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Abstract: The U.S. Environmental Protection Agency’s (EPA) Superfund—the Comprehensive Envi-
ronmental Response, Compensation, and Liability Act (CERCLA) database—has collected and built
an open-source database based on nearly 2000 US soil remediation cases since 1980, providing de-
tailed information and references for researchers worldwide to carry out remediation work. However,
the cases were relatively independent to each other, so the whole database lacks systematicness and
instructiveness to some extent. In this study, the basic features of all 144 soil remediation projects in
four major oil-producing states (California, Texas, Oklahoma and Alaska) were extracted from the
CERCLA database and the correlations among the pollutant species, pollutant site characteristics and
selection of remediation methods were analyzed using traditional and machine learning techniques.
The Decision Tree Classifier was selected as the machine learning model. The results showed that the
growth of new contaminated sites has slowed down in recent years; physical remediation was the
most commonly used method, and the probability of its application is more than 80%. The presence
of benzene, toluene, ethylbenzene and xylene (BTEX) substances and the geographical location of the
site were the two most influential factors in the choice of remediation method for a specific site; the
maximum weights of these two features reaches 0.304 and 0.288.

Keywords: CERCLA; oil-contaminated soil; soil remediation; machine learning

1. Introduction

In the 1970s, the U.S. economy and work centres moved from city to suburb, north to
south and east to west. After relocating, many enterprises left behind many ‘brown land
parcels’, including industrial land, filling stations, abandoned warehouses and abandoned
residential buildings that may have contained lead or asbestos. These sites were contami-
nated by industrial wastes to varying degrees, with high levels of hazardous substances in
the soil and water, posing a severe threat to human health and the environment without
legislative support and effective treatments.

Toxic waste dumps such as ‘Love Canal’ and ‘Valley of the Drums’ attracted attention
from all over the U.S. when the public became aware of the risks of contaminated sites
to human health and the environment. In response, the U.S. Congress established the
Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) in
1980, informally known as the Superfund. The Act provides broad federal authority to tax
the chemical and petroleum industries and directly address releases or threats of releases of
hazardous substances that may endanger public health or the environment. For example,
the U.S. Environmental Protection Agency (EPA) can use the Superfund to prepay a site’s
treatment costs. The EPA can then recover all costs from one responsible party and from
this responsible party to another. In other words, ‘treatment first, accountability later’ can
effectively improve the efficiency of contaminated site treatment. Specific information on
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the types of contaminants and remediation operations at each contaminated site in the U.S.
is also provided, but each case study is independent and not systematic or instructive [1–4].

The EPA’s database CERCLA has been selected as the data source relating to hazardous
wastes being dumped, exposed, or mismanaged. There are thousands of contaminated
sites in the U.S. associated with manufacturing plants, processing plants, landfills and
mining sites and oil-contaminated sites are the main concern in this text because the current
evidence suggests potential health impacts due to exposure to oil pollutant, such as cancer,
liver damage, immunodeficiency and neurological symptoms. Adverse impacts to soil, air
and water quality in oil-contaminated areas were also identified [5,6].

Machine learning is an effective tool for finding relationships within the system.
In the past 20 years, with the emergence of more open-source algorithms and the pub-
lication of soil data, machine learning has been applied in pollution remediation. For
example, machine learning calibration models interpret soil spectral data and predict
contamination levels [7]. In addition, machine learning models can predict the bioavail-
ability of 16 polycyclic aromatic hydrocarbons (PAHs) in compost-contaminated soils [8].
Other developments are a back propagation-approximate nearest neighbour (BP-ANN)
model for rapid prediction of PAH concentrations in soils [9] and an artificial neural
network for prediction of PAH levels in Caspian Sea sediments [10]. There are numerous
machine learning model predictions on flora and fauna communities in contaminated
soils [11–13]: a machine learning model was used to predict the HM immobilization
efficiency of biochar in biochar-amended soils to study soil heavy metal immobilization
and to predict the remediation results [14,15]; the adsorption of six heavy metals on
44 biochar were modelled using artificial neural networks and random forests, and the
adsorption efficiency was accurately predicted, concluding that the characteristics of the
biochar had the greatest influence on the adsorption efficiency [16]. Three modelling
approaches were used to model various levels of oil-contaminated soils, identify data
before and after oil spills, and effectively identify oil-contaminated and uncontaminated
sites [17]. However, these are works for a given pollutant and a specific site. Therefore,
the variations of oil-contaminated sites and pollutant categories need to be studies over
time and space in order to gain a clear understanding of how the various factors affect-
ing the remedial actions, to look for potential links between independent cases and to
improve the systematicity and guidance of the CERCLA data to some extent. Specifically,
pollutant information and restoration status in each state were systematically and theo-
retically analysed, organized and compared. Furthermore, a decision tree model was
constructed to predict the remediation methods to be adopted under different pollution
conditions. Finally, the weights that each feature contributes to the choice of remediation
method were determined. In this paper, information on the type of pollutants and
remediation operations at various remediation sites in Texas and other areas with high
relevance to the petroleum industry was obtained. Using a machine learning method,
pollutant information and remediation status in each state were theoretically analysed,
summarized and compared.

2. Methods
2.1. Data Collection

The U.S. EPA’s website (https://www.epa.gov/superfund/search-superfund-sites-
where-you-live, accessed on 15 May 2021) documents various contaminated sites in the U.S.
and their remediation status. The data can be divided into two types: data from tables on
the database site (as used in the present study) and detailed data such as strata, pollution
and restoration in PDFs. The PDFs data format and content of each contaminated site
vary considerably owing to large time scales, missing data and other problems. Therefore,
an automated data acquisition tool was used to obtain pollutant types and remediation
practices for various locations in four states (California, Texas, Alaska and Oklahoma) from
the CERCLA’s website.

https://www.epa.gov/superfund/search-superfund-sites-where-you-live
https://www.epa.gov/superfund/search-superfund-sites-where-you-live
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2.2. Model Selection and Methods

After acquiring the data, the existing information was processed for machine learning.
First, a Decision Tree Classifier model was selected. Data such as contaminant names and
clean-up technologies are discrete and hard to standardized. Additionally, the amount
of data was not sufficient and the Decision Tree Classifier requires less data for training.
It is insensitive to missing values, has a low requirement for data normalisation and is
able to handle numerical and categorical data, while other models can usually only be
used to analyse datasets specifically for a particular type of variable. As an example-
based inductive learning method, it was possible to classify decision trees from unordered
training samples into tree models in real time, and people are capable of understanding the
meaning of a decision tree after it has been explained. The code language was Python 3.9,
the compiler was PyCharm and the Decision Tree Classifier algorithm was derived from
scikit-learn (https://scikit-learn.org/stable/index.html, accessed on 10 May 2021).

The data were divided into time; location; benzene, toluene, ethylbenzene and xy-
lene (BTEX); persistent organic pollutants (PoPs); PAHs; metals; highly toxic substances
(Cyanide, dichlorodiphenyltrichloroethane (DDT) and other chemicals that are extremely
harmful to the human body are defined as ‘highly toxic substances’ here); and clean-up
technologies. The first six types of data were used as characteristic variables in the model,
which attempts to predict clean-up technologies. Time was the node on which the site
underwent remediation operation the first time and was standardized to −1980 so that
the values were not too large and the resulting weight was not too high. The reason for
not performing the normalization process was that time was the only digital variable. The
time difference after the normalization process was too small to reduce the time weight
artificially. Location characteristics were numbered according to the state where the site is
located. In the processing of this article, California was recorded as 0 and Texas as 1. These
characteristics are present in BTEX, PoPs, PAHs, metals and highly toxic substances. If such
substances appear in the pollutant list of a site, the corresponding characteristic value of
a given substance is 1, otherwise it is 0. The clean-up technologies are divided into three
categories: physical repair corresponding to 1, chemical remediation corresponding to 2
and biological repair corresponding to 3. For sites that adopted multiple repair methods,
the corresponding label was the repair method with the highest value, because two or
more remediation methods were used in almost every case, but the number of specific
repair techniques used in these three remediations varied from case to case. Therefore, it
is meaningful to identify the main remediation as the main one; this is also to simplify
the data for modelling purposes. For example, if a site simultaneously had physical and
chemical repairs, and the proportion of the physical repair was greater, the corresponding
label was 1.

3. Results and Discussion

The composition and content of pollutants could change over time. Hence, relative
remediation operations should be adopted for these contaminated areas. Among all the
remediation cases of oil contamination, California was first analysed as an example. During
the period 1983 to 2020, there were 114 sites in California, among which 20 sites were still
undergoing site surveys and were not initiated with clean-up operations, so the 94 sites
that have started clean-up operations were analysed to reveal the changes in pollutants
and remediation methods during the 38-year time period.

3.1. Changes in Pollutants and Remediation Methods over Time

As shown in Figure 1, the 94 sites that had already been repaired are sorted chrono-
logically. The histogram shows the change of the number of repaired sites over time, with
five years as the interval, based on when each site was first repaired. The number of sites
increased mainly between 1985 and 1995, with the greatest increase between 1990 and 1995
with 37 sites. During the last decade, the increase in the number of sites slowed down.

https://scikit-learn.org/stable/index.html
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This might be due to the improvement of laws and regulations and people’s increased
awareness of environmental protection.
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Figure 1. The number of sites growing over time.

As indicated by the black line and red line in Figure 2, the sites that contain highly
toxic substances in the pollutant list were counted to draw the curve of the total number of
sites and the number of sites that contain highly toxic substances in the pollutant list over
time. The blue line in Figure 2 shows the number of sites with PAHs in the pollutant list
and the curve of the number of sites over time. Because California is an oil-producing state
in the U.S., this study focused on petroleum pollutants and benzene series such as BTEX;
most benzene series in soil and surface water are derived from the leakage of petroleum
products. The green line in Figure 2 shows the sites with BTEX in the pollutant list and the
curve of the number of sites with BTEX in the pollutant list over time. In addition to the
organic pollutants mentioned above, heavy metal pollution such as mercury, copper, zinc
and cadmium was also studied. The purple line in Figure 2 shows the number of sites with
heavy metals in the pollutant list and the curve of the number of sites with heavy metals
contamination over time.

As shown in Table 1, the percentage of sites containing various pollutants relative
to the total number of sites changed over time. Prior to 1985, the number of samples
containing highly toxic contaminants was small, and the reference values were not large.
Analysis of other data shows that since 1990, the percentage of sites containing highly toxic
substances relative to the total number of sites are increasing, from 3.8% in 1990 to 25.5% in
2020. From 2000 onwards, however, there are marked declines in the rate of site growth,
which may be due to the enforcement of different laws and regulations. The percentage of
sites containing PAHs to the total number of sites fluctuates to some extent, but is around
30%. The percentage of sites containing BTEX is very high. In most cases, the percentage
reaches 70%. As of 2020, the probability of metal pollution in the soil environment reached
50%, a relatively common type of pollution in California. This means that about half of the
polluted areas in California are contaminated with heavy metals and one-third with PAHs.
About 70% of the contaminated areas contain BTEX. This is consistent with the objective
situation, as California has more oil pollution.
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Table 1. Number and percentage of the number of sites containing four types of pollutants.

Total
Number
of Sites

Highly
Toxic–

Contaminated
Site

Highly Toxic–
Contaminated

Site/Total
Number of

Sites

PAH-
Contaminated

Sites

PAH-
Contaminated
Sites/Total
Number of

Sites

BTEX-
Contaminated

Sites

BTEX-
Contaminated
Sites/Total
Number of

Sites

Heavy
Metal-

Contaminated
Sites

Heavy Metal-
Contaminated

Sites/Total
Number of

Sites

4 1 25.0% 1 25.0% 2 50.0% 3 75.0%
26 1 3.8% 8 30.7% 15 57.7% 15 57.7%
63 10 15.8% 18 28.6% 45 71.4% 26 41.3%
78 17 21.9% 23 29.5% 58 74.3% 35 44.9%
83 19 22.9% 25 30.1% 62 74.7% 38 45.8%
91 22 24.2% 26 28.5% 68 74.7% 44 48.3%
94 24 25.5% 29 30.9% 71 75.5% 47 50.0%

3.2. Changes in Pollutants and Remediation Methods in Space

Not only do contaminants and remediation methods change over time scales, but local
remediation methods also change in response to differences in contaminant distribution
among regions. Therefore, the distribution of pollutants in Texas, Alaska and Oklahoma
was analysed and compared horizontally with the distribution of pollutants in California
to obtain changes in pollutants on a spatial scale. Then, the changes in the restoration
methods for Texas over time were analysed and compared horizontally with California’s
restoration methods to obtain the change in restoration practices on a spatial scale. Table 2
shows the distribution of pollutants and their proportions in California, Texas, Alaska and
Oklahoma as of 2020.

Table 2. Distribution of Pollutants in the four states (as of 2020).

Pollutant
Category

Number of
Sites in

California
with Such
Pollution

Percentage
of Sites in
California
with Such
Pollutants

Number of
Sites in

Texas with
Such

Pollution

Percentage
of Sites in
Texas with

Such
Pollutants

Number of
Sites in
Alaska

with Such
Pollution

Percentage
of Sites in

Alaska
with Such
Pollutants

Number of
Sites in

Oklahoma
with Such
Pollution

Percentage
of Sites in
Oklahoma
with Such
Pollutants

BTEX 71 75.5% 37 74.0% 5 71.4% 8 53.3%
PAHs 29 30.9% 20 40.0% 3 42.9% 5 33.3%

Highly
Toxic 24 25.5% 7 14.0% 4 57.1% 2 13.3%

Heavy
Metal 47 50.0% 28 56.0% 5 71.4% 12 80.0%
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Texas and California are major oil-producing states in the U.S., and the proportion
of sites containing BTEX reaches about 75%. However, the proportion of sites containing
PAHs in Texas is about 10% higher than that in California. Sites containing highly toxic
substances are more common in California, and the probability of the occurrence of sites
containing highly toxic substances in Texas is only 14%. Heavy metal pollution is common
in the two states, and the likelihood of its occurrence in Texas and California is about 50%.

Compared to those in Texas and California, the pollution of Alaska by highly toxic
substances and heavy metals is more common, reaching 57.1% and 71.4%, respectively. The
frequency of occurrence of BTEX and highly toxic substances are decreased in contaminated
areas in Oklahoma compared to other states. However, the abundance of heavy metals
reaches 80%, the highest among the four states. It is worth noting that the number of sites
in Alaska and Oklahoma is relatively small, so the statistics may be accidental and are for
reference only. Because sites in Alaska and Oklahoma are few, only the changes in the
four types of pollutants in Texas over time were analysed, contrasting with the California
situation. Figure 3A–D show that the number of sites with BTEX, PAHs, highly toxic
substances and heavy metals in the list of pollutants changed over time in California and
Texas, respectively.

Energies 2022, 15, x FOR PEER REVIEW 7 of 13 
 

 

 

Figure 3. Changes in sites containing four types of pollutants in California and Texas over time. (A) 

the number of sites with BTEX pollutants changed over time in California and Texas. (B) the number 

of sites with PAHs pollutants changed over time in California and Texas. (C) the number of sites 

with highly toxic substances pollutants changed over time in California and Texas. (D) the number 

of sites with heavy metals pollutants changed over time in California and Texas. 

3.3. Exploration of Remediation Methods by Machine Learning 

The distribution of pollutants in California, Texas, Alaska and Oklahoma and their 

relevant spatial distribution can be obtained using traditional graphical analysis of the 

existing data. However, the traditional chart is not sufficiently comprehensive to guide 

the repair method. Therefore, Decision Tree Classifier as a machine learning model was 

used to build a decision tree model based on time, space, five types of pollutants and three 

remediation methods. These features were used to predict the remediation methods that 

should be considered under different pollution conditions and obtain the weight contrib-

uted by each feature when choosing the remediation methods. The model was built only 

based on California, Texas and these two states combined; the number of cases in Okla-

homa and Alaska was too small to build a model. 

As shown in Figure 4 and Table 3, only the California pollution data are considered. 

Therefore, the correct cross-validation rate is 0.656, the location does not affect the choice 

of remediation methods, the weight is zero and the weight of other organic pollutants is 

also zero. This shows that other organic pollutants do not affect the choice of remediation 

methods. Of the remaining five characteristics, pollutants containing BTEX had the small-

est impact on the choice of remediation method, with a weight of only 0.035. Conversely, 

pollutants containing highly toxic substances had the greatest impact on the choice of re-

mediation method, with a weight of 0.274. 

Figure 3. Changes in sites containing four types of pollutants in California and Texas over time.
(A) the number of sites with BTEX pollutants changed over time in California and Texas. (B) the
number of sites with PAHs pollutants changed over time in California and Texas. (C) the number
of sites with highly toxic substances pollutants changed over time in California and Texas. (D) the
number of sites with heavy metals pollutants changed over time in California and Texas.

3.3. Exploration of Remediation Methods by Machine Learning

The distribution of pollutants in California, Texas, Alaska and Oklahoma and their
relevant spatial distribution can be obtained using traditional graphical analysis of the
existing data. However, the traditional chart is not sufficiently comprehensive to guide
the repair method. Therefore, Decision Tree Classifier as a machine learning model was
used to build a decision tree model based on time, space, five types of pollutants and
three remediation methods. These features were used to predict the remediation methods
that should be considered under different pollution conditions and obtain the weight
contributed by each feature when choosing the remediation methods. The model was built
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only based on California, Texas and these two states combined; the number of cases in
Oklahoma and Alaska was too small to build a model.

As shown in Figure 4 and Table 3, only the California pollution data are considered.
Therefore, the correct cross-validation rate is 0.656, the location does not affect the choice
of remediation methods, the weight is zero and the weight of other organic pollutants is
also zero. This shows that other organic pollutants do not affect the choice of remediation
methods. Of the remaining five characteristics, pollutants containing BTEX had the smallest
impact on the choice of remediation method, with a weight of only 0.035. Conversely,
pollutants containing highly toxic substances had the greatest impact on the choice of
remediation method, with a weight of 0.274.
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Figure 4. California’s decision tree model.

Table 3. Weight for each feature.

Features Weight

Time 0.248
Space 0.000
BTEX 0.035
PAHs 0.225

Heavy Metal 0.218
Highly Toxic 0.274

Organic pollutants 0.000

As shown in Figure 5 and Table 4, only the pollution data of Texas are considered.
Therefore, the correct cross-validation rate is only 0.511, and the location weight is still zero.
Contrary to California, Texas does not consider highly toxic substances when selecting
remediation methods but focuses on metals and other organic pollutants. This may be
because highly toxic substances are rare in Texas. Comparing the data of the two states,
different factors are considered when choosing remediation methods. This may be due to
differences in pollution, developments and laws and regulations in each state.

As shown in Figure 6 and Table 5, the data of Texas and California are modelled
as datasets, and the correct cross-validation rate is 0.592. The decline in cross-validation
accuracy may be due to the different choices of repair strategies from state to state. By
adding Texas data, the location (space) information for each site in the dataset will not
be the same. Furthermore, the weight of space increases to 0.288, ranking second among
all features, explaining the significant weight difference between Texas and California.
The weight of other organic pollutants will not be zero but only 0.045, indicating that it
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hardly affects the choice of remediation methods. Of the remaining five characteristics,
the pollutants containing BTEX had the greatest impact on the choice of remediation
methods, with a weight of 0.301. The weight of highly toxic substances significantly
decreased compared to California data. The weights of time, heavy metals and PAHs were
also reduced.
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In terms of the weighting of features between California and Texas, in contrast to
California, Texas does not consider highly toxic substances when selecting remediation
methods, but instead focuses on metals and other organic pollutants. This might be
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explained by the rarity of highly toxic substances in Texas. These two states consider
different factors in the selection of their remediation methods, possibly reflecting differences
in pollution, development and laws and regulations in each state.

Table 5. Weight of each feature.

Features Weight

Time 0.147
Space 0.288
BTEX 0.301
PAHs 0.124

Heavy Metal 0.088
Highly Toxic 0.083

Organic pollutants 0.145

The three groups of decision tree models have the highest cross-validation accuracy
rate of 0.656. The California single decision tree model has a maximum data volume
of 144 sites. A model was obtained by adding California and Texas data, but the cross-
validation accuracy rate is only 0.592. The decline in cross-validation accuracy may be
due to the different choices of repair strategies from state to state. The reasons for the low
accuracy rate can be as follows:

One hundred forty-four pieces of data of cases were not big enough to train a decision
tree model—the model could be easily over-fitted or under-fitted. The reason for the
lack of data is that the information in the database, in many cases, was incomplete and
could not be analysed by machine learning. Furthermore, data were simplified at the
pre-processing stage, and only the intrinsic characteristic variables in the analytical cases
were selected for the convenience of this study, and the selection of variables might not be
comprehensive enough to represent the whole case. In future studies, more quantitative
specific characteristics such as strata, pollution distribution and restoration effect could be
added for in-depth analysis.

4. Conclusions

Among 211 pollution project datasets for four states collected from the EPA Super-
fund CERCLA Database, 144 soil remediation projects in four major oil-producing states
(California, Texas, Oklahoma and Alaska) were extracted for modelling by Decision Tree
Classifier. The correlations among the pollutant species, pollutant site characteristics and
the selected remediation methods were analysed.

(1) Among the three repair methods, physical repair was the most commonly used one,
with an application probability stable at over 80% at all time periods. Chemical
remediation techniques were rarely used before 1990, and the frequency of chemical
remediation techniques selected for most periods after 1990 reached more than 50%.
The frequency of selecting bioremediation technology was the smallest, less than
50% at all times. However, the proportion of bioremediation applications has risen
in general.

(2) California and Texas are the major oil-producing states in the U.S. The proportion of
sites containing metal pollution was about 50% in these two states. BTEX was more
common in both states, and its occurrence probability in Texas and California was
about 75%. There were more sites containing highly toxic substances in California
than in Texas, reaching more than 25%. On the other hand, there were more sites
containing PAHs in Texas than in California, reaching more than 40%.

(3) Of the seven characteristic variables selected for this paper, considering California
alone, the presence or absence of highly toxic substances has the greatest influence on
the choice of remediation method, and the weight is 0.274, while in Texas the feature
with the highest weight is heavy metal content, which has a weight of 0.318. The
combined model of these two states showed that the presence or absence of BTEX
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substances and the geographical location of the site largely influenced the choice of
remediation method, and the weights reached 0.301 and 0.288, respectively.
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