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Abstract: Well construction operations require continuous complex decision-making and multi-step
action planning. Action selection at every step demands a careful evaluation of the vast action space,
while guided by long-term objectives and desired outcomes. Current human-centric decision-making
introduces a degree of bias, which can result in reactive rather than proactive decisions. This can
lead from minor operational inefficiencies all the way to catastrophic health and safety issues. This
paper details the steps in structuring unbiased purpose-built sequential decision-making systems.
Setting up such systems entails representing the operation as a Markov decision process (MDP). This
requires explicitly defining states and action values, defining goal states, building a digital twin to
model the process, and appropriately shaping reward functions to measure feedback. The digital
twin, in conjunction with the reward function, is utilized for simulating and quantifying the different
action sequences. A finite-horizon sequential decision-making system, with discrete state and action
space, was set up to advise on hole cleaning during well construction. The state was quantified
by the cuttings bed height and the equivalent circulation density values, and the action set was
defined using a combination of controllable drilling parameters (including mud density and rheology,
drillstring rotation speed, etc.). A non-sparse normalized reward structure was formulated as a
function of the state and action values. Hydraulics, cuttings transport, and rig state detection models
were integrated to build the hole cleaning digital twin. This system was then used for performance
tracking and scenario simulations (with each scenario defined as a finite-horizon action sequence) on
real-world oil wells. The different scenarios were compared by monitoring state–action transitions
and the evolution of the reward with actions. This paper presents a novel method for setting up well
construction operations as long-term finite-horizon sequential decision-making systems, and defines
a way to quantify and compare different scenarios. The proper construction of such systems is a
crucial step towards automating intelligent decision-making.

Keywords: sequential decision-making; Markov decision process; reward shaping; well construction;
hole cleaning; digital twinning

1. Background and Introduction

Well construction, i.e., the process of drilling and completing wells for applications
such as extracting hydrocarbons or accessing geothermal energy, is a highly technical
discipline. There is irreducible complexity involved in the process while drilling through
highly variable geological environments deep in the sub-surface. These environments can
pose safety hazards; therefore, the various well construction operations require careful
surveillance of the system variables. Currently, real-time (RT) data streams, advanced
process models, and sophisticated simulation techniques are utilized for monitoring well
construction operations (see e.g., [1]). Decision-making, however, is still primarily per-
formed by humans, with little automation. The decisions are based on the understanding
of the processes by the subject matter expert (e.g., engineer, or the driller out in the field)
in control of the process. They are made not only based on interpretations of the model
outputs, but also to a large extent on past experiences, and sometimes ‘gut feelings.’ The
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decisions are also affected by other human factors, such as situational awareness or even
the physical and mental state of the decision-maker (with, e.g., fatigue playing a major
role [2]). The consequences of making erroneous decisions can range from poor operational
efficiency to catastrophic failures and accidents.

The overarching goal of the research presented here is the development of an au-
tomated intelligent decision-making system for improved well construction safety and
performance. Developing such a system requires the identification of the necessary data and
data streams, digital twinning of the underlying operation, structuring the decision-making
system, and finally selecting the simulation or planning method. This paper discusses a
general approach for setting up such systems by combining data and digital twins, and
demonstrates this for hole cleaning operations. Hole cleaning is the process of removing
solids (cuttings generated during drilling, cavings, or metal shavings) from the borehole
to ensure that different well construction operations (including drilling, tripping, casing
installation, and cementing) can be performed safely and efficiently. Inefficient hole clean-
ing can result in various problems, such as stuck pipe, downhole tool damage, formation
damage, or trouble running the casing. Hole cleaning issues account for several hundred
million dollars annually in lost time costs [3,4]. The literature on hole cleaning modelling
is extensive; the latest developments are covered in detail by [5] and references therein.
There is, however, currently no framework for setting up systems that can perform scenario
analysis and action planning in well construction processes such as hole cleaning, and this
is the main topic of this paper.

In other domains, the use of sophisticated decision-making systems has resulted in an
overall improvement in safety and operational efficiency. Such decision-making systems,
coupled with digital twins of operations or equipment, have been utilized in areas such as
manufacturing [6], autonomous vehicles [7,8], and smart grid management [9,10]. Recently,
high-complexity board games (e.g., go and chess) were solved using tree-based search
techniques in combination with learned system models [11,12]. Complex RT strategy games,
such as StarCraft and Dota, have been solved by utilizing novel reinforcement learning
techniques [13,14]. Amongst these, sequential decision making is a class of algorithm that
takes the dynamics of the system into consideration. The decision and actions are made
in steps, and adjusted based on rewards assigned to outcomes. This approach parallels
how manual decisions and actions are made with regards to hole cleaning in an actual
drilling operation, which motivated its selection as the approach of choice in this paper.
Further, given the need to arrive at a solution within a certain time period, the hole cleaning
problem is handled as a finite-horizon sequential decision-making problem.

2. Setting up the Planning and Decision-Making Systems for Well Construction Operations

Planning is the process of generating an action sequence from an initial system state
to some goal state to satisfy some high-level objective function. Multiple approaches such
as forward search algorithms (A* search, greedy best-first search, Dijkstra’s algorithm),
exhaustive methods (tree search, policy iteration, value iteration), or simulation-based
search methods (flat Monte Carlo, Monte Carlo tree search) can be used to solve planning
problems [15–17]. Most of these methods utilize a combination of domain knowledge and
logic with search functions, which can be further enhanced by heuristics. This paper does
not cover the algorithm selection process, and the reader is referred to [18] for a detailed
comparison of the approaches. The various planning algorithms were evaluated using
six criteria, namely optimal solution guarantee, memory requirement, computational time
requirement, necessity of a well-defined admissible function, evaluation function use, and
exploration/exploitation balancing. All planning problems, however, have the following
essential components [15]:

- Objective function, stating the initial and the desired (goal) states, and constraints that
can influence decision-making;
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- Decision epochs, or the times at which decisions need to be made. Epochs can either
be explicitly represented as time intervals, or implicitly represent a sequence of actions
in succession;

- State space, to describe all possible situations or scenarios (states) the system can be
in, at any given decision epoch;

- Action space, to quantify all possible decisions or actions that can be utilized to
manipulate states;

- Plan, or strategy that represents the sequence of actions taken at every successive
decision epoch.

