying uncertain system given as follows.{ .
x = Ax + f (x, w, t) + Bu
y = Cx

(25)

where A =

[
0 1
0 0

]
, B =

[
0
b

]
, C = [1 0].

This is a continuous time system, where x denotes the continuous state variable
x = [x1, x2, · · · , xn], and y denotes the system output. Its corresponding PADRC loop
iteration algorithm is given as follows.

uk = uk − (l1 + l2 + l3)yk
x̃k = xk + L̃Eyk
xk+1 = ÃE · x̃k + B̃E · uk

uk+1 = k1
b rk+1 − [1 1 1]xk+1

(26)

where ÃE = T−1 AET, B̃E = T−1BE, L̃E = T−1LE, x̃ = T−1 x̂, AE = A − LCA,

BE = B− LCB, LE = L, and A =

[
A 1
0 1

]
, B =

[
b
0

]
, C = [C 0], T−1 = 1

b

k1
k2

1

.

Because the matrices ÃE, B̃E, L̃ E, and (l1 + l2 + l3) can be computed ahead of the
control algorithm, only a single multiplication and subtraction operation is performed at
time tk, and the other complex calculations are performed after the ADRC controller output
uk is refreshed, which significantly reduces the time delay between the system output yk
and the controller output uk. In contrast, the delay between the feedback system output and
the input is an important factor that affects the dynamic tracking accuracy of the system.

3.2. Theoretical Derivation of EPADRC Algorithm with an ESF

The derivation in this section includes a new EPADRC control algorithm that combines
an ESF with PADRC. EPARC aims to improve the filtering performance, uncertainty
compensation, phase advance, and system stability of the whole system for nonlinear and
uncertain systems.
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Here, we consider nth-order nonlinear time-varying uncertain systems.{ .
x = ACx + Bc f (x, w, t) + Bucu
y = Cdx

(27)

where Ac =


0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
0 0 0 · · · 1
0 0 0 · · · 0

, Bc =


0
0
0
...
1

, Buc =


0
0
0
...
b

, Cd = [1 0 0 · · · 0].

This is the continuous time system, where x denotes the continuous state variable
x = [x1, x2, · · · , xn] and y represents the system output.

By the ZOH or FOH methods, the continuous system (18) can be equivalently con-
verted to the following discrete form.{

xk+1 = Adxk + Bd fk + Budu + wk
yk = Cdxk + nk

(28)

where xk =


x1,k
x2,k

...
xn,k

 =


x1(kτ)
x2(kτ)

...
xn(kτ)

 and fk = f (xk, w, kτ). Moreover,

Ad =



1 τ τ2

2! · · · τn−1

(n−1)!

0 1 τ · · · τn−2

(n−2)!
...

. . . . . .

0 0 0
. . . τ

0 0 0 · · · 1


n×n

, Bd =



τn

n!
τn−1

(n−1)!
...

τ2

2!
τ


n×1

, Bud = b



τn

n!
τn−1

(n−1)!
...

τ2

2!
τ


n×1

The linearized discrete error wk satisfies

wk =

(k+1)τ∫
kτ



((k+1)τ−t)n−1

(n−1)!
((k+1)τ−t)n−2

(n−2)!

...
(k + 1)τ − t

1


[ f (x(t), w, t)− fk]dt, (29)

We assume that the measurement noise nk is a zero-mean Gaussian sequence. Taking
fk as an expansion state, the system (28) is equivalent to

[
xk+1
fk+1

]
= A

[
xk
fk

]
+ BGGk + Buk +

[
wk
0

]
yk = C

[
xk
fk

]
+ nk

(30)

where A =

[
Ad Bd
0 1

]
, Gk = fk+1 − fk, BG =

[
0nx1

1

]
, B =

[
Bud
0

]
, C = [Cd 0].

For the discrete system (28), the terms wk, Gk, and nk are added to the ESF covariance
array for consideration. Its corresponding discrete time-extended state filter DESF is
given as:
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{
x̂k+1 = Ax̂k + Buk − Kk(yk − ŷk)
ŷk = Cx̂k

(31)

where x̂k = (x̂1,k x̂2,k · · · x̂n+1,k)
T denotes the state variables x1, x2 , · · · , xn of the system

(30) and the filtered values (x̂k, f̂k) of f (·) at t = kτ, respectively.
Through the derivation in Section 3.2, we know that the ESF observer gain Kk is

recursively given by

Kk = −APkCT
(

CPkCT +
Rk

1 + θ

)T
(32)

Pk+1 = (1 + θ)(A + KkC)Pk(A + KkC)T + KkRkKT
k +

1 + θ

θ
Qk (33)

