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Abstract: The article is devoted to the study of steady-state conditions of a distribution network containing
a thyristor voltage regulator. The thyristor voltage regulator (TVR) is a new controlled semiconductor
device developed at Nizhny Novgorod State Technical University n.a. R.E. Alekseev (NNSTU). The TVR
allows the optimization of the parameters of 6–20 kV distribution networks (currents and voltages) by
voltage regulation. An analytical calculation of electromagnetic processes of a distribution network with
the TVR has been carried out. The verification of the obtained results has been made using a computer
simulation. The dependences of the current and power on additional voltage introduced by the TVR
under different voltage regulation modes have been obtained. It has been shown that the use of the TVR
enables optimal flow distribution to be ensured over the power transmission lines in proportion to their
transfer capability when changing load power and its power factor.

Keywords: thyristor voltage regulator; distribution network; electromagnetic processes; power
quality; power flows; modeling

1. Introduction

Modern medium-voltage distribution networks (DNs) are characterized by a number
of problems [1–3]. As a rule, step-down substations (SSs) 35–220/6–20 kV are significantly
far from transformer substations (TSs) 6–20/0.4 kV. This leads to a voltage level decrease at
TS 6–20/0.4 kV and, as a consequence, to the quality loss of power supply to low-voltage
consumers [4]. Medium-voltage transmission lines are often characterized by a nonoptimal
power flow distribution along parallel lines, and, as a result, a limited transfer capability,
increased power and electricity losses, and increased power transmission costs [5,6]. Weak
medium-voltage DN interconnections limit the energy exchange between the energy market
subjects. First, it leads to profit decreases for generating companies, and secondly, it
reduces the electromagnetic compatibility of small-scale generation devices, and renewable
and nontraditional energy sources with the network. In addition, such networks are
characterized by low regime controllability [7].

Most of these problems can be solved by using flexible alternating current transmission
system (FACTS) technologies [8,9]. At the same time, automated devices for voltage
regulation have been introduced into the electrical network [10–15]. One of such devices is
the thyristor voltage regulator (TVR), developed at NNSTU [16,17]. The TVR can operate
in the voltage magnitude, phase angle, and combined control modes.

Figure 1 shows a single-line diagram of the DN with the TVR. The purpose of the TVR
is to regulate the network parameters with different nominal voltages (110 and 10 kV). A
connection between 110 and 10 kV networks is carried out using 16,000 kVA 110/10 kV
ONAF transformers located at step-down substations SS1 and SS2. The 110 kV network
and the 10 kV distribution network have different power-line lengths and impedances.
They are not loaded in proportion to their transfer capability. Load node voltages may
differ from the regulated values.
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network and the 10 kV distribution network have different power-line lengths and 
impedances. They are not loaded in proportion to their transfer capability. Load node 
voltages may differ from the regulated values. 
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Figure 1. Single-line diagram of a distribution network with a TVR: L1—110 kV overhead line 
(70/11, 55 km); Q1, Q2—110 kV switches; T3, T4—distribution transformers (16000/110); L2—110 
kV overhead line (70/11, 70 km); L3—110 kV overhead line (70/11, 25 km); L4—10 kV overhead line 
(95/16, 10 km); T1—TVR shunt transformer; T2—TVR series transformer; TM1—TVR thyristor 
module of voltage magnitude control; TM2—TVR thyristor module of phase angle control. 

Figure 2 shows the TVR electrical circuit diagram. 
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Figure 2. TVR electrical circuit diagram. 

The TVR includes thyristor modules of voltage magnitude (TM1) and phase angle 
(TM2) control, parallel T1 and series T2 transformers, and a control system. The TM1 and 
TM2 modules of each phase of the TVR contain regulation sections switched by thyristor 
switches. The output voltages of regulation modules feed the primary windings of 

Figure 1. Single-line diagram of a distribution network with a TVR: L1—110 kV overhead line (70/11,
55 km); Q1, Q2—110 kV switches; T3, T4—distribution transformers (16,000/110); L2—110 kV
overhead line (70/11, 70 km); L3—110 kV overhead line (70/11, 25 km); L4—10 kV overhead line
(95/16, 10 km); T1—TVR shunt transformer; T2—TVR series transformer; TM1—TVR thyristor
module of voltage magnitude control; TM2—TVR thyristor module of phase angle control.

Figure 2 shows the TVR electrical circuit diagram.
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Figure 2. TVR electrical circuit diagram.

The TVR includes thyristor modules of voltage magnitude (TM1) and phase angle
(TM2) control, parallel T1 and series T2 transformers, and a control system. The TM1
and TM2 modules of each phase of the TVR contain regulation sections switched by
thyristor switches. The output voltages of regulation modules feed the primary windings
of transformer T2. Additional voltage is introduced into the line by the T2 secondary
windings. The use of the pulse-phase control with the combined use of TM1 and TM2
modules allows one to change smoothly the output voltage magnitude and phase in the
required range [18].
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It is possible to load power lines with different parameters in proportion to their transfer
capability by changing the magnitude and phase of the TVR additional voltage vector. It is also
possible to control the directions of the real and reactive power flows of different parts of the
network by voltage magnitude and phase angle control. It allows one to optimize the operation
modes at the substations, reducing the losses of the DN parts by partial compensation of the
current reactive component.

The article is devoted to the study of the TVR influence on the power and current
values and directions in a medium-voltage distribution network under steady-state network
conditions.

2. Methods

The research requires the development of adequate analytical models. There are
different approaches to modeling steady-state network conditions. One way is to compile
and calculate a single-line-equivalent circuit for a network. In this case, lines, transformers,
and voltage regulators are represented by their equivalent circuits consisting of branches
with conductivities and power sources.

A calculating technique for steady-state DN conditions using the graph and matrix
theories has been developed. This approach allows one to write compactly and solve the
equations of the circuit.

The calculation algorithm is as follows:
1. Determining assumptions.
2. Drawing up a DN-equivalent circuit.
3. Determining the parameters of the DN-equivalent circuit elements.
4. Referring the parameters of the transmission line to the base voltage.
5. Drawing up a directed graph that repeats the graphical representation of the circuit.
6. Drawing up an incidence matrix. The incidence matrix defines the connection

between the nodes and branches. It consists of «0» and «1». The lines are assigned to the
graph nodes. Each row of the linked graph has at least one «1». It indicates if there is a
connection between the corresponding node and the branches of the graph. If there is a
connection, then «1» is set. The «+» sign means that the direction is set from the node, and
the «–» sign means the direction is set to the node.

7. Calculating the steady-state conditions by the node voltage method, taking nodal
potentials as unknown:

•
ϕ = −(A

•
YdAT)

−1
A
•
YdE, (1)

where A is the nodal matrix (incident matrix) of the circuit;
•
Yd is the diagonal matrix of

branch conductivities; A
•
YdAT is the square matrix of nodal conductivities;

•
ϕ is the vector

of the required node potentials;
•
U is the voltage vector of the branches corresponding to the

parameters of the supply feeders;
•
E is the matrix-column of the branches’ EMF connected

to the corresponding node.
8. Determining branches’ currents I of the equivalent circuit:

•
I =

•
Yd(

•
E + AT ϕ). (2)

9. Determining branches’ voltages:

•
U = ATϕ. (3)

10. Determining the complex power S in the circuit branches:

S =
√

3(
•
E + AT)I∗ = P± jQ, (4)

where I* are conjugate vectors of branch currents.
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3. Calculation of the Steady-State Network Condition

The steady-state DN condition was calculated according to the proposed algorithm
(Figure 2).

3.1. Assumptions

− Two-winding transformers with UHV.nom < 220 kV are represented by the following
equivalent circuit (Figure 3) [19]:
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− The voltage regulator is characterized by an impedance introduced by series and shunt
transformers, and a voltage source, which introduces an additional voltage into the line
(Figure 4):
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− For overhead (OHL) and cable (CL) 10 kV lines, the admittance is not taken into account.
The equivalent circuit in this case (Figure 6) is:
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3.2. Equivalent Circuit

The calculated equivalent circuit for a network with a TVR is shown in Figure 7. It
contains 8 nodes and 18 branches.

3.3. Parameters of Equivalent Circuit Elements

The calculated parameters of the power transmission lines are shown in Table 1, and
the load data are presented in Table 2.
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Table 1. Power transmission lines data.

Resistance, Ohm Length, km Wire Type Specific Resistance,
Ohm/km

Specific Inductive
Reactance, Ohm/km

Specific Susceptance b0,
S/km·10−6

Z12 = 10.55 + j11.1 25 ACSR 70/11 0.422 0.444 2.547
Z17 = 23.21 + j24.42 55 ACSR 70/11 0.422 0.444 2.547
Z67 = 29.54 + j31.08 70 ACSR 70/11 0.422 0.444 2.547

Z34 = 3.01 + j4.01 10 ACSR 95/16 0.301 0.401 –

Table 2. Load data.

Load S, kVA P, kW Q, kvar cosϕ Zph, Ohm

S12 5488 5268 1537 0.96 17.493 + j5.102
S21 4952 4605 1820 0.93 18.782 + j7.423

The TVR parameters are as follows:

− Network voltage UL = 10 kV ± 10%;
− Phase angle between the output and input voltage θ = ±5◦;
− Range of output voltage amplitude relative to the input voltage amplitude regulation

D = ±10%;
− Load power 1800 kVA.
− Load current IL = 104 A.

3.4. Calculation of Transformers Parameters

Table 3 shows the main parameters of transformers. According to the catalog [20], the
short-circuit impedance of the transformer referred to the primary side is Z‘t = 4.38 + j86.7 Ohm.

Table 3. Transformers data.

Transformer Type Snom, kVA UHV, V ULV, V Ioc, % Usc, %

Distribution transformer 16,000 110,000 10,000 0.7 10.5
Shunt (three-phase) 300 10,000 500/330/330 2.2 6.0
Serial (single-phase) 80 765 765 1.5 4.2

The short-circuit impedance referred to the secondary side 10 kV is:

Z‘T =
ZT

K2 =
4.38 + j86.7

112 = 0.036 + j0.717 Ohm, (5)
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where K is the transformation ratio.
The referred impedance of the magnetization branch is:

Z‘ocT =
ZocT

K2 =
5.34·104 + j3.15·104

112 = 441.7 + j2604 Ohm. (6)

To determine the TVR impedance ZTVR, the equivalent circuit of one TVR phase
under the combined control mode is considered. It is assumed that there is no pulse-
phase regulation to simplify the calculations. In this case, the regulation steps of voltage
magnitude and phase angle control modules are completely included in the work during
the period of the supply voltage. In this mode, the maximum possible ZTVR is included
into the line (Figure 8).
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For the presented equivalent circuit (Figure 8):

Z‘sh = Zsc‘TM2 + Zsc‘TM11 + Zsc‘TM12, (7)

where Z‘sh is the shunt transformer impedance, referred to the voltage of the series trans-
former primary winding. According to the manufacturer’s data, the short-circuit impedance
of the shunt and series transformers referred to the secondary side is:

Z‘sh = 1.103 + j0.679 Ohm; (8)

Z‘se = 0.531 + j0.708 Ohm. (9)

Taking into account that the transformation ratio of the series transformer K = 1, the
maximum value of the impedance introduced by the TVR into the line is:

ZTVR = Z‘sh + Z‘se = 1.634 + j1.1387 Ohm; (10)

ZTVR = 2.143 Ohm. (11)

The no-load losses of the TVR transformer equipment are made up of the no-load
losses of the shunt and series transformers:

Z‘ocTVR = 75454 + j41281 Ohm. (12)

3.5. Referring Line Parameters to Base Voltage

The network parameters are referred to the base voltage UL = 10 kV to simplify
the calculations. The parameters’ recalculation is carried out through the square of the
transformation ratio of the transformer, which connects networks of different rated voltages.
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Thus, the parameters of the 110 kV line referred to a voltage of 10 kV are:

Z‘17 =
Z17

K2 =
23.21 + j24.42

112 = 0.192 + j0.202 Ohm; (13)

Z‘12 =
Z12

K2 =
10.55 + j11.1

112 = 0.087 + j0.092 Ohm; (14)

Z‘67 =
Z67

K2 =
29.54 + j31.08

112 = 0.244 + j0.257 Ohm, (15)

where K is the transformation ratio of the distribution transformer.
The susceptance b at the end of the 110 kV line [19] is:

b17 = b055
1
2
= 2.547·10−6·55

1
2
= 7·10−5 S; (16)

b12 = b015
1
2
= 2.547·10−6·15

1
2
= 1.91·10−5 S; (17)

b67 = b070
1
2
= 2.547·10−6·70

1
2
= 8.91·10−5 S. (18)

OHL reactive power in nodes 1, 2, 6, and 7 (Figure 7) are as follows:

Q1 = U2
OHL·b17 + U2

OHL·b12 = 1100002·7·10−5 + 1100002·1.91·10−5 = 1.079 Mvar. (19)

Q2 = U2
OHL·b12 = 1100002·1.91·10−5 = 0.231 Mvar. (20)

Q6 = U2
OHL·b67 = 1100002·8.914·10−5 = 1.078 Mvar. (21)

Q7 = U2
OHL·b17 + U2

OHL·b67 = 1100002·7·10−5 + 1100002·8.914·10−5 = 1.929 Mvar. (22)

The referred reactance corresponding to the OHL reactive power in nodes 1, 2, 6, and
7 (Figure 7) is:

X‘1 = −j
UOHL

2

Q1K2 = −j92.708 Ohm; (23)

X2‘ = −j
UOHL

2

Q2K2 = −j432.6 Ohm; (24)

X‘6 = −j
UOHL

2

Q6K2 = −j117.9 Ohm; (25)

X‘7 = −j
UOHL

2

Q6K2 = −j51.9 Ohm. (26)

3.6. Directed Graph

The calculated equivalent circuit (Figure 7) corresponds to the directed graph shown
in Figure 9. An incidence matrix is compiled for it.
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3.7. Incidence Matrix

The incidence matrix for the graph (Figure 9) is as follows:
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(27)

The obtained equations (Equations (1)–(27)) allow the main electrical quantities (cur-
rents, voltages, and powers) under voltage magnitude, phase angle, and combined TVR
control modes to be determined. The calculation was carried out using the Mathcad pro-
gram. As a result of the calculations, the dependences of the power, voltage, and current of
the DN on the additional voltage were obtained. The calculations show that accounting
for the transformers’ magnetization branches and the reactive power generated by 110 kV
power transmission lines has a small effect on the currents and power flows transmission
in the lines. Neglecting these parameters introduces an inaccuracy in the calculations of
less than 0.5%. Thus, in further calculations, in order to reduce the number of equations,
simplify the model, and reduce the simulation time, these parameters can be ignored.

4. Simulation of the DN Operating Modes in Matlab Simulink

A simulation model was developed for the MV DN (Figure 10) in order to verify
the analytical calculations obtained by the matrix-oriented method [21]. The model was
developed in the MATLAB Simulink according to the equivalent circuit (Figure 7).
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The simulated 10 kV DN is fed by the power system through two step-down substa-
tions SS 110/10 kV and contains 2 load nodes. When developing the model, the resistances



Energies 2022, 15, 5756 9 of 14

of 110 kV overhead power transmission lines and 10 kV distribution power lines located
between load nodes and the short-circuit impedance of transformers were taken into
account.

The TVR model was made with Simulink blocks. When developing it, a modular
principle of implementing the power circuit and control system was used. To implement
vector control, the power circuit has series-connected voltage magnitude and phase angle
control modules in a three-phase design. The voltage magnitude control module generates
a voltage injected in-phase or anti-phase with the voltages of the 10 kV network. The phase
angle control module generates a voltage injected with an angular relationship with respect
to phase voltage that achieves the desired phase shift (advance or retard) without any
change in magnitude.

5. Results and Discussion

The TVR efficiency is illustrated by the dependences of currents and powers on the
TVR additional voltage, obtained by modeling in Simulink and the matrix-oriented method
in Mathcad.

It has been established that the difference between the results of a computer simula-
tion and analytical calculations is no more than 2% under voltage magnitude and phase
angle control modes. This difference is due to the assumptions made when compiling an
equivalent circuit for analytical calculations and the Simulink model. The analytical model
does not take into account the voltage drops across the thyristors and the change in the
TVR impedance introduced into the line under regulation. The transformers have been
represented by a simplified equivalent circuit [22].

Figure 11 shows the graphs of current components I1, I2, and I3 under voltage magni-
tude and phase angle control modes.
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under voltage magnitude control mode, and (f) I3 under phase angle control mode. 

The step of the additional voltage of the voltage magnitude and phase angle control 
modules is ±600 V. It provides a range of voltage magnitude controls of ±10.4% and phase 
angle controls of ±5.9°. It can be seen from the dependencies (Figure 11) that the control of 
the real and reactive components of the currents occurs both under voltage magnitude 
and phase angle control modes. 

The largest range of current regulation is observed under the combined control 
mode. Figure 12 shows the dependences of RMS currents I1, I2, and I3 with different 
regulating methods of the TVR output voltage. The presented graphs allow the 
determination of the current of the considered DN parts under the voltage magnitude, 
phase angle, and combined control modes. 

Figure 11. Dependences of the real, reactive, and complex components of the currents on the TVR
additional voltage: (a) I1 under voltage magnitude control mode, (b) I1 under phase angle control
mode, (c) I2 under voltage magnitude control mode, (d) I2 under phase angle control mode, (e) I3

under voltage magnitude control mode, and (f) I3 under phase angle control mode.
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The step of the additional voltage of the voltage magnitude and phase angle control
modules is ±600 V. It provides a range of voltage magnitude controls of ±10.4% and phase
angle controls of ±5.9◦. It can be seen from the dependencies (Figure 11) that the control of
the real and reactive components of the currents occurs both under voltage magnitude and
phase angle control modes.

The largest range of current regulation is observed under the combined control mode.
Figure 12 shows the dependences of RMS currents I1, I2, and I3 with different regulating
methods of the TVR output voltage. The presented graphs allow the determination of
the current of the considered DN parts under the voltage magnitude, phase angle, and
combined control modes.
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Figure 12. Dependences of RMS currents under voltage magnitude, phase angle, and combined
control modes: (a) I1, (b) I2, and (c) I3.

The use of the TVR allows loading the lines with currents I1 and I2 (Figure 7) in
proportion to the power transmission line transfer capability in the selected range of
magnitude and phase of the additional voltage vector. In this case, the currents I1 and
I2 will be equal when using overhead lines with the same characteristics. The condition
I1 = I2 can be fulfilled at different proportions of the voltage of the voltage magnitude and
phase angle control modules (Figure 13). I1 and I2 surfaces determine all possible values of
these currents under combined control modes at the ±600 V range of additional voltage
variation. The presented dependencies were obtained with constant load parameters.

The DN power flow transmission parameters have been calculated (Figure 7) for
voltage magnitude, phase angle, and combined control modes. Figure 14 shows the ranges
of real and reactive power changes of power lines with currents I1, I2, and I3 under the
combined control mode.
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It has been established that in all ranges of the combined control mode, the real power
flows P1 and P2 do not change their sign. Consequently, the direction of real power in the
DN containing distribution transformers (Figure 7) is unchanged and is directed from the
high-voltage network to the load.

The conducted studies have shown that the direction and value of real and reactive power
transmission between substations SS1 and SS2 (Figure 1) depend significantly on the regulation
step of voltage magnitude and phase angle control modules. Figure 15 shows an example of the
dependences of real and reactive power flows transmission between substations SS1 and SS2 on
the additional voltage under the voltage magnitude control mode.
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Figure 15. Real and reactive power flows between SS1 and SS2 under voltage magnitude control
mode.

There are the following modes of power transmission under the combined control
mode:

1. The mode corresponding to negative values of real P3 and reactive Q3 powers. Their
flow is directed through the TVR from SS1 to SS2 (Figure 1).

2. The mode corresponding to the negative value of real power P3 and the positive
value of reactive power Q3. The real power flow is directed from SS1 to SS2 through the
TVR, and the reactive power flow is directed from SS2 to SS1.

3. The mode corresponding to the positive values of real P3 and reactive Q3 powers.
Their flow is directed through the TVR from SS2 to SS1.

4. For the mode P3 = 0, there is no real power flow between SS1 and SS2.
5. For the mode Q3 = 0, there is no reactive power flow between SS1 and SS2.
6. For the mode of simultaneous implementation of the conditions P3 = 0 and Q3 = 0

(Figure 16), there are no real and reactive power flows between SS1 and SS2 at the point
I3 = 0.
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6. Conclusions

The use of semiconductor devices for automatic voltage regulation and real and
reactive power flows control is one of the ways to increase the efficiency of medium-voltage
distribution networks. One of such devices is the thyristor voltage regulator.

The developed device allows vector voltage regulation to be carried out (i.e., changing
the voltage vector in magnitude and phase). The article presents the results of the study
of steady-state conditions of the distribution network with a TVR. Power and current
dependencies are obtained from the additional voltage of voltage magnitude, phase angle,
and combined control.

The studies allowed the determination of the possibility of providing with the TVR
the optimal flow transmission of real and reactive power over the power transmission lines
in proportion to their transfer capability when the load and power factor change. The
determination of parameters of these modes is necessary to create and configure an efficient
TVR control system.

The results of the conducted studies can be used in the design and reconstruction of
medium-voltage distribution networks using the TVR, which provide optimal current and
power transmission modes. The TVR in distribution networks reduces power and voltage
losses, increases transfer capability, and reduces the cost of transmitted electricity.
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