In effect, planning problems are sequential decision-making problems that can be
solved by reinforcement learning (RL) techniques. In RL, a goal-directed learning agent
interacts with an uncertain environment (either physically or virtually) based on specific
policies or action plans. Every interaction is associated with immediate feedback or reward.
The goal of this agent is to maximize the long-term reward. To accomplish this, the
agent needs to exploit what it has already experienced and try new actions to learn from
unexplored trajectories [19,20]. Figure 1 shows a schematic of this agent–environment
interaction, where an action at by the agent in the environment (observed by the agent to
be in state st) results in an immediate reward rt and a new observed state st+1.
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Such interactions between a decision-making agent and a fully observable environ-
ment to achieve some long-term objective can be formalized in a Markov decision process
(MDP) framework. A process is said to be Markovian if it follows the Markovian property,
i.e., if any future outcomes depend only on the current system state and the immediate
action. An MDP is defined by a tuple ({S, A, P, R}) and a policy (π) [21].

S is the state space, where st (st ∈ S) represents the state of the system, as perceived
by the agent, at time t. A state is defined by a set of parameters to quantify the condition of
the environment completely (fully observable). A is the action space, where at (at ∈ A) is
an individual action taken by the agent at time t to manipulate the system in the state st.
An action is a combination of different control variables that can influence the environment.
P is the transition function representing the state–action transition probabilities. Pa

ss′ is the
probability that a system in state s, at time t transitions to state s′ at time t + 1 on taking an
action a. R is the reward function to quantify the immediate feedback associated with a
state–action transition. Reward may depend either only on the final state, or on the final
state and the action.

The accumulation of rewards over multiple time steps or decision epochs is the
system’s return. The time horizon for accumulating these rewards may be finite (fixed
number of steps) or infinite, and may include a discount factor γ (≤1) in the case of infinite
time horizon problems. In this paper, we assume 10 finite steps and therefore assume
a discount factor (γ = 1), giving every step equal weight. The policy π is the logic or
set of rules used by an agent to select an action from a given state; it may be stochastic
or deterministic. The goal of an agent is to find a policy that allows it to maximize its
total return. There is always at least one optimal policy for an MDP that helps extract
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the maximum return from the system [22]. Another crucial step in MDP formulation is
reward shaping, or engineering the reward function to obtain more frequent feedback
on appropriate system behaviors [23]. Thus, reward shaping influences the total return,
thereby affecting the system’s policy.

2.1. Well Construction Sub-Processes as MDPs

Well construction is a multi-step process that requires planning and decision-making
at every step of its various sub-processes. Planning necessitates identifying objectives,
constraints, and required data associated with the individual sub-processes. A crucial
step in developing such planning systems is setting them up properly, which requires the
following elements:

- Formulating an MDP for the operation, which includes appropriately defining state
and action spaces

- Defining a goal or a desired state
- Efficient shaping of the reward function
- Setting up an integrated-multi model system replicating the process (environment),

i.e., building its digital twin

2.1.1. MDP Formulation

Formulating an MDP for any process requires the following [21]:

- The process should satisfy the Markovian property
- Any state defined for the process should be fully observable
- State space should be finite or countably infinite, with states defined by exhaustively

incorporating all relevant parameters
- There is an explicit definition of the action space with appropriately identified con-

trol variables

For most well construction processes, the condition (state) of the wellbore at any time is
a culmination of all the previous operations (actions), past conditions (past states), and state
transitions. In other words, the current state is a representation of the well’s operational past,
and any subsequent transition depends only on this state and the immediate action. The
assumption that well construction operations follow the Markovian property is, therefore,
valid. The state of the system needs to be represented by all relevant parameters required to
fully describe the process under consideration. The state is also continually refined based
on the data received from surface or downhole sensors (at frequencies of 1 Hz or higher).
This results in the state being a complete representation of the environment as perceived by
the agent, i.e., the state is assumed to be fully observable. The operations or variables that
can be actively controlled to bring about state transitions constitute the action.

The state and action spaces can be either discrete or continuous; however, for the work
presented here, both are defined as discrete sets. Figure 2 illustrates the proposed method
for discretizing the state space based on wellbore inclinations. Well inclinations in the range
0 to 30 degrees are considered to be a near-vertical section, and the regions of the well with
inclination angles greater than 75 degrees are considered to be near-horizontal lateral. The
intermediate inclination angle regions comprise the curve or the build section of a well. This
method of discretizing the state space is proposed because the response of state variables
to different actions has a high degree of dependency on the inclination of the well segment.
Wellbore inclination significantly influences the cuttings transport mechanisms, which are
different for near-vertical, intermediate, and lateral sections. Consequently, this affects the
hole cleaning requirements. Note, however, that the state space may be discretized in other
ways, such as in intervals or sections of measured depth (MD) or true vertical depth (TVD).
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Equation (1) represents the state vector, where ‘p1’ through ‘pn’ are the exhaustive
set of parameters required to define the system state completely. The state of the system
here consists of some functional value of these parameters over the appropriate inclina-
tion intervals {[0, 30), [30, 45), [45, 60), [60, 75), [75+)}. Another point to note is that these
inclination interval definitions can be adjusted depending on the requirements of the
underlying process.

st =



p1_0−30
p1_30−45
p1_45−60
p1_60−75
p1_75+

.
pn_0−30

.
pn_75+


(1)

Similarly, the action space is constructed by different combinations of possible values
of the identified control variables. For drilling operations, some such control variables are
the surface drillstring rotation speed (RPM), weight on bit (WOB), drilling mud properties,
flowrate, and drillstring tripping speeds. These variables can take on discrete values
between specified minimum and maximum thresholds. These thresholds are dictated by
safety constraints, process and equipment limitations, and operational economics. Note
that in some problems, it will make more sense to break down the problem by measured
depth or true vertical depth sections instead of by inclination. Additionally, the state
space parameters will be dependent on the objective of the digital twin. In this paper, the
parameters were largely dictated by the hole cleaning/hydraulics problem, serving as an
example of how the problem can be mathematically set up for action planning.