Qk = 2
[

Q1k 0
0 Q2k

]
, Q1k =

q2
1,k,1

· · · 0

0
. . . 0

0 0 q2
1,k,n

, Q2k = q2
2,k, (34)

of which
P0 ≥ E[(Xk − zk)(Xk − zk)

T ] , Xk = (x1,k, x2,k, · · · , xn,k, fk)
T

Rk ≥ E(nknT
k )

q1,k,i ≥
∣∣wk,i

∣∣ , i = 1, 2, · · · , n (35)

q2,k ≥
∣∣ fk+1 − fk

∣∣
θ > 0

Ĝk
∆
= sat(G̃k, q2,k), G̃k

∆
= G(x̂k, kτ), f̂0 = f̂ 0

In the dependencies given above, the matrix inequalities like X > Y, it means that every
element of X is larger than that in Y if X and Y are matrixes.

Here, x̂k = (x̂1,k, x̂2,k, · · · , x̂n,k, f̂k) contains the estimate the extended state fk. Then,
we can obtain its estimation error dispersion equation,

ek+1 = xk+1 − x̂k+1 = (A + KkC)(xk − x̂k) (36)

As can be deduced from the estimation error Equation (36), the characteristic roots
of the matrix (A + kkC) determine the decay process of estimation error dynamics. The
observer gain Kk determines the pole configuration of the matrix (A + kkC), while Kk can
be obtained automatically from Equation (32) based on the magnitude of the noise variance,
indicating that the ESF has an automatic optimal configuration of the poles of the matrix.

Siemens engineers have been using the delay of the signal to lead to a deadband, the
existence of which may render the control loop unstable. To reduce unnecessary time delay,
we adopted the “advance prediction” and “current correction” strategy introduced above.
Similar to the basic idea of Kalman filtering, the process of refreshing and outputting a
filtering result is divided into two steps. First, the prediction phase is performed, in which
the predicted value is obtained based on the latest measurement at time k–1. Second, the
correction phase is performed, in which the predicted value is corrected based on the latest
current measurement output yk to obtain the final estimate xk.{

xk = (A + KkC)x̂k−1 + Buk−1 (prediction)
x̂k = xk − Kkyk (correction)

(37)

We substitute the prediction expression of Equation (37) into the correction expression
to obtain

x̂k = (A + KkC) · x̂k−1 + B · uk−1 − Kk · yk (38)



Energies 2022, 15, 5799 11 of 19

For Equation (38), we simplify the Digital Linear ESO (DLESO) as

x̂k = AE · x̂k−1 + BE · uk−1 + LE · yk (39)

where AE = A + KkC, BE = B, LE = −Kk.
For the nth-order system of Equation (37), we generally use the linear state feedback

control law given as

uk =

k1(rk − x̂1,k)−
n
∑

i=2
ki x̂i,k − x̂n+1,k

b
=

k1rk −
n
∑

i=1
ki x̂i,k − x̂n+1,k

b
(40)

where x̃i =
ki
b x̂i, (i = 1, · · · , n)), x̃n+1 = 1

b x̂n+1. Then, Equation (40) can be simplified as

uk =
k1

b
rk −

n+1

∑
i=1

x̃i,k (41)

The structure of the improved ADRC controller is presented in Figure 1.

Figure 1. Diagram of the improved ADRC structure.

Comparing Equations (40) and (41), through matrix transformation, we can convert
the new estimated variable x̃ from the previously estimated variable x̂.

x̃1
x̃2
...

x̃n+1

 =
1
b


k1

. . .
kn

1




x̂1
x̂2
...

x̂n+1

 (42)

where T−1 = 1
b


k1

. . .
kn

1

. From Equation (39), we obtain DLESO with the new

estimated variable x̃ as the estimated value of the state variable

x̃k = ÃE · x̃k−1 + B̃E · uk−1 + L̃E · yk (43)

where ÃE = T−1 AET, B̃E = T−1BE, L̃E = T−1LE.
If the matrices ÃE, B̃E, and L̃E can be precalculated ahead of the control algorithm,

resource-consuming calculations such as the division of the state variables with b and the
multiplication with ki in the feedback control law (40) can thus be avoided, thereby greatly
reducing the execution time of the algorithm. Because the value of the desired output rk at
each time point is known in advance, k1

b rk can be computed before the algorithm execution
time point, which can further improve the operational efficiency of the controller. Finally,
the simplified control feedback law may be obtained as given in Equation (30).
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Because the estimated state variable x̃i must be updated at each time point tk according
to Equation (43) and the controller output uk is calculated using Equation (40), further
optimization of the control algorithm is required.

Substituting Equation (43) directly into Equation (44) yields

uk =
k1

b
rk − (1 1 · · · 1)(ÃE x̃k−1 + B̃Euk−1 + L̃Eyk) (44)

As may be observed from Equation (44), the control output uk depends not only on
the system output yk and the system output expectation at the moment of rk tk, but also
on uk−1 and x̃k−1 at the moment of tk−1. A method that can compute uk with low latency
is required for this purpose; at the moment of tk−1, it must precompute the part of uk
that can be computed ũk and correct uk with the current value after obtaining the system
measurement output yk and the system output expectation rk at time tk to improve the
computational efficiency of uk.

Normally, the system output expectation setting r is known, and the calculation can
be further optimized by calculating the term related to rk in advance at the moment of tk−1
so that only the system measurement output yk is involved in the update of the control
output uk at the moment of tk. Then, we adopt the prediction and correction to refresh the
uk output, which is obtained from Equation (44) as:

uk = k1
b rk − (1 1 · · · 1)(ÃE x̃k−1 + B̃Euk−1 + L̃Eyk)

= k1
b rk − (1 1 · · · 1)(ÃE x̃k−1 + B̃Euk−1)− (1 1 · · · 1)L̃Eyk

= uk − (1 1 · · · 1)L̃Eyk

= uk − (
n+1
∑

i=1
l̃i)yk

(45)

where
uk =

k1

b
rk − (1 1 · · · 1)(ÃE x̃k−1 + B̃Euk−1) (46)

The state estimate x̃k is updated using the forecast term xk correction, the update
equation of which is given by (46).

x̃k = ÃE · x̃k−1 + B̃E · uk−1 + L̃E · yk
= xk + L̃E · yk

(47)

where
xk = ÃE · x̃k−1 + B̃E · uk−1 (48)

Substituting Equation (48) directly into Equation (46), the prediction term uk for the
control output uk is derived as

uk =
k1

b
rk − (1 1 · · · 1)xk (49)

According to Equation (47), the estimated state prediction term described in Equation (49)
xk is expressed as

xk = ÃE · x̃k−1 + B̃E · uk−1
= ÃE(xk−1 + L̃Eyk−1) + B̃E · uk−1

(50)

Then, Equations (45), (47), (49), and (50) form the ADRC controller loop iteration
algorithm, as given below.

uk = uk −
(

n+1
∑

i=1
l̃i

)
yk

xk+1 = ÃE(xk + L̃Eyk) + B̃E · uk

uk+1 = k1
b rk+1 − (1 1 · · · 1)xk+1

(51)
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Incorporating the recursive Equations (32)–(34) for the ESF gain Kk derived in Section 2
into Equation (51), a new ADRC technique with self-adaptive filtering and state and
control output prediction with optimal time delays is derived as follows, which we refer to
as EPADRC. 

uk = uk −
(

n+1
∑

i=1
l̃i

)
yk (u correction)

xk+1 = ÃE · (xk + L̃Eyk) + B̃E · uk (x prediction)
uk+1 = k1

b rk+1 − (1 1 · · · 1)xk+1 (u prediction)

(52)



Kk = −APkCT
(

CPkCT + Rk
1+θ

)T

Pk+1 = (1 + θ)(A + KkC)Pk(A + KkC)T + KkRkKT
k + 1+θ

θ Qk

Qk = 2
[

Q1k 0
0 Q2k

]
, Q1k =

 q2
1,k,1

· · · 0

0
. . . 0

0 0 q2
1,k,n

, Q2k = q2
2,k

L̃E = −T−1Kk, T−1 = 1
b


k1

. . .
kn

1



(53)

3.3. Convergence of EPADRC

Since the control law of EPADRC adopts the feedforward compensation of disturbance,
which is obtained by ESF observation, the nonlinear uncertain system (1) is approximately
transformed into a linear series integral type:

.
x1 = x2.
x2 = x3
...
.
xn = bu0
yk = Cdx(kτ)

(54)

According to Equation (40), the feedback control law of linear system (54) can be
obtained as follows:

u0 =

k1(rk − x1)−
n
∑

i=2
kixi

b
(55)

Further, the closed-loop transfer function of the system can be obtained as follows:

Gclose =
X1(s)
R(s)

=
k1

k1 +
n
∑

i=2
kisi−1 + sn

(56)

Then, the error transfer function is:

Ge(s) =
E(s)
R(s)

= 1− k1

k1 +
n
∑

i=2
kisi−1 + sn

=

n
∑

i=2
kisi−1 + sn

k1 +
n
∑

i=2
kisi−1 + sn

(57)

For step input, the flowing formula can be obtained by using the final value theorem:
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lim
t→∞

e(t) = lim
s→0

E(s)s =

n
∑

i=2
kisi−1 + sn

k1 +
n
∑

i=2
kisi−1 + sn

= 0 (58)

So, it has been proven above that EPADRC is stable.

