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Abstract: Latent heat storage technology is widely used in solar power generation. Aiming to enhance
the energy utilization rate to a greater extent, an innovative fan-shaped structure has been proposed
to construct the metal fins of the shell-and-tube thermal storage device. The enthalpy method is
used to simulate the heat storage process and focuses on the influence of inlet conditions on heat
transfer. The influence of the fin structure on the melting properties of phase change material has
been studied. The results show that increasing inlet temperature and inlet flow rate is a convenient
and effective way to improve energy efficiency. As the inlet temperature is increased from 343 K to
358 K, the total heat storage and energy efficiency are improved by 13.4% and 10.2%, respectively,
and the melting time is reduced by 36.2%. As the flow rate is increased from 3 L/min to 9 L/min,
the complete melting time is reduced by 33.4%. Energy efficiency peaks at a flow rate of 5 L/min.
Reasonable optimization of the fin structure can enhance the natural convection circulation during
the melting process and further improve the energy efficiency. The research results can guide the
design and structural optimization of the finned tube heat storage device.

Keywords: latent heat storage; fan-shaped fin; energy efficiency; structure optimization

1. Introduction

Global energy consumption is increasing rapidly, and the problem of environmental
pollution is becoming more and more serious [1]. Solar energy is abundant, clean, and
harmless and has a wide range of applications. However, due to the intermittent and
fluctuating nature of solar energy, thermal energy storage (TES) technology is required
to solve the dilemma between energy supply and demand [2,3]. PCM has a wide range
of applications in TES, including building heating [4], electronic device cooling [5], solar
energy systems [6], air conditioning [7], waste heat recovery [8], hybrid cooling clothing [9],
and subsea pipeline insulation [10]. Therefore, improving the thermal performance of TES
systems has become a current research focus.

Paraffin is a phase change material (PCM) commonly used in latent heat storage (LHS)
systems, with the advantages of stable thermophysical properties, safety, low price, and no
corrosion [11]. However, its main limitation is its low thermal conductivity, resulting in low
energy conversion efficiency, which greatly limits the thermal performance of LHS systems.
In order to enhance the thermal efficiency of LHS, scholars have conducted extensive
research to improve the thermal conductivity of PCM [12] by adding nanoparticles [13],
metal foams [14], or preparing composite PCM [15]. After extensive experiments and
simulation verifications [16,17], Pássaro et al. [18] discovered that the combination of fins
and nanoparticles can significantly improve the discharge process, but as the number of
fins increases, the role of nanoparticles becomes secondary. Alizadeh et al. [19] found that
adding innovative fins is a more efficient method than making nano-enhanced PCM, with
a 30% reduction in full solidification time, while nano-enhanced PCMs can only reduce
full solidification time by 14.5%. Although adding fins will reduce the capacity of the

Energies 2022, 15, 5682. https://doi.org/10.3390/en15155682 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15155682
https://doi.org/10.3390/en15155682
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://doi.org/10.3390/en15155682
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15155682?type=check_update&version=1


Energies 2022, 15, 5682 2 of 16

PCM in the heat storage unit [20], it can greatly shorten the melting time of the PCM,
which can significantly and efficiently improve the overall heat transfer performance of the
LHS system [21,22].

It can be found that the addition of metal fins can greatly improve the thermal con-
ductivity, and under certain conditions may cause vortex formation and natural/force
convection enhancement, improving the heat transfer rate. Mekrisuh et al. [23] proposed
that adding fins to the TES system can markedly improve thermal conductivity. Tay
et al. [24] numerically investigated the effect of adding pins and fins on heat transfer en-
hancement and found that thermally conductive fins could further enhance heat transfer
rate. Yang et al. [25] numerically investigated the influence of annular fins on the melting
characteristics of PCM in a shell-and-tube LHS system and believed that adding annular
fins could shorten the complete melting time of PCM by 65%. Guo et al. [26] proposed a
novel angular fin design based on annular fins and studied the effect of annular fin bending
angle on the melting rate of PCM. To further enhance the thermal storage efficiency of
LHS system, scholars have conducted more in-depth research on the effect of different fin
parameters on the melting and solidification process of PCMs in LHS units, including fin
number [27], fin height [28], fin angle [29], fin arrangement [30], and fin shape [31] among
other factors. Akhilesh et al. [32] studied the influence of fin number on the thermal storage
performance and pointed out that with the increase of the number of fins, the melting rate
gradually increased. However, when the fin number exceeded the critical value, the en-
hanced heat transfer effect was very weak. Wang et al. [33] studied in detail the effects of fin
geometry and outer tube thermal conductivity on the PCM melting process. It was pointed
out that the smaller fin ratio could shorten the melting time, and the thermal conductivity
of the outer tube had a great influence on the melting process. Shahsavar et al. [34] studied
the effect of non-uniform fin arrangement on the melting and solidification process of PCM.
By optimizing the arrangement spacing between the fins, the melting and solidification
times were shortened by 41.4% and 9.7%, respectively. Yagci et al. [35] investigated the
effect of edge length ratio of fins in shell and tube heat exchangers during the melting
and solidification of PCMs. The results showed that reducing the fin edge length ratio
could improve the weak natural convection motion in the lower part, thereby increasing
the melting rate. On the contrary, its effect on solidification time was not significant.

Some researchers have also found that the novel fin structures can save a lot of
heat storage time and enhance the heat storage efficiency compared with the traditional
fin structures, such as triangle [36], tree shape [37], snowflake shape [38], V shape [39],
topology [40], and so on. Mudhafar et al. [41] innovatively proposed a T-shaped fin. In the
case of equal fin volume, the melting time of PCM using T-shaped fins was shortened by 33%
compared with the use of longitudinal fins. In order to improve the phase transformation
efficiency, Liu et al. [42] proposed a trapezoidal fin to accelerate the melting process. The
results showed that trapezoidal fins could optimize the melt channel of the PCM better
than straight fins. Compared with straight fins, the total melting time was saved by up
to 52.2%. Ma et al. [43] proposed a novel circular stacked longitudinal fin and performed
a simulation analysis of the exothermic performance and (exergy) efficiency of the LHS
device. The study found that the circular reinforced fins with decreasing distribution had
better heat transfer performance, and the complete solidification time of the PCM was
reduced by 38.72%. Mao et al. [44] innovatively proposed a fan-shaped fin on the basis of
the shell-and-tube heat storage unit. The influence of factors, such as height, number, and
angle of fins on the heat storage rate, was studied and the optimal combination scheme of
fan-shaped fins was obtained.

As mentioned above, adding fins helps to promote the melting of the PCM around
the fins, which plays a vital role in improving the thermal efficiency of the LHS system.
However, it is worth noting that the heat transfer of the PCM far from the fins has not
been significantly enhanced, resulting in the positive effect of the fins to enhance heat
transfer not being fully exerted. In order to improve the overall melting degree of the PCM
and reduce the uneven temperature distribution, a 3D numerical model of the fan-shaped
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finned tube was established. The role of natural convection in the melting process was
explored using different inlet temperatures and inlet flow rates. Finally, based on the
fan-shaped fin structure, a variety of different fin structures were derived and analyzed.
The conclusions of this paper have a certain reference value for the structural optimization
and performance improvement of LHS units.

2. Physical Models and Numerical Simulations
2.1. Physical Models and Computational Domains

Figure 1 describes the evolution history of the fan-shaped finned tube in detail. In a
previous study [44], the effect of the number, height and angle of fins on heat transfer has
been evaluated and studied, and an optimal combination of 6 fins, an angle of 30◦ and a
height of 51.3 mm has been obtained. In order to experimentally study and verify the heat
transfer performance of the fan-shaped finned tube in the subsequent research, considering
that the processing and manufacturing of the fin shape is difficult, but at the same time to
guarantee efficient heat transfer performance, five fan-shaped fins with an angle of 36◦ and
a height of 51.3 mm were ultimately selected for this study. Figure 2a depicts the model
diagram of the LHS unit with fan-shaped fins. The device consists of two cylinders with a
height of 350 mm: the outer shell is made of acrylic, with a diameter of 200 mm, and the
heat exchange tube is made of copper with an inner diameter of 25 mm and a thickness
of 2 mm. Five longitudinal fan-shaped fins are evenly distributed on the surface of the
copper tube. The height of the fins is 350 mm, the length is 51.3 mm, the thickness is 1 mm,
and the adjacent angle is 36◦. Water as heat transfer fluid (HTF) flows through the inner
cooper tube at a temperature of 353 K and a flow rate of 5 L/min. The hot water exchanges
heat with the paraffin in the annular cavity through copper tubes and fins. The physical
parameters of paraffin wax and cooper are shown in Table 1. As can be seen from Figure 2b,
the 3D model is divided into three computational domains: HTF region, PCM region, and
fan-shaped finned tubes. The shell is defined as an adiabatic boundary, that is, the heat
dissipation of the LHS unit to the outside world is ignored.
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Table 1. Material physical properties.

Materials PCM (Paraffin) Fin (Cooper)

Density (kg/m3) 885 8978
Thermal conductivity (W/m·K) 0.279 387.6
Specific heat capacity (J/kg·K) 3085 (s) 2106 (L) 381
Latent heat (J/kg) 172,620 -
Melting range (K) 321–323 -
Viscosity (kg/m·s) 1.72 × 10−5 -
Thermal expansion coefficient (1/K) 0.0006 -

2.2. Mathematical Model and Governing Equations

To simplify the complexity of numerical calculations, the following assumptions are
made:

(1) The flow of PCMs is considered to be laminar, three-dimensional, and incompressible.
(2) The viscous dissipation and volume change during phase transition are ignored.
(3) The Boussinesq approximation is used to only consider the PCM density change

caused by the temperature change.
(4) The thermophysical properties of the PCM are constant and satisfy the isotropy.
(5) The axial and radial temperature changes of the heat exchange tubes are ignored.

Based on the above assumptions, the governing equations are expressed as fol-
lows [26,45]: Continuity:

∇·→u = 0 (1)

Momentum:

ρ f
∂
→
u

∂t + ρ f

(→
u ·∇

)→
u = −∇P + µ f∇2→u + ρ f

→
g β
(

Tf − Tm

)
+ (1−λ)2

(λ3+0.001)
→
u Amush (2)

Energy:

ρ f cp, f
∂Tf
∂t + ρ f cp, f

→
u ·∇Tf = ∇·

(
k f∇Tf

)
− ρ f L f

∂λ
∂t (3)

Among them, Amush is a mushy zone constant, typically between 104 and 107. It is
considered as 106 in the current study.



Energies 2022, 15, 5682 5 of 16

The established mathematical model is solved by the enthalpy-porosity method [46].
The melting fraction λ represents the volume fraction of the liquid phase PCM in the
melting process, and it can be expressed as:

λ =


0 T < Tsolid

T−Tsolid
Tliquid−Tsolid

Tsolid < T < Tliquid

1 T > Tliquid
(4)

where λ = 1 and λ = 0 for the liquid and solid PCM, Tliquid defines PCMs liquidus tempera-
ture, Tsolid defines PCMs solidus temperature.

2.3. Initial and Boundary Conditions

Initial conditions:
T|t=0 = T0 = 303 K (5)

Boundary conditions:

Qin = 5 L·min−1, T = Tin = 353 K (6)

−k ∂ T|Ω
∂
→
n

= 0 (7)

Among them, T0 represents the ambient temperature, and the initial temperature of
all computational domains is 303 K. Ω represents the outer surface of the device housing,
→
n represents the normal vector, and Qin and Tin represent the inlet volume flow and inlet
temperature, respectively.

Coupling boundaries are formed between the fins and the PCM, as well as the HTF
and the inner wall of copper tube:

Tf in = TPCM, kPCM
∂TPCM

∂n = k f in
∂Tf in

∂n
(8)

THTF = Ttube, kHTF
∂THTF

∂n = ktube
∂Ttube

∂n (9)

2.4. Characteristic Parameters and Evaluation Indicators

Heat storage is an important index to evaluate the performance of LHS device. Based
on the melting characteristics of PCM, the total amount of heat storage can be calculated
by Equation (10):

QPCM = mPCM

[
cp,s(Tm − Tini) + λL + cp,l(TPCM − Tm)

]
(10)

Effective heat storage refers to the heat transferred from HTF to PCM, which can be
calculated by Equation (11):

QHTF =
∫ t

0
.

m f cp, f [Tin(t)− Tout(t)]dt (11)

where Tin (t) and Tout (t) represent the inlet and outlet temperatures of the fluid,
.

m f
represents the mass flow rate, cp, f is the specific heat capacity of water.

Heat flux refers to the amount of heat transferred per unit area per unit time and can
be calculated by Equation (12):

q =
∫ t

0
.

m f cp, f [Tin(t)−Tout(t)]dt
tm(Atube+A f in)

(12)
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The energy efficiency is defined as the ratio of the heat stored by PCM to heat supplied
by HTF, which reflects the heat utilization efficiency of LHS system.

η = QPCM
QHTF

(13)

2.5. Numerical Steps

In this study, the commercial software ANSYS FLUENT 2020R2 was used to solve the
melting process of the PCM in the LHS device by finite volume method. The HTF and
PCM regions were divided by hexahedral meshes. The boundaries of the fluid inlet and
outlet were encrypted. A 3D separation solver and a standard k-ε model were used to
simulate the flow regime. In order to better couple the pressure field and velocity field, the
SIMPLE algorithm was used to solve the problem. The first-order upwind scheme was used
for discretization of energy equation and momentum equation. The PRESTO! algorithm
was used to discretize the pressure term. The relaxation factors for pressure, energy,
momentum, and liquid fraction were 0.3, 1.0, 0.7, and 0.9, respectively. The convergence
criteria for velocity, continuity and energy equations were controlled at 10−3, 10−3 and
10−6 for better convergence.

In order to eliminate the influence of grid number and time step on numerical calcula-
tions, three different grid numbers (518,458, 640,480, 786,548) and three different time steps
(1.0 s, 0.5 s, 0.2 s) are used for verification, respectively. Through numerical simulation,
the variation curve of PCM average temperature with time during the melting process is
obtained, as shown in Figure 3a. Compared with the grid number of 518,458, when the
grid number is increased from 640,480 to 786,548, the difference of the average temperature
is less than 2.0%. To save the numerical calculation time, this paper selects the grid number
of 640,480. Figure 3b depicts the trend of melting fraction at different time steps. When
the time step is reduced from 1.0 s to 0.2 s, the melting fraction curve does not fluctuate
significantly, so a grid size of 640,480 cells and a time step of 1.0 s are chosen for simulation.
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2.6. Model Validation

The reliability of the numerical model has been verified by the experimental results of
Ismail et al. [47]. Ismail experimentally investigated the influence of the number, length
and thickness of longitudinal fins on the solidification properties of PCM. In Ismail’s
experiments, the finned tube was inserted in the PCM, the outer cylindrical surface was
insulated, and the tube wall was kept at a constant temperature. The geometric details
of the 1/4 finned tube are shown in Figure 4a,b, presenting the changes in the position
of the solid–liquid interface at different times during the solidification process when the
fin number is 4. The error between the numerical results and the experimental results is
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within 5.0%, which is within the acceptable error range. It is thus proven that the numerical
calculation is reliable and accurate.
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3. Results and Discussion
3.1. Influence of Inlet Temperature

In this paper, four different HTF inlet temperatures are set, and the influence of
different inlet temperatures on the melting performance of fan-shaped finned tubes has
been discussed. Figure 5 depicts the changing trend of the melting fraction when the
inlet flow rate is 5 L/min and the inlet temperature is 343 K, 348 K, 353 K, and 358 K,
respectively. It is evident that as the HTF inlet temperature increases, the time required for
complete melting of the PCM decreases, which implies that the melting rate increases. It is
mainly caused by the large temperature difference between PCM and HTF. The increase in
temperature enhances the ability of the fins to conduct heat, and the heat transfer intensity
between HTF and PCM is also enhanced due to the increase in temperature difference. As
a result, the PCM on both sides of the fins will start to melt at a higher rate, which greatly
saves heat storage time.

It can be seen from Figure 6 that the increase of the inlet temperature plays a key role
in improving the melting characteristics of the PCM. When the temperatures are 343 K,
348 K, 353 K and 358 K, the total heat storage of the LHS device is 2519 kJ, 2608 kJ, 2689 kJ
and 2857 kJ, respectively. Compared with the inlet temperature of 343 K, the heat storage
at 348 K, 353 K, and 358 K is increased by 3.5%, 6.7%, and 13.4%, respectively, while the
melting time of PCM is decreased by 16.5%, 29.6%, and 36.2%, respectively. It can be
seen that with the increase of the inlet water temperature, the average heat flux density
increases linearly, and the average increase is more than 20%. It shows that an appropriate
increase in the inlet temperature can enhance the heat transfer performance of the fan-
shaped fin tube and the melting performance of the PCM. It should be noted that with the
increase of water temperature, the complete melting time does not continue to maintain a
significant reduction, and the reduction rate shows a gradually decreasing trend. It shows
that increasing the temperature has a critical value for the optimization of reducing the
melting time, but still can improve the total heat storage and energy efficiency of the LHS
unit. Especially when the heating temperature is increased from 353 K to 358 K, the heat
storage and energy efficiency are significantly improved by 6.2% and 6.9%, respectively.
Therefore, to maintain the efficient energy efficiency of the LHS system and as little heat
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storage time as possible, it is recommended to control the inlet water temperature to not
lower than 353 K.
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3.2. Influence of Inlet Flow Rate

In order to investigate whether the HTF inlet flow improves the heat storage process of
the LHS fan-shaped heat storage tank, the HTF inlet temperature is stabilized at 353 K, and
the inlet flow is set to 3 L/min, 5 L/min, 7 L/min and 9 L/min, respectively. Figure 7a,b
show the melting fraction and temperature as a function of time, respectively. When
the inlet flow rate increases gradually, the melting rate is significantly accelerated, and
the temperature rise rate also increases gradually. When the flow rate is increased from
3 L/min to 9 L/min, the complete melting time is reduced by 18.6%, 27.3%, and 33.4%.
This is because with the gradual increase of the inlet flow rate, the heat exchange between
the HTF and the PCM per unit time increases accordingly. That is to say, the temperature of
the PCM will rise faster per unit time, which means that the total heat storage of the PCM
will increase accordingly. It is worth noting that when the inlet flow rate exceeds 3 L/min,
the flow state of HTF in the copper tube is fully developed turbulent flow. However,
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the convective heat transfer coefficient will decrease slowly with the increase of the flow
rate. It can be seen from Figure 8 that when the flow rate reaches 7 L/min and above,
the increasing trend of the melting rate gradually slows down, and the energy efficiency
begins to gradually decline, and the energy efficiency reaches its peak at 5 L/min. This
indicates that the larger inlet flow rate is not necessarily better. Considering the economy
and practicability, the flow rate of 5 L/min is the most suitable.
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The change of Nusselt number with time can be used to characterize the intensity of
convective heat transfer. Nu values can be expressed as [48]:

Nu =
.

Q(t)Dh
A(Tw−Tm)kl

(14)

where Q is the instantaneous heat transfer rate, Dh is the characteristic length which is the
difference between the diameter of the shell and the outer diameter of the HTF tube, A is
the heat exchange area, kl is the thermal conductivity of the liquid PCM, Tm and Tw are the
melting temperature and tube wall temperature.
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Figure 9 shows the time history of the Nusselt number for different inlet flow rates
at an inlet temperature of 353 K. According to the change of Nusselt number, the global
melting can be divided into three stages: thermal conduction, convection, convection
weakening and thermal conduction recovery. At the beginning of the heat storage stage,
thermal conduction dominates, so there is a large Nusselt value at the beginning of the heat
transfer process. This is because at the beginning of melting, there is only a very thin liquid
film on the surface of the melt, and the thermal resistance is very small, which also leads
to a very fast melting rate in the initial stage. The higher the melting degree of PCM, the
greater the heat transfer resistance at the solid–liquid interface, and the weaker the effect
of heat conduction. The Nusselt number drops sharply at this moment. The decline of
the Nusselt number stops with the appearance of convective motion in the melt, followed
by the convective heat transfer gradually becoming dominant, and the melting process
enters the second stage. During the convection phase, the Nusselt number remains almost
constant for a period of time. Over time, the liquid PCM accumulated in the upper layer,
the thermal resistance increased, and the convection intensity began to weaken. When the
top solid PCM melts completely, the local convection in this region disappears, and the
conduction mechanism between liquids begins to recover gradually. The change of the
Nusselt number shows a slow downward trend. It can be clearly seen from Figure 9 that
the larger the HTF flow velocity, the larger the Nusselt number in the convection stage,
indicating that the convection process is more intense.
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3.3. Optimization of Fin Structure

On the basis of fan-shaped fins, several novel fin shapes have been evolved, as shown
in Figure 10. Under the premise of ensuring the same fin volume, the effect of different fin
shapes on the melting of PCM has been studied.
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Figure 11 shows the melting front and temperature distribution of different fin struc-
tures at different times and the cross-sectional view at a height of 0.1 mm. At an inlet
temperature of 353 K and an inlet flow of 5 L/min, the four fin structures can conduct heat
quickly and accelerate the melting of the surrounding PCM. It can be seen intuitively that
the shapes and positions of the melting front interface and the temperature distribution
interface at different times are basically similar. Due to the different shapes of the fins, there
are differences in the melting of the PCM in different regions, but they all show similar
melting inhomogeneities. In the early stage of heat storage, the melting process first occurs
near the wall of the heat exchange tube and around the heat conduction fins. It indicates
that the PCM close to the fin has a higher fraction of local melting regardless of the fin
shape. The degree of melting of the PCM near the fins is higher than that far from the fins,
which proves that the fin promotes the melting of PCM and also leads to a continuous
wave-like melting front on the melting profile. It is caused by the uneven degree of melting
caused by local eddy currents and natural convection movements. Due to the change in
density, the liquid PCM flows upward under the action of buoyancy, which promotes the
generation of natural convection motion, thereby driving the melting of the surrounding
solid PCM. When the PCM near the tube wall and at the top of the cavity is melted, the
liquid PCM on the outside of the copper tube will flow upward along the tube wall, and the
liquid PCM at the solid-liquid interface will flow downward under the influence of gravity,
resulting in the formation of a distinct clockwise circulating vortex. With the deepening
of the melting process, the convective circulation range gradually expands, and the wavy
twist position gradually moves downward.
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At t = 1800 s, the heat is transferred from the HTF to the paraffin in the cavity through
the fin, and the paraffin wax near the fins begins to melt first. The solid-liquid interface
presents different melting profiles due to different fin shapes. The paraffin farther away
from the fin was obviously underheated, and the local melting fraction was also lower than
that near the fin end. Over time (t = 3600 s and t = 5400 s), more and more paraffin began to
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melt. The paraffin wax around Fin-A melts the fastest, followed by Fan fin. Fan fin and
Fin-A have higher melting rates. It may be due to the presence of redundant fins resulting
in the formation of enclosed spaces that weaken natural convection during paraffin melting.
Under the premise of the same fin volume, although the surface area of the fin is increased,
the effect of promoting the heat conduction is less than the effect of the weakening of
natural convection. It can be clearly seen from Figure 11 that the melting profiles of Fan-A
and Fan-B are significantly different. Although the two have similar fin shapes, the greater
part of Fan-B than Fan-A blocks the convective movement inside the cavity, resulting in a
slower heat storage time than Fan-A.

Figure 12 shows the variation of the paraffin liquid phase fraction over time in four
different finned tubes. It can be intuitively seen that the complete melting time of PCM in
the Fin-A tube is the shortest, only 6940 s, followed by Fan fin, Fin-B and Fin-C. There are
5.3%, 14.6% and 11.6% improvements compared to Fan fin, Fin-B, and Fin-C, respectively.
Figure 13 visually depicts the comparison of heat storage capacity and energy efficiency
of different finned tube structures. Among them, the fin structure of Fin-B enables the
entire LHS system to obtain maximum heat storage. This is the case because, under the
same working conditions, the average temperature of the PCM in the Fin-B structure at the
end of the heat storage is the highest, which also leads to a higher heat storage from the
point of view of the heat transfer equation. Overall, Fin-A has the smallest fin surface area
but the highest degree of melting. Although the heat storage capacity is slightly reduced,
the energy storage efficiency is 2.98% higher than that of the Fan fin structure. To further
improve the melting performance of the LHS system, the fin structure of Fin-A can be
further studied in the future.
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4. Conclusions

A new type of fan-finned tube LHS device considering natural convection is numer-
ically investigated. Numerical simulation of the melting process of paraffin in the unit
is carried out. The melting properties are studied under different inlet conditions, and
the melting characteristics, such as melting fraction, temperature distribution, and energy
efficiency under different conditions, are compared and analyzed. The fan-shaped fin is
optimized according to the fin structure, and three different fin structures are considered
to further strengthen the solid-liquid phase transition process. The important conclusions
from this research are as follows:

(1) When the inlet temperature increases from 343 K to 348 K, 353 K and 358 K, the heat
storage capacity of PCM is increased by 3.5%, 6.7%, and 13.4%, respectively. The
melting time of PCM is reduced by 16.5%, 29.6%, and 36.2%, respectively. When
the inlet temperature increases from 353 K to 358 K, although the melting time is
shortened slightly, the energy efficiency and heat storage show a large increase. This
shows that increasing the temperature has a critical value for the optimization of
shortening the melting time, but it can still improve the heat storage efficiency of the
LHS system.

(2) When the inlet flow rate increases from 3 L/min to 9 L/min, the melting time of PCM
is shortened by 18.6%, 27.3%, and 33.4%, the energy efficiency first increases and then
decreases. The energy efficiency reaches the maximum at 5 L/min value. The larger
the HTF flow, the larger the Nusselt number in the convective stage, indicating that
the convective process is more intense.

(3) The complete melting time of PCM in Fin-A tube is shortened by 5.3%, 14.6%, and
11.6% compared with Fan fin, Fin-B, and Fin-C, respectively. On the whole, under the
same fin volume, Fin-A has the highest melting degree. Although the heat storage is
slightly decreased, the energy efficiency is 2.98% higher than that of the Fan fin.
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Nomenclature

Abbreviation
TES Thermal Energy Storage
LHS Latent Heat Storage
PCM Phase Change Material
HTF Heat Transfer Fluid
Symbols
H Heat storage unit height (mm)
R Shell radius (mm)
Tm Melting temperature (K)
t Melting time (s)
→
u Velocity vector (m/s)
g Gravity (m/s2)
cp Specific heat capacity (J/kg·K)
cp,s Solid specific heat of paraffin (J/kg·K)
cp,l Liquid specific heat of paraffin (J/kg·K)
cp, f Specific heat of HTF (J/kg·K)
P Pressure (Pa)
k Coefficient of thermal conductivity (W/m·K)
L Latent heat of PCM (J/kg)
A Heat exchange area (m2)
Q Heat storage capacity (kJ)
q Average heat flux (W/m2)
Dh Characteristic length
Greek symbols
Φ1 Copper tube inner diameter (mm)
Φ2 shell outer diameter (mm)
λ Melting fraction
ρ Density (kg/m3)
µ Dynamic viscosity (kg/m·s)
β Coefficient of thermal expansion (1/K)
η Energy efficiency (%)
Ω Outer surface of the device housing
Subscript
0 Initial
m Melting
in Inlet
out Outlet
liquid Liquidus
solid Solidus
f Fluid
w Wall
ini Initial
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