2.1.2. Goal State

The goal or desired state, as the name suggests, refers to the subset of the state space
that the drilling agent aims to achieve. The goal state is used as the reference to direct the
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agent’s search. The desired functional values of individual goal state components are used
for the construction of the overall goal state, as shown in (2).

sgoal =



pg
1_0−30

pg
1_30−45

pg
1_45−60

pg
1_60−75

pg
1_75+
.

pg
n_0−30

.
pg

n_75+


(2)

2.1.3. Reward Shaping

Shaping the reward function allows for rewarding or penalizing a drilling agent’s
behavior more frequently, instead of at sparse intervals or at the end of an episode. Frequent
rewards, in turn, help with more directed and faster learning. A possible strategy for reward
shaping is to provide the agent with regular feedback based on its position relative to the
goal state. Another factor to consider is the contribution to the reward of the relative
changes in different action control variables. For instance, if a state transition from s to s′

can be achieved by two completely different actions a and a′, the reward function needs to
be able to recognize and quantify this difference. This is especially important, for instance,
in cases where the agent suggests changing drilling RPM and flowrate with an alternative
action being a change to mud rheological parameters (which may be economically and
temporally more expensive).

2.1.4. Digital Twinning the Environment

For action planning, a comprehensive model or digital twin of the process needs to be
constructed. This twin is then used for replicating the environment, thereby simulating
multiple episodes or trajectories of experience [6,24,25]. Model-free RL techniques can then
be applied to these episodes to improve the return value and, subsequently, to determine
an optimal policy. Figure 3 details these steps. The Monte Carlo tree search approach was
identified to be applicable to this problem and is discussed in detail in [25].
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3. Setting up the Hole Cleaning Decision-Making System

Here, we demonstrate step-by-step how to set up a decision-making and planning
system for the hole cleaning operation.

3.1. Formulating the MDP for the Hole Cleaning System

Effective and safe hole cleaning requires keeping the cuttings bed height low enough
to prevent issues at any stage of the well construction operation. Moreover, the equivalent
circulation density (ECD) needs to be managed within a safety or drilling margin (Figure 4).
ECD at a depth is the gradient of the sum of the hydrostatic head exerted by the drilling
mud (a function of the true vertical depth (TVD) of the well) and the total circulating
frictional pressure loss in the annulus between the drillstring and the wellbore, which is a
function of the measured depth (MD) along the length of the well [26].

ECD =
Phydrostatic_DTVD + Pfrictional_pressure_loss_DMD

DTVD·g
(3)Energies 2022, 15, x FOR PEER REVIEW 8 of 33 
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the well.

In Figure 4a, the lower and upper limits of the drilling margin are the stability limit
(SL) and the fracture gradient (FG), respectively. SL is the higher value between the pore
pressure (PP) and the mud pressure essential for maintaining wellbore stability. PP is
exerted by the fluids (brine or hydrocarbons) present in the pore spaces of the formation
rocks. If the ECD falls below the SL, it can cause wellbore instability and, if it falls below
the PP of permeable formations with the potential to flow, an unwanted influx of formation
fluids into the borehole (which is called a ‘kick’). Exceeding the FG can fracture the
formation and lead to mud loss. Such mud loss events are called lost circulation events [27].
It is, therefore, an objective of the system to maintain the ECD within this drilling margin
at all times.

Figure 4b depicts the cuttings bed distribution in the different sections of the wellbore.
In the near-vertical section of the wellbore, the principal method of suspending and carrying
cuttings up hole in the mud is by overcoming the particle slip velocity, and no cuttings bed
can exist. In the curve section (inclinations from 30 to 60 degrees), an unstable cuttings bed
can form below the angle of repose. However, there is a high possibility that when the mud
circulation stops, the cuttings avalanche back down the annulus, which can pack off around
the bottom-hole assembly, causing a stuck pipe incident. For this section, the hole cleaning
design requires tackling and preventing this cuttings avalanche. In the near-horizontal
section (inclination angle from 60 to 90 degrees), above the angle of repose for the cuttings,
a stable cuttings bed will form on the low side of the hole. The primary hole cleaning
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requirement is to continuously move this bed up and out of the hole (see e.g., [28,29]).
Therefore, another main objective of the decision-making system is to satisfy these hole
cleaning requirements.

3.1.1. State Space

The following parameters are required to quantify the condition of the borehole from
the perspective of the hole [30,31]:

- Height of the cuttings bed in the curve and the lateral sections of the wellbore;
- ECD along the entire length of the wellbore.

The well can be treated as a series of interconnected control volumes, segmented based
on any changes in well dimensions (e.g., changes in inner or outer diameters) or based on
different survey intervals (as shown in Figure 4b). Each control volume’s condition can be
independently represented by absolute values of ECD and cuttings bed height. However,
with the well being segmented into multiple inclination intervals (based on the strategy
discussed in Figure 2), every inclination interval usually consists of many such control
volumes. A functional value derived from the absolute value is calculated for each of these
parameters in every control volume. These values are then averaged over the different
inclination segments to obtain a single value per inclination interval for every parameter.
Converting to a functional value normalizes the absolute value to specific operational
thresholds, and assists in reward shaping, as discussed in later sections.

Cuttings Bed Height

The absolute value of the cuttings bed height for every control volume is normalized to
its outer diameter (Figure 5). These values are then used to calculate the average normalized
cuttings bed height indicator H (dimensionless) for every inclination segment of the well,
as shown by Equation (4).

Hnorm
k =

Habsolute
k
Do_k

, H =
∑

Nseg
k=1 Hnorm

k
Nseg

(4)
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The functional value Hinc. is then derived from H using Equation (5), as visualized
in Figure 6.

Hinc. =


0 H ≤ 0.20
1 0.20 < H ≤ 0.40
2 0.40 < H ≤ 0.60
3 0.60 < H ≤ 0.80
4 H > 0.80

(5)
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The parameter Hinc. is evaluated for all non-vertical sections, because no cuttings bed
will form in the [0, 30) degree inclination interval. Thus, the bed height components of the
state vector are {H30−45, H45−60, H60−75, H75+}.

ECD

As previously discussed, ECD needs to be managed within the drilling margin. There
is, however, some degree of uncertainty associated with its limits, which is accounted
for by considering an uncertainty factor DF(≤ 0.25). ECDavg, the average ECD for an
inclination interval, is calculated by averaging absolute ECD values over all the control
volume segments in that interval (Equation (6)). Since the SL and FG values vary with
depth, ECDavg is calculated independently for the different intervals.

ECDavg =
∑

Nseg
k=1 ECDabsolute

k
Nseg

(6)

Using ECDavg, the functional value of ECD, ECDinc., is calculated using Equation (7)
and discussed in Figure 7.

ECDinc. =



−3 ECDav ≤ SL− DF·∆w
−2 SL− DF·∆w < ECDav ≤ SL
−1 SL < ECDav ≤ SL + DF·∆w
0 SL + DF·∆w < ECDav ≤ SL + 2·DF·∆w
1 SL + 2· DF·∆w < ECDav ≤ FG− 2·DF·∆w
2 FG− 2·DF·∆w < ECDav ≤ FG
3 ECDav > FG

where ∆w = FG− SL

(7)
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Since keeping ECD within the drilling margin is essential throughout the well, the state com-
ponents related to the ECD parameter, {ECD0−30, ECD30−45, ECD45−60, ECD60−75, ECD75+} are
calculated for all intervals.

Equation (8) represents the complete hole cleaning state of the wellbore. In this
form, every component of the state vector is represented by its functional value at every
decision epoch.

s =



H30−45
H45−60
H60−75
H75+

ECD0−30
ECD30−45
ECD45−60
ECD60−75
ECD75+


(8)

This representation of state is Markovian since it fully represents the condition of
the hole cleaning system and encompasses all the information about the system’s history.
Any subsequent state transition depends only on the state and the action taken. As can be
seen from Equation (8), the state vector has nine parameters. Each of the Hinc. parameter
can have five values while each of the ECDinc. parameters can have seven values. This
translates into a state space size of 54 × 75 = 10,504,375.

3.1.2. Goal State

The goal for any decision-making system is to first search the state and action space
and then move towards the desired state. The functional values for all state variable
components are defined such that 0 represents the desired state for each; therefore, the
target goal state for the system is as shown in Equation (9).

sgoal =



0
0
0
0
0
0
0
0
0


(9)

3.1.3. Actions Space

Hole cleaning, while managing the ECD within the drilling margin, is a function of
(see e.g., [32–34]:

- Drilling mud properties (particularly density and viscosity);
- Cuttings properties (size and density);
- Drilling parameters such as drilling RPM and flow rate;
- Drillstring geometry and its eccentricity in the borehole;
- Rate of cuttings generation (which depends on the drilling rate);
- Borehole geometry (diameters of the open or cased hole sections along the well) and

inclination angle.

Hole cleaning pills or sweeps, i.e., limited volumes of fluid with altered density and/or
viscosity to aid in cuttings evacuation from the hole (mostly effective in vertical hole rather
than deviated hole).

Some of these control variables affect the condition of the borehole to a greater extent
than others. Moreover, some variables can be controlled more readily than others. Figure 8
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presents a chart comparing the different control variables, plotted for their relative influence
on hole cleaning against their ability to be actively controlled in real-time.
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from [35]).

Thus, the key parameters that have a significant influence on the hole cleaning per-
formance, and can be actively controlled in the field, are flow rate, RPM, mud properties
(rheological parameters), and the WOB to control the rate of penetration (ROP). In the
following, we will assume that the fluid behavior is that of a Bingham plastic fluid, in which
case its rheology is quantified by its plastic viscosity (PV) and yield point (YP). Another crit-
ical parameter that influences the ECD is the mud density. A combination of these variables
at every decision epoch constitutes an action, which is represented by Equation (10).

at =



Flowrate
ROP
RPM

Mud density
Mud PV
Mud YP


(10)

3.2. Digital Twin of the Environment

A digital twin was built by integrating the available well initializations (data streams
such as well plans, well surveys, well geometry information, etc.) with analytical imple-
mentations of the hydraulics and cuttings transport models [18]. The hydraulics model cal-
culates the frictional pressure losses and ECD throughout the well and utilizes sub-models
presented in [32,36]. The cuttings transport model also utilizes multiple sub-models [37–43]
and estimates the cuttings bed height and the cuttings concentration in the flow stream
along the well. Figure 9 illustrates the use of this twin to predict the system state at the next
epoch, based on the current state and immediate action. The epoch is the smallest time step
of the planning problem for which an action is determined. The digital twin was designed
to plan either every 5 min interval into the future or whenever there was a change in the
well operations.
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3.3. Reward Function

To quantify the immediate feedback associated with state–action transitions, a reward
function is defined for the hole cleaning system, which has three distinct components:

- Reward associated with state transition;
- Penalty associated with action transition;
- Reward associated with action variables.

3.3.1. Reward Associated with State Transition

Since the objective of the system is to reach the goal state, every component of the
state vector tries to achieve a functional value of 0. This was used as a reference to calculate
normalized reward values associated with every state vector component in the [−1, 1]
range. Table 1 details the functions used for these calculations.

Table 1. Reward function associated with state vector components.

Component Reward Function Values

H30−45 RH30−45 =
2− H30−45

2
{1, 0.33,−0.33,−1}

H45−60 RH45−60 =
2− H45−60

2
{1, 0.33,−0.33,−1}

H60−75 RH60−75 =
2− H60−75

2
{1, 0.33,−0.33,−1}

H75+ RH75+ =
2− H75+

2
{1, 0.33,−0.33,−1}

ECD0−30 RECD0−30 = 1− 2
3
·
∣∣∣∣E0−30

∣∣∣∣ {−1,−0.33 , 0.33 , 1 , 0.33 ,−0.33 ,−1}

ECD30−45 RECD30−45 = 1− 2
3
·
∣∣∣∣E30−45

∣∣∣∣ {−1,−0.33 , 0.33 , 1 , 0.33 ,−0.33 ,−1}

ECD45−60 RECD45−60 = 1− 2
3
·
∣∣∣∣E45−60

∣∣∣∣ {−1,−0.33 , 0.33 , 1 , 0.33 ,−0.33 ,−1}

ECD60−75 RECD60−75 = 1− 2
3
·
∣∣∣∣E60−75

∣∣∣∣ {−1,−0.33 , 0.33 , 1 , 0.33 ,−0.33 ,−1}

ECD75+ RECD75+ = 1− 2
3
·
∣∣∣∣E75+

∣∣∣∣ {−1,−0.33 , 0.33 , 1 , 0.33 ,−0.33 ,−1}

Thus, the reward function contribution of state transition is represented by the set
given in Equation (11).
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RS = {RH30−45, RH45−60, RH60−75, RH75+, RECD0−30, RECD30−45, RECD45−60, RECD60−75, RECD75+} (11)

3.3.2. Penalty Associated with Action Transition

Table 2 details the calculation of the penalty (negative reward) related to changes in
action values. The purpose of these definitions is two-fold:

- To discourage the system from making extreme changes in actions, unless the reward
associated with state transition offsets this penalty;

- Select the least penalizing action in case multiple actions result in the same state
transition.

Table 2. Reward function associated with action transition.

Component No. of Intervals Reward Function Values

Flowrate n f lowrate R f lowrate = −

∣∣∣∆N f lowrate

∣∣∣
n f lowrate

[−1, 0]

Drilling ROP nROP RROP = −|∆NROP|
nROP

[−1, 0]

Drillstring RPM nRPM RRPM = −|∆NRPM|
nRPM

[−1, 0]

Mud density ndensity Rdensity = −

∣∣∣∆Ndensity

∣∣∣
ndensity

[−1, 0]

Mud PV nPV RPV = −|∆NPV |
nPV

[−1, 0]

Mud YP nYP RYP = −|∆NYP|
nYP

[−1, 0]

The terms ∆Nvariable and nvariable, respectively, are the number of interval changes
between consecutive actions and the number of discrete values possible for a given control
variable. Their use to calculate a penalty value is illustrated in Figure 10. Here, the action
results in a jump across 3 out of a total of 10 intervals and therefore the penalty is −3/10.
The action transition-based penalty set is expressed in Equation (12).

Rap =
{

R f lowrate, RROP, RRPM, Rdensity, RPV , RYP

}
(12)Energies 2022, 15, x FOR PEER REVIEW 15 of 33 
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3.3.3. Reward Associated with Action

In the planning phase of drilling operations, the hole cleaning requirement of the
system would push the ROP to zero, simply because no cuttings are generated at zero ROP
leading to zero bed height and optimum ECD. However, because a critical objective of
drilling is to drill a well as fast as reasonably possible (within given limits), there needs
to be a positive feedback or reward associated with the ROP. Equation (13) represents this
reward, which is calculated using Equation (14) as a ratio of the discrete interval number
for a given ROP value to the total number of ROP intervals. This reward component is in
the range [0, 1]. The calculation is also illustrated in Figure 10. The action results in a jump
to the seventh interval and therefore the reward is 7/10.

Rar= {0, RROP, 0, 0, 0, 0} (13)

RROP =
ninterval
nROP

(14)

3.3.4. Calculating the Net Reward

Reward value quantifies the ‘goodness’ of taking some action from a given system
state. Thus, the next step for the hole cleaning system is to combine the individual reward
components to output a single reward value in the [0, 1] range. This is accomplished by as-
signing different relative weights to the various components. This ability to assign different
weights provides a way to prioritize different objectives. This would be advantageous in
drilling wells where there is, for instance, a high risk of well control issues. In these wells,
the objective of keeping the ECD within the drilling margin becomes a higher priority than
completely removing the cuttings bed. Similarly, reducing the penalty associated with
taking drastic actions will not be as important for certain wells as reaching the desired state
quickly. Managing these objectives can be accomplished by assigning different relative
weights to the individual state or action reward components.

The sets Ws, Wap, and War, respectively, are the weights associated with sets for state
transition reward, action transition penalty, and the action reward. Equations (15)–(17) rep-
resent the method for combining these weights and their associated reward sets. The final
values of RS_net, Rap_net, and Rar_net are in the ranges [−1, 1], [−1, 0], and [0, 1], respectively.

RS_net =
∑i WsiRsi

∑i Wsi
(15)

Rap_net =
∑i WapiRapi

∑i Wapi
(16)

Rar_net =
∑i WariRari

∑i Wari
(17)

Before further combining these three components, they are first normalized to the
[0, 1] range, using the method presented in Equations (18)–(20). While this normalization is
not necessary, it helps to better understand prioritization of end-user choices.

Rs_norm =
RS_net + 1

2
(18)

Rap_norm = Rap_net + 1 (19)

Rar_norm = Rar_net (20)

Finally, the individual normalized rewards Rs_norm, Rap_norm, and Rar_norm are com-
bined based on the weights Ws_norm, Wap_norm, and War_norm as per Equation (21). These
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weights define the relative importance of the individual normalized rewards and can also
be tuned in real-time.

Rnet =
Ws_normRs_norm + Wap_normRap_norm + War_normRar_norm

Ws_norm + Wap_norm + Was_norm
(21)

The above definition of the reward function ensures immediate feedback after every
action, as opposed to the agent having to wait until the end of an episode (as is the case for
sparse reward functions).

4. Implementation of a System as an MDP

Here, we demonstrate the developed hole cleaning decision-making system for per-
formance tracking and action planning using a specific example. The dataset used is from
an actual oil well that exhibited issues due to insufficient hole cleaning during tripping,
casing, and cementing operations. This dataset included the well’s directional survey data,
well profile information (casing, BHA, and bit details), one-second surface sensor data,
and mud check information. A digital twin of the well was developed by integrating
physics-based models (cuttings transport and hydraulics with an incorporated thermal
model), data-based models (rig state detection engine), and relevant raw data sources (as
detailed in Figure 9).

4.1. Well Profile

The well profile and trajectory used here are from an actual drilling operation and
shown in Figure 11. The well had a short vertical section with a shallow kick-off point
(where the well starts building inclination angle from vertical) around 300 feet MD. The
inclination angle reached 30 degrees at approximately 750 feet MD, and 75 degrees (hori-
zontal section) around 1250 feet MD. After this, the well remained near-horizontal until it
reached its total depth (TD) of 2500 feet MD. The surface casing with an internal diameter of
13.375 inch was set at a depth of 623 feet MD. Following this, a 12.25 inch hole section was
drilled to well TD. Upon reaching TD, a 50 min on-bottom circulation cycle was performed
(at a flow rate of 950 gallons per minute (GPM) and 60 RPM), the drillstring was then
tripped out of the hole with intermittent back-reaming (at 910 GPM and 60 RPM), and a
9.625 inch casing was run to TD and cemented.
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was still in the hole, with the drill bit at TD (Figure 12c). The red line in Figure 13a shows the 
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The SL and FG values to define the drilling margins for the different sections of the
well are shown in Table 3. For the near-vertical section, the SL and FG were assigned
maximum values of 6 ppg and 18 ppg, respectively, because this interval was entirely cased
while drilling the 12.25 inch section.

Table 3. The SL and FG values to define drilling margin for the different inclination intervals.

Inclination Interval Stability Limit (ppg) Fracture Gradient (ppg)

[0, 30)—in casing 6 18

[30, 45) 8.2 10.6

[45, 60) 8.4 10.4

[60, 75) 8.2 10.2

[75+) 8.6 10.0

To safely run the 9.625 inch casing after drilling, calculations show that the maximum
theoretical cuttings bed height (on pulling the drillstring out of hole) should not exceed
approximately 5 inches (Figure 12a,b). Based on the variation in the drillstring geometry
(different outer diameter and eccentric placements of various drillstring components),
this bed height limit was translated into an equivalent bed height [31], assuming that
the drillstring was still in the hole, with the drill bit at TD (Figure 12c). The red line in
Figure 13a shows the upper limit and the green line depicts the desired limit.
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Figure 13b illustrates the drilling margin limits considering an uncertainty value (DF)
of ten percent. The red-colored regions in the figure correspond to intervals with potential
for well control issues; the green zone, on the other hand, is the desired ECD value (goal
state). The orange region is a safe but non-optimal zone. These regions correspond to the
values in Table 3 with the bands corresponding to Equation (7). Similarly, in Figure 13a
the red-shaded region depicts the area above the equivalent limit height, while the green-
shaded region corresponds to the desired state.
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4.2. Performance Tracking of the System and Summary of Issues

To track the performance of the system during drilling operations, state transitions
were monitored and associated rewards were calculated. State space was defined by
dividing the well into five inclination-based segments, with the procedure as discussed in
the previous section. The reward function was shaped based on state and action values and
transitions. Determining the action space required the specification of the discrete values
of the different control variables. Table 4 shows the number and range of values for the
different variables.

Table 4. Value discretization of control variables.

Control Variable Number of Discrete Values Range of Values

Flow Rate (GPM) 10 [0, 1500]

Drilling ROP (ft/h) 10 [0, 900]

Drillstring RPM (rev/min) 10 [0, 150]

Mud Density (ppg) 5 [8.5, 9.7]

Mud Plastic Viscosity (cP) 5 [7, 42]

Mud Yield Point (lb./100ft2) 5 [7, 42]

Table 5 shows the different weights assigned for reward calculations. For this system,
the relative importance of the various state components is assumed to be the same. Similarly,
relative penalties associated with altering the different action components are also assumed
to be the same. Note, however, that the weights need to be determined by those who
are familiar with the well, and weights used here are to provide a demonstration of the
framework. The normalized reward component (War_norm) has two values depending on
the operation being tracked. Since no new hole is drilled during circulation operations, i.e.,
the ROP is zero; the weight is assigned a value of zero.
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Table 5. Weight assignments for reward function shaping.

Ws = [1, 1, 1, 1, 1, 1, 1, 1, 1]

Wap = [1, 1, 1, 1, 1, 1]

War = [0, 1, 0, 0, 0, 0]

Ws_norm = 0.50

Wap_norm = 0.20

Drilling Circulation

War_norm = 0.30 War_norm = 0.00

Figure 14 overlays the different normalized reward components calculated for decision
epoch intervals of 5 min. For this system, the net reward tracks the state reward, since
Ws_norm is significantly higher than the other weights. The reward value at the end of the
drilling operation stabilizes to around 0.46. An increase in reward value to 0.68 at the end
of the circulation cycle indicates an improvement in the hole condition. This improvement
is also reflected in the state reward value, which increases from 0.51 to 0.59.

Energies 2022, 15, x FOR PEER REVIEW 20 of 33 
 

 

 
Figure 14. Normalized reward components versus decision epochs for the well. 

Figure 15 shows the state of the system at the end of the drilling operation (12.25 inch 
hole section), which can be represented by Equation (22). The mud properties for drilling the 
last section of the well were: mud density of 9.06 ppg, PV of 11 cP, and YP of 36.5 lbf/100 ft2. 
The final bed height was around 9 inches, which needed to be significantly reduced. 

𝑠 =
⎩⎪⎪⎪
⎨⎪
⎪⎪⎧    

034411111
    

⎭⎪⎪⎪
⎬⎪
⎪⎪⎫

 (22)

Figure 14. Normalized reward components versus decision epochs for the well.

Figure 15 shows the state of the system at the end of the drilling operation (12.25 inch
hole section), which can be represented by Equation (22). The mud properties for drilling the
last section of the well were: mud density of 9.06 ppg, PV of 11 cP, and YP of 36.5 lbf/100 ft2.
The final bed height was around 9 inches, which needed to be significantly reduced.
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Thus, a 50 min circulation cycle to remove cuttings followed. Removal of cuttings is
essential to ensure safe tripping operations without getting stuck, as well as to prepare
the well for casing and cementing operations. The state of the system at the end of the
circulation cycle is shown in Figure 16. As can be seen, the cuttings bed height was very
close to the allowed limit, and therefore still non-optimal, leading to issues while running
casing and subsequently cementing. The drilling crew did not have a process in place to
evaluate various control actions; as mentioned before, this paper lays the foundational
framework for that.
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4.3. Basic Action Planning

Here, we discuss the utilization of the hole cleaning planning system to simulate
various state–action transition options. Multiple action sequences were simulated for
a 50 min (10 decision epochs) circulation interval starting from the state of well at the
end of the drilling operation, sTD (represented by Equation (22)). The purpose of these
simulations was to understand and quantify the effects of different action sequences on
the hole condition, and in identifying a viable course of action. A viable action sequence
would result in an improved wellbore condition, without compromising wellbore stability.
Figure 17 details some of the simulated action sequences, where each action is structured
in the form of Equation (10).
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Changing the mud properties (density and rheology) is a time-consuming process;
therefore, as it is highly impractical to change them in the middle of the circulation
cycle, they are changed at the beginning of the action sequences. For the first four action
sequences in Figure 17, PV value is increased to 21 cP, while the YP value is reduced
to 21 lbf/100 ft2. For the fifth action sequence, the PV and YP are changed to 28 cP
and 14 lbf/100 ft2, respectively. Finally, for the sixth sequence, PV and YP values are
adjusted to 21 cP and 14 lbf/100 ft2, respectively. For the first action sequence, the mud
density remains unaltered (at 9.1 ppg); for the second sequence, the density is increased
to 9.4 ppg. For the remaining four action sequences, the mud density is reduced to
8.8 ppg.

Implementing action sequence number one would have resulted in a slightly better
hole condition than for the actual hole after circulation, as shown in Figure 18. Note
that drillstring RPM was the only parameter that was changed (from 83 to 150 RPM)
in this case. The reward obtained by the system would have stabilized at around
0.76, compared with 0.68 after the circulation cycle. Additionally, the normalized state
reward would have been 0.67, as compared to 0.59 after the circulation cycle (which can
be seen in Figure 14).
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Figure 18. Predicted final system state and rewards after implementing action sequence one.

Action sequence two would have resulted in an even lower bed height; however, the
predicted ECD value at greater depths nears the upper instability region, as shown in
Figure 19. In this case, only the flow rate parameter is changed (from 833 to 1500 GPM)
during the operation. The expected net reward for this case would have approached 0.77,
and the state reward would have stabilized around 0.69.
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Figure 20 shows the predicted state after simulating action sequence number three.
There would have been a significant reduction in the bed height (to approximately 4.5 inches),
and the ECD value would be very close to the desired region. Both flow rate and drillstring
RPM are changed during the operation; the flowrate varies from 833 to 1500 GPM, and the
drillstring RPM from 83 to 150. The net and the state reward for this case would have been
around 0.79 and 0.70, respectively.
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Figure 20. Predicted final system state and rewards after implementing action sequence three.

Figure 21 shows the final state of the system after simulating action sequence four.
The expected net and the state reward for this case would also have been around 0.79 and
0.70, respectively. As for action sequence three, both the flow rate and the drillstring RPM
are increased during the operation. The primary difference between the two sequences is
the order in which the changes are suggested.

The output of the execution of action sequence five is depicted in Figure 22. This
sequence would result in a substantially reduced bed height (under 3.5 inches) and an ECD
value very close to the desired region. The net and the state reward values for this case are
0.82 and 0.76, respectively. In this case, both the flow rate and the RPM are increased, from
833 to 1500 GPM and 83 to 150 RPM, respectively.

Figure 23 shows the expected output of implementing action sequence six. This
sequence would also result in a substantially reduced bed height (under 2.5 inches) and
an ECD value very close to the desired region. The expected net and state rewards would
be 0.86 and 0.81, respectively, the highest among all previous simulated trajectories. In
this case, both the flow rate and the RPM are increased, from 833 to 1500 GPM and 83 to
150 RPM, respectively.
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Figure 23. Predicted final system state and rewards after implementing action sequence six.

This example shown on field data clearly illustrates the potential for such a decision-
making approach. Explicitly classifying the hole condition (state) and quantifying state–
action transitions allows the evaluation and comparison of the different action sequences,
which is a vital component in building an intelligent hole cleaning advisory system. Table 6
summarizes the net and the state rewards associated with the different action sequences.
Here, action sequence number six has the best performance (as quantified by the highest
final state reward) and also has the highest net reward (which depends on both the final
state and the state–action transitions).

Table 6. Summary of the rewards associated with the different action sequences.

Action Sequence Net Reward Final State Reward

0 (Original) 0.68 0.59

1 0.76 0.68

2 0.77 0.69

3 0.79 0.70

4 0.79 0.70

5 0.82 0.76

6 0.86 0.81
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5. Conclusions

This paper proposes and justifies setting up well construction operations as finite–
horizon sequential decision-making systems for long-term planning. To the best of our
knowledge, this is the first time a well construction operation has been structured as an
MDP with carefully shaped rewards and an integrated multi-model digital twin, and subse-
quently utilized for evaluating action sequences. Such representation of well construction
operations allows for an unbiased quantification and comparison of different scenarios. To
summarize, this paper:

- Discusses the requirements and the steps in setting up such systems (i.e., formulating
an MDP, defining the goal state, efficient reward shaping, and digitally twinning
the underlying process) by detailing the development of a hole cleaning decision-
making system.

- Discusses the importance of reward shaping for well construction operations to ensure
frequent and suitable feedback, thereby facilitating effective policy design. It also
demonstrates the use of a non-sparse normalized reward function designed for a hole
cleaning system for performance tracking and simple action planning.

- Demonstrates the use of digital twinning for simulating various action sequences to
track the state evolution and reward progression, thereby allowing ranking of the
different sequences based on their long-term returns.

Furthermore, more directed search and planning methods such as simulation-based
search can be deployed on these systems to enhance system performance considerably.
In the longer-term, such decision engines can be incorporated into a rig’s control system
to help automate control of action variables such as RPM, flowrate, tripping speeds, and
mud rheology. This will thereby enable the full automation of complex drilling operations
such as hole cleaning. This, in turn, will avoid any human-centric biases and eliminate
human mistakes in well construction operations and their negative consequences, such as
stuck pipe incidents, induced well control and lost circulation incidents, etc. The outlined
approach is therefore expected to have a potentially large positive impact on the efficiency,
economics, and safety of future well construction operations.
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Glossary
Unit conversion
1 m (m) 3.28 feet (ft)
1 meter/second (m/s) 11,811 feet/hour (ft/hr.)
1 psi 6894.76 Pa
1 ppg 119.83 kg/m3

1 radian 57.2958 degrees
1 ft3 0.02832 m3

1 GPM 0.0000631 m3/s
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1 cP 0.001 Pa·s
1 lb./100ft2 0.4788 Pa
1 lbs. 0.4536 Kg
Nomenclature
A Action space
at Action executed by the agent at time t
Do_k Outer diameter of the kth control volume segment (inches)
DTVD Total vertical depth (m)
ECD Equivalent circulation density (pounds per gallon or ppg)
ECDabsolute

k Absolute ECD value in the kth control volume segment (ppg)
ECDavg The average ECD value for an inclination interval (ppg)
ECDinc. Functional value of ECD in the inclination interval segment inc.
FG Fracture gradient (ppg)

f lowrate
Rate of flow of the drilling mud through the drillstring controlled by a
positive displacement reciprocating mud pump on the surface (GPM)

GPM Gallons per minute
g Acceleration due to gravity (9.81 m/s2)
H Normalized cuttings bed height for an inclination interval

Hinc.
Functional value of the cuttings bed height in the inclination interval
segment incl.

Habsolute
k Absolute cuttings bed height in the kth control volume segment (inches)

Hnorm
k Normalized cuttings bed height in the kth control volume segment

incl Inclination angle range (degrees)

Nseg
Number of control volume segments within an inclination interval
segment

ninterval Number of discrete values possible for a given control variable
P Transition probability set
Pf rictionalpressure

_loss_DMD

Frictional pressure drop in the annulus (Pa) at a measured depth H

Phydrostatic_DTVD Hydrostatic pressure (Pa) at a vertical depth of TVDH

Pa
ss′

Transition probability of a system in the state s to the state s′when an
agent executes action a

PV Plastic viscosity (cP)
pi ith parameter component of the state vector
pg

i Goal state value of the ith parameter component of the state vector
R Reward set
Rap Action transition-based penalty set
Rap_net Non-normalized action penalty for the hole cleaning system
Rap_norm Normalized action penalty for the hole cleaning system
Rar Action value-based reward set
Rar_net Non-normalized action reward for the hole cleaning system
Rar_norm Normalized action reward for the hole cleaning system
Rnet Net normalized reward function for the hole cleaning system
RS State transition-based reward set
RS_net Non-normalized state reward for the hole cleaning system
Rs_norm Normalized state reward for the hole cleaning system
ROP Rate of penetration or drilling rate (ft/hr.)
RPM Drillstring rotation speed (revs. /min)
rt Reward received by the system at time t
S State space
SL Stability limit (ppg)
sgoal Goal or desired state for the hole cleaning system
st State of the system at time t
sTD State of the hole cleaning system at the well TD
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TD Total depth of the well (feet)
t Time step or decision epoch
Wap Weight set associated with the action transition penalty
Wap_norm Weight value associated with the normalized action penalty
War Weight set associated with the action value reward
War_norm Weight value associated with the normalized action reward
Ws Weight set associated with state transition reward
Ws_norm Weight value associated with the normalized state reward
WOB Weight on bit (Klbs.)
YP Yield point (lb./100ft2)
∆Nvariable Number of interval changes between consecutive actions
∆w Difference between the FG and SL of the drilling window (ppg)
π Policy
γ Discount factor for return calculation
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