4. Simulation and Analysis of Results

Here, we consider a second-order nonlinear system as given below.
.
x1 = x2.
x2 = 20 x1 + 78x2 + 10 + 230u
y = x1 + nk

(59)

We considered the following simulated experimental scenario. The desired trajectory
was set to a sine signal r = 4 sin(2πt) and a step signal r = 20, and the measured noise
variance comprised several combinations of σ = 0.0, σ = 0.001, and σ = 0.01. The sampling
time was 1 ms, and the system (59) was a closed loop controlled using PADRC and EPADRC,
respectively. The results of the simulation are shown in Figures 2–7.

Figure 2. Comparison of PADRC and EPADRC dynamic control performance without measurement
noise.

A comparative analysis of the subfigures (d) of each of Figures 2–7 indicates that the
control accuracy of EPADRC is higher than that of PADRC (except for the initial stage of
the controller output, when the peaking phenomenon exists. In the actual project, to avoid
the initial peaking phenomenon, the output u was set to zero in the initial stage of t < tu
time, both in terms of dynamic and stable control accuracy). In the initial stage, the control
error of EPADRC is large, because the initial value of ESF observer gain is zero, and a short
period of time is required it to seek the optimal value. Once the ESF automatically seeks
the optimal value of the observer gain, its tracking accuracy greatly improves over time.
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Figure 3. Comparison of PADRC and EPADRC dynamic control performance for measurement noise
σ = 0.00.

By comparing the subfigures (c) of each of Figures 2–7, it may be deduced that EPADRC
exhibited a high accuracy in estimating the unknown perturbation f (x, t) = 20 x1 + 78x2 + 10
tracking, and thus the control error of EPADRC was smaller than that of PADRC.

Figure 4. Comparison of PADRC and EPADRC dynamic control performance for measurement noise
σ = 0.01.
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Figure 5. Comparison of PADRC and EPADRC steady-state control performance without measure-
ment noise.

Figure 6. Comparison of PADRC and EPADRC steady-state control performance for measurement
noise σ = 0.001.
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Figure 7. Comparison of PADRC and EPADRC steady-state control performance for measurement
noise σ = 0.01.

As may be deduced from the subfigures (a), (b), (c), and (d) of each of Figures 2–7,
the tracking estimates of EPADRC for each state of the system were less affected by mea-
surement noise, and the output state estimates were thus closer to the true values, thereby
exhibiting better filtering capability. Conversely, the state tracking estimates of PADRC
were sensitive to measurement noise, and thus the tracking estimation errors were larger
compared with EPADRC.

These results demonstrate that EPADRC outperformed PADRC from the perspective of
theory and simulation experiments, whereas PADRC outperformed the traditional ADRC
because it has less delay between the system output measurement signal and the input
control signal. Furthermore, among the three, EPADRC exhibited the best control and
filtering performance.

In addition, the gain of ESF in EPADRC is the real-time optimal gain based on the
minimum variance of the observation error, considering the system process noise and
measurement noise. For traditional ADRC (including PADRC), the coincidence pole
assignment proposed by Professor Gao Zhiqiang [25] is generally used to obtain the
relationship between ESO gain and equivalent bandwidth ωo, and then the equivalent
bandwidth ωo is manually adjusted to obtain ESO gain. The ESO gain obtained by this
method is not optimal, and it is difficult to debug the optimal gain of ESF manually.

5. Conclusions

Based on a rigorous analysis and investigation of ESF, in this study, we have proposed
the idea of incorporating an ESF filter in a PADRC closed-loop control system, and derived
a new ADRC algorithm named the EPADRC control technique through an analysis of the
optimization process of ADRC algorithm. Moreover, we have seamlessly incorporated the
recursive algorithm of the ESF gain into ADRC.

We comparatively studied the tracking and filtering characteristics of EPADRC and
PADRC through simulations in MATLAB, which verified that the algorithm not only
possesses the functions of traditional ADRC, including active anti-disturbance and active
tracking estimation, but also active filtering and active advance prediction. These new
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functions can filter out the effect of system measurement noise on observations of the
system state, and concurrently reduce the delay between the system control quantity
output and the detection of sensor inputs, thereby improving the control accuracy of
the system. Hence, the proposed approach may be expected to increase the stability of
closed-loop control systems.
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