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Abstract: The integration of multiple-input multiple-output (MIMO) and non-orthogonal multiple
access (NOMA) technologies is a hybrid technology that overcomes a myriad of problems in the 5G
cellular system and beyond, including massive connectivity, low latency, and high dependability.
The goal of this paper is to improve and reassess the bit error rate (BER), spectrum efficiency (SE)
of the downlink (DL), average capacity rate, and outage probability (OP) of the uplink (UL) in a 5G
network using MIMO. The proposed model utilizes QPSK modulation, four users with different
power location coefficients, SNR, transmit power, and two contrasting bandwidths 80 and 200 MHz
under selective frequency Rayleigh fading channels. The proposed model’s performance is evaluated
using the MATLAB software program. The DL results found that the BER and SE against transmitted
power showed the MIMO-NOMA enhanced the BER performance for the best user U4 from 10−1.7

to 10−5.2 at 80 MHz bandwidth (BW), and from 10−1.5 to 10−5 at 200 MHz for transmitting power
of 40 dBm. In contrast, the SE performance for the best user U4 is enhanced from 24 × 10−3 to
25 × 10−3 bits/second/Hz at 80 MHz BW and from 19.8 × 10−3 to 20 × 10−3 bps/Hz at 200 MHz
BW. Although the outcomes for the UL were obtained in terms of average capacity rate and OP versus
SNR at 80, and 200 MHz BW, the MIMO-NOMA result showed that the average capacity rate for the
best user U4 performance improves by 12 bps/Hz for 1 dB SNR and the OP is reduced by 15 × 10−3

for 80 MHz BW and by 12 × 10−3 for 200 MHz BW at an SNR of 0.17 dB. As the BW increased the
BER, the average capacity rate increased while the SE and OP decreased. For both DL/UL NOMA
with and without MIMO, closed-form expressions for BER, SE, average capacity rate, and OP were
obtained. All users’ performance, even those whose connections were affected by interference or
Rayleigh fading channels significantly improved, when MIMO-NOMA was implemented.

Keywords: non-orthogonal multiple access (NOMA); bit error rate (BER); spectrum efficiency (SE);
outage probability (OP); multiple-input multiple-output (MIMO)

1. Introduction

Due to the compelling multimedia applications and the popularity of smart mobile de-
vices, wireless communication has developed at a breakneck pace over the last decade [1,2].
Non-orthogonal multiple access (NOMA) has been offered as a possible strategy for achiev-
ing mass accessibility with keeping spectral efficiency [3,4]. NOMA achieves multiple
access by modifying the power level of overlay user signals at the transmitter and receiving
the signal using successive interference cancellation (SIC) in receivers, with noise-limiting
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user rates for better channels and bandwidth-limiting user rates for bad channels [5–8].
SIC is implemented at the power user level because NOMA is sequential interference
cancellation, allowing the powerful user to detect and discard messages from users with
weaker channel conditions. Data from users with better channel conditions is considered
interference by the weaker user [9]. In the NOMA downlink (DL) system, multiple users
share the same time, coding, and frequency resources due to the multiplexing of the power
field. The base station (BS) sends an overlay signal to each user, which includes a signal
for all users [10]. Because users no longer have to wait for an orthogonal resource block
to become available, NOMA can accomplish huge connections while drastically lowering
transmission delay [11]. As a result, NOMA with SIC is a promising multiple-access ap-
proach in the next-generation communication system [12]. NOMA is a wireless technology
that can meet the demands of today’s wireless environment [13]. The analysis of differ-
ent access technologies is still in its early phases [14]. The main leading research group
is working on determining the spectrum’s efficiency because all features are constantly
generated [15,16].

In uplink (UL) NOMA, a group of users simultaneously sends their signals to their
associated BS [17,18]. Intra-cluster interference, as a result, impacts a user’s received signal,
which is determined statically by other users’ channel data [19]. To reduce interference,
the BS could use SIC to decode signals. Separate message signals with an adequate power
variance must arrive at the receiver BS to correctly utilize the SIC technique. This is com-
monly handled in the DL by employing different scales at the transmitter. Furthermore,
such values are superfluous because the UL channel gains already offer enough separation
between the received signals. The standard UL transmits power control, which is sup-
posed to balance the received signal levels of users, is not recommended for UL NOMA
transmissions because it may reduce channel distinctness [20–24].

Using several antennas in both the transmitter and receiver can considerably increase
the capacity of a radio communication channel. That is, many separate channels can be
managed in the same bandwidth using multiple-input multiple-output (MIMO) technology
with these antennas, but only if the propagation environment is sufficiently rich [25,26].
Although the use of MIMO techniques adds another dimension to enhance efficiency,
research into combining MIMO and NOMA has recently a lot of interest [26,27].

The additive white Gaussian noise (AWGN) and Rayleigh fading channels were in-
vestigated for the accurate expression of the BER rate generated in a closed form for BPSK
modulation in the perfect and deficