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Abstract: A semi-empirical method is proposed for determining the rate of gas production in a
flow-through gas generator (GG) with the allocation of a part of the gas flow produced by gasification
of a low-melting solid material (LSM) in the total gas flow rate through the GG. The method is
verified by test fires with polypropylene sample gasification by hot air under conditions of incoming
supersonic flow with Mach number 2.43, 2.94, and 3.81 and stagnation temperature 600–700 K. The
mean flow rates of gasification products obtained in test fires were 0.08 kg/s at Mach 2.43, 0.10 kg/s
at Mach 2.94, and 0.05–0.02 kg/s at Mach 3.81. For obtaining 1 kg of gasification products in the test
fires there was a need of 1.61 to 2.86 kg of gasifying agent.

Keywords: flow-through gas generator; low-melting solid material; combustion; gasification

1. Introduction

Gas generators (GG) are designed for generating gases of desired composition, flow
rate, temperature, and pressure through different physical and chemical processes such as
liquid/solid charge vaporization, pyrolysis, gasification, combustion, etc. All GGs can be
divided into two groups: closed-type GGs and flow-through GGs. In the former, a working
medium is initially enclosed in a single housing, so such GGs are mostly single-action
devices. In the latter, a working medium is continuously supplied to GG, which ensures
long-term operation. The closed-type GGs include GGs deploying airbags in automobiles,
injecting inhibitors in accidental fires, driving turbopumps in rocket engines, etc. [1–8].

The flow-through GGs are used in industry for production of various chemicals and
energy, e.g., by converting crude oil, biomass, sewage sludge, municipal solid wastes,
etc. to syngas, which is further used for production of hydrogen, synthetic natural gas,
ammonia, methanol, Fisher–Tropsch diesel, and/or generating heat and electricity [9–12].
Given the widespread use of GGs, the methods for determining their characteristics at both
design and operation stages is relevant.

For this purpose, methods of numerical simulation of physicochemical processes in
GGs are now widely used [13–18]. However, at present the complexity of these processes
does not allow predicting the main characteristic of GGs, i.e., the instantaneous rate of
gas production, with sufficient accuracy. In view of this, experimental verification and
refinement of numerical simulations remain important [19,20]. A good illustrative example
is the GG of a hybrid rocket. Contrary to solid rockets, the direct calculation of the mass
flow rate from chamber pressure and nozzle throat area is not possible for hybrid rockets
because the characteristic exhaust velocity c* strongly depends on the oxidizer-to-fuel ratio.
According to [21], the measurement of the instantaneous fuel mass flow rate for hybrid
rockets is a great challenge, because it is a function of operation conditions, firing duration,
port diameter, nozzle erosion conditions, etc. Therefore, the end-point averaging method
based on the initial and final shapes of fuel charge is often used for estimating the average
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fuel mass flow rate. However, the fuel mass flow rate is usually not constant during motor
firings. The approach based on short firing duration for the end-point averaging is also
not reliable due to the uncertainties introduced by ignition and shutdown transients [22].
Several reconstruction techniques for estimating the instantaneous fuel mass flow rate
based on the measured chamber pressure and oxidizer mass flow rate have been reported
in the literature on hybrid rockets [23–27]. However, all these techniques imply a known
value of the oxidizer mass flow rate, whereas in the flow-through GGs, the latter can be
unknown, especially when the GG is placed in the free approaching air stream. In the latter
case, the combustion/gasification process in the GG can affect the mass flow rate of air at
the GG intake.

This manuscript presents a method for the semi-empirical determination of the instan-
taneous rate of gas production in a flow-through GG placed in a free air stream with the
allocation of a part of the gas flow produced by gasification of a low-melting solid material
(LSM) in the total gas flow rate at the GG exit. This method and its demonstration are the
novel and distinctive features of the present work.

2. Experimental Setup

Figure 1 shows the general view of a free jet facility for testing a GG in supersonic flow
of gasifying agent (air). The facility was based on the Model Aerodynamic Facility (MAF)
at the ITAM SB RAS [28]. Compressed air from high-pressure cylinders passed through a
prechamber and entered a fire heater operating on combustion of hydrogen to obtain a hot
air. Mass flow rate of hydrogen to the fire heater varied from 2 to 4 g/s. Apart from air
and hydrogen, oxygen was added to the air flow in an amount of 20 to 40 g/s for keeping
the mass fraction of oxygen at 23%wt in the vitiated air outflow. Thus, the outflowing
gasifying agent contained oxygen (23%), nitrogen (75%), and steam (2%). The change in
thermophysical properties of air due to steam admixture was neglected.
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Three profiled nozzles with an exit diameter of 30 mm designed for flow Mach num-
bers M0 = 2.5, 3.0 and 4.0 could be attached to the fire heater. Table 1 shows the calculated
and measured parameters of the corresponding jet flow. Measurements of the real values
of the flow Mach number M1 were performed using a Pitot pressure sensor (Pitot pressure
P0
′) installed at the nozzle exit. In each experiment, the total pressure P0(t) and stagnation

temperature T0(t) were recorded for calculating the mass flow rate of gases, G0(t). A jet of
hot gasifying agent from the facility nozzle partly entered the GG mounted downstream
along the facility axis.
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Table 1. Characteristics of the jet flow at the entrance of GG intake.

Designed
M0

Mean P0
′/P0

Measured
M1

P0, MPa T0, K G0, kg/s

2.5 0.528 2.43 1.90 665 0.85
3.0 0.346 2.94 3.20 830 0.79
4.0 0.163 3.81 3.00 850 0.32

3. Gas Generator Design

Figure 2 shows the schematic of the GG. An axisymmetric cylindrical intake with a
diameter of 15 mm and length of 46.6 mm was installed in the frontal part of GG. From
the cylindrical intake, hot gasifying agent flowed through a conical diffuser to enter the
LSM sample. In the diffuser, a total pressure sensor and thermocouple were installed,
which measured the stagnation pressure P0,in and stagnation temperature T0,in in the gas
flow at the inlet to the LSM sample. Around the diffuser, a 36-g pyrotechnic igniter with a
calorific value of about 1.5 MJ/kg was placed. It was used to ignite combustion of LSM
aimed at providing heat for endothermic physical and chemical processes accompanying
sample gasification. The igniter was triggered at a preset time by a command of the syn-
chronization system. Typical igniter burning time was 0.10–0.15 s. Preliminary estimates
showed that the gas temperature at the inlet of the LSM sample could theoretically reach
1300–2600 K, however the actual measured gas temperature was on the level of
1300–1500 K, thus indicating large heat loss into the walls.
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Figure 2. Schematic of flow-through GG.

The LSM sample was assembled from 16 identical polypropylene (PP) blocks 80 mm
in diameter and 23 mm long (Figure 3). Each block had 61 orifices with a diameter of
4 mm. When assembling the sample, the orifices of all blocks were aligned to form straight
longitudinal channels. The total initial sample mass was 1.28 kg. The masses of each block
and sample in assembly were measured by balances both before and after test fires with an
error of 0.05 g.
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A measuring nozzle with a throat of 13 or 20 mm in diameter was mounted at the
GG outlet downstream of the LSM sample. In the nozzle, three thermocouples and total
pressure sensor were installed to measure the stagnation pressure P0,out and stagnation
temperature T0,out. To measure static pressure Pout and control the flow Mach number, a
static pressure sensor was also mounted in the nozzle throat. After exiting the measuring
nozzle, the exhaust jet was directed to the noise absorbing ventilation shaft at atmospheric
pressure. For pressure measurements, pressure sensors RPD-I with a maximum pressure
up to 1.0 and 2.5 MPa were used. The rated measurement error of the pressure sensors was
0.2%. The actual pressure measurement error was established by the results of numerous
calibrations of the sensors in the expected pressure range. In this case, to control the set
pressure, a PDE-020I reference pressure transducer was used with a basic relative error of
±0.02%. The resulting estimate of the actual pressure measurement error did not exceed 1%.
For temperature measurements, tungsten-rhenium thermocouples were used. To convert
the electrical signal of thermocouples into temperature readings, a standard calibration
table was used. The temperature measurement error did not exceed 5%.

The data acquisition system was based on the National Instruments NI PCI-6255 board.
The system had 80 differential measuring channels. The bit depth of the analog-to-digital
converter (ADC) was 16 bits. The maximum sampling frequency was 1.25 MHz. In the
experiments, a sampling frequency of 1000 samples for each channel was used.

The frequency characteristics of the measuring equipment including pressure and
temperature sensors as well as the data acquisition system were measured by applying
preset pulse signals. It was shown based on the results of such dynamic tests that the
operation frequency of the measuring equipment used ranged from 0 to 100 Hz. Since
the characteristic frequencies of the processes under investigation did not exceed 10 Hz,
dynamic measurement errors were not considered and were not taken into account.

4. Test Results

All test fires were conducted with igniter triggering. However, combustion of LSM
sample failed in some test fires. Figures 4–6 show the typical pressure and temperature
records in test fires without and with combustion of LSM samples. In test fires without com-
bustion (tests 1, 4, and 7 in Figures 4–6), after ignition triggering, all measured parameters
returned to their original values. In this case, the measured sample mass before and after
test fires showed virtually no LSM depletion. In test fires with combustion (tests 2, 3, 5, 6, 8,
9 in Figures 4–6), the pressure at the LSM sample inlet and outlet after ignition triggering
sharply increased by a factor of 1.5 to 2.0. The temperature at the sample outlet increased to
800–1000 K, although the temperature at the sample inlet corresponded to the temperature
of the incoming gas flow and remained constant at 600–700 K. This indicated the existence
of an exothermic oxidation process due to partial interaction of PP decomposition products
with oxygen in the incoming flow of gasifying agent.
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5. Processing of Test Results
5.1. Calculation of Gas Flow Rate at GG Intake

The flow rate of gasifying agent at the GG intake was calculated based on the stagna-
tion parameters P0(t) and T0(t) and the approaching flow Mach number M1:

Gin(t) = ϕFinρ(t)V(t) = ϕFin M1P0(t)π(M1)[γRT0(t)τ(M1)]1/2[RT0(t)τ(M1)]−1

=ϕFinM1π(M1)τ(M1)−1/2(γ/R)P0(t)T0(t)−1/2 (1)

where t is time, ρ is gas density, V is gas velocity, Fin is the cross-sectional area of the GG
intake, ϕ is the contraction ratio of GG intake, R = 287 kJ/kg/K is the gas constant for air,
γ = 1.4 is the specific heat ratio for air, π(M1) and τ(M1) are the gas-dynamic functions.

5.2. Contraction Ratio of GG Intake

In test fires without combustion, a cylindrical GG intake cut out a stream of a cross-
sectional area Fin with the Mach number M1 from the free jet emanating from the facility
nozzle. In this case, the contraction ratio of the GG intake was ϕ = 1.0. Let us jointly
consider Figure 2 and curves 2 (P0,in) in tests 1, 4, and 7 in Figures 4–6. Downstream of
the cylindrical section of the intake, the supersonic gas flow entered the expanding conical
diffuser and accelerated to Mach number M2 (M2 > M1). Thereafter, due to geometric
throttling in the LSM channels, the flow passed through a normal shock and became
subsonic with a sharp decrease in the stagnation pressure to P0,in(M2).

A similar flow pattern was observed in test fires with combustion prior to ignition
triggering. Figure 7 shows several examples of such test fires in terms of the measured time
histories of P0,in/P0 ratio. Prior to ignition triggering, the P0,in/P0 ratio corresponded to the
total pressure loss at elevated Mach number M2 > M1. This indicated that the normal shock
was located in the conical diffuser upstream of the total pressure sensor. After ignition
triggering and establishment of LSM sample combustion, thermal throttling of the flow
caused the normal shock to move upstream and exit the GG intake. Starting from this time
instant, the P0,in/P0 ratio corresponded to the total pressure loss in the normal shock at the
freestream Mach number M1. A decrease in the Mach number ahead of the normal shock
led, on the one hand, to a pressure rise in the flow entering the channels of LSM sample
and thereby intensified the combustion and heat and mass transfer processes in sample
channels. On the other hand, the head shock wave detached from the GG intake led to a
decrease in the gas flow rate through the intake, i.e., to a decrease in the contraction ratio ϕ
in Equation (1). This posed a problem of determining the realistic value of the contraction
ratio ϕ < 1.0. The methodology for solving this problem by measuring the gas flow rate at
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the GG outlet is presented below. Once the contraction ratio is determined, Equation (1)
can be used for calculating the mass flow rate of gasifying agent entering the GG intake.
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5.3. Calculation of Gas Flow Rate at GG Outlet

When the hot gasifying agent flows through the channels in the LSM sample, the LSM
is heated, melted, pyrolyzed, and gasified. The produced gasification products are mixed
and chemically react with the gasifying agent, thus leading to sample combustion accompa-
nied with heat release. The heat of combustion promotes further sample gasification, and
the gas flow rate increases. The task is to determine the gas flow rate at GG outlet.

In the test fires, this gas flow rate was determined by mounting a sonic nozzle of cross-
sectional area F* (asterisk * denotes sonic nozzle throat) at the GG outlet and measuring
the values of stagnation pressure P0,out and stagnation temperature T0,out before the nozzle.
The values of F*, P0,out, and T0,out were used to calculate Gout using the relation:

Gout(t) = mF*P0,out(t)T0,out(t)−1/2 (2)

where the dimensional coefficient m is a function of gas composition at the nozzle:

m = [(γ*/R*)(2/(γ* + 1))(γ* + 1)/(γ − 1)]1/2 (3)

The main difficulty in calculating Gout is then the determination of coefficient m,
as the gas composition depends on the LSM combustion completeness, as well as local
instantaneous pressure and temperature. Herein, the values of γ* and R* for the gas mixture
were determined by iterations using the Astra 4 thermodynamic code [29].

As an example, Figure 8 shows the results of thermodynamic calculations for mixtures
composed of PP and air with the PP-to-air mass ratio ranging from 0 to 50% at a constant
pressure of 1 MPa. Note that the results of calculations in a pressure range between 0.1 and
1 MPa differ by less than 3% only.
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5.4. Flow Rate of Polypropylene Gasification Products

Figures 9–11 show the time histories of flow rates Gin and Gout calculated based on
Equations (1) and (2), respectively, for different freestream Mach numbers M1. In addition
to plots Gin(t) and Gout(t), the calculated difference between these flow rates, ∆G = Gout(t)
− Gin(t) is also plotted in Figure 9 to Figure 11. Clearly, this difference corresponds to the
total flow rate of product gases generated by LSM sample gasification.
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As mentioned above, LSM combustion in tests 1, 4, and 7 was absent. Therefore, the
flow rates Gin and Gout were virtually equal. In test fires with combustion, a noticeable
LSM gasification accompanied with sample combustion was detected. In these latter test
fires, the gas flow rates Gin and Gout differed markedly. According to Figures 9–11 the flow
rate of gasification products (∆G = Gout(t) − Gin(t)) in test fires with combustion could be
constant, like in Figures 9 and 10, or variable in time, like in Figure 11. The mean values
of the flow rates of gasification products in Figures 9–11 took the values of 0.08 kg/s at
M1 = 2.43, 0.10 kg/s at M1 = 2.94, and 0.05–0.02 kg/s at M1 = 3.81.

An important element of test data processing procedure was the determination of
LSM sample mass before (W1) and after (W2) test fire. The difference between these masses
(∆W = W1 −W2) determines the amount of gasified sample material leaving the GG with
exhaust gases. Based on the calculated flow rates Gin and Gout and measured sample
masses W1 and W2, one can derive the following balance equation for determining the
intake contraction ratio ϕ:

W1 −W2 = mF* t1St2 P0,out(τ)T0,out(τ)−1/2dτ − ϕFinM1π(M1)τ(M1)−1/2(γ/R) t1St2 P0(τ)T0(τ)−1/2dτ (4)

In Equation (4), time t1 corresponds to the start of gas temperature rise after igniter
triggering and time t2 corresponds to the shutdown of air supply. An unknown value of
the air intake contraction ratio ϕ can be now determined from Equation (4). Once ϕ is
determined, the realistic value of gasifying agent flow rate at the inlet to LSM sample can
be obtained. Furthermore, the value of coefficient m in Equation (3) can be refined.

Table 2 shows the test results thus obtained and refined. Now, the time integrals of
functions ∆G(t) shown in Figures 9–11 are equal to the corresponding values of ∆W in each
test fire. As seen from Table 2, the ratio of total amounts of gasifying agent to gasification
products, SGindt/S∆Gdt, varied from 1.61 to 2.86 in the test fires. This means that for obtaining
1 kg of gasification products one consumes 1.61 to 2.86 kg of gasifying agent.

Table 2. Results of tests with combustion.

Test ϕ
SGindt,

kg m ∆W,
kg

S∆Gdt,
kg SGindt/S∆Gdt

2 0.751 0.330 0.0306 0.187 0.186 1.77
3 0.728 0.326 0.0308 0.176 0.174 1.86
5 0.774 0.444 0.0311 0.276 0.273 1.61
6 0.810 0.372 0.0312 0.219 0.216 1.70
8 0.662 0.133 0.0344 0.064 0.064 2.10
9 0.717 0.144 0.0344 0.050 0.050 2.86
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6. Amendment

The adopted technology of dividing the LSM sample into separate blocks and mea-
suring their individual masses Wi before and after test fires allowed obtaining additional
useful information on the zones of maximum LSM decomposition along the sample length.
Figure 12 shows the distribution of masses Wi of individual blocks in a test sample, mea-
sured before and after test 3. The individual blocks are numbered from the inlet of the
LSM sample. As seen, the zone of most intense LSM decomposition in this test was located
between blocks 4 and 9. Figure 13 shows the photographs of all individual blocks of the
LSM sample before and after test 3.
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7. Conclusions

A novel semi-empirical method is proposed for evaluating the instantaneous mass
flow rate of gasification products in the flow-through gas generators operating on air-
assisted gasification of low-melting solid materials. The instantaneous mass flow rate of
gasification products is derived based on determining the mass flow rate of air captured by
the gas generator intake in a supersonic flow and the instantaneous mass flow rate of gases
at the gas generator outlet, supplemented with measurements of sample mass before and
after test firing.

To verify the methodology, a set of test fires with hot air as gasifying agent and
polypropylene as a low-melting solid material were conducted under conditions of incident
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supersonic flow of gasifying agent with Mach numbers 2.43, 2.94, and 3.81 and stagnation
temperatures 600–700 K. The mean flow rates of gasification products obtained experimen-
tally were 0.08 kg/s at Mach 2.43, 0.10 kg/s at Mach 2.94, and 0.05–0.02 kg/s at Mach 3.81.
In the test fires, the ratio of total amounts of air to gasification products varied from 1.61 to
2.86 (mass basis). This means that for obtaining 1 kg of gasification products one needs 1.61
to 2.86 kg of air.

Author Contributions: V.I.Z.: Conceptualization, methodology; D.A.V.: investigation; D.G.N.: inves-
tigation; S.M.F.: writing original draft and editing; project administration. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was financially supported by the Ministry of Science and Higher Education of
Russian Federation under state contract N13.1902.21.0014 (agreement N075-15-2020-806).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations and Nomenclature

ADC Analog-to-digital converter
GG Gas generator
LSM Low-melting solid material
MAF Model Aerodynamic Facility
ITAM SB RAS Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch

of the Russian Academy of Sciences

c* Characteristic exhaust velocity m/s
M0 Design nozzle Mach number -
M1 Air flow Mach number at the nozzle exit -
M2 Mach number before the normal shock in diffuser -
P0
′ Pitot pressure at the nozzle exit Pa

P0 Total pressure of the air flow Pa
T0 Total (stagnation) temperature of the flow K
G0 Mass flow rate kg/s
P0,in Total pressure at the entrance of LSM sample Pa
T0,in Total temperature at the entrance of LSM sample K
P0,out Total pressure at the exit of LSM sample Pa
T0,out Total temperature at the exit of LSM sample K
Pout Static pressure at the sound nozzle Pa
Fin Area of intake entrance cross-section m2

F* Area of sonic nozzle throat cross-section m2

Gin Air flow rate through intake kg/s
Gout Gas flow rate at the sonic nozzle throat kg/s
ϕ Contraction ratio of intake -
R Gas constant for air J/kg/K
R* Gas constant for gas mixture J/kg/K
γ Specific heat ratio for air -
γ* Specific heat ratio for gas mixture -
π(M1) Gas-dynamic function -
τ(M1) Gas-dynamic function -
m Dimensional coefficient -
W1 Sample mass before test kg
W2 Sample mass after test kg
Wi Masses of individual blocks in the LSM sample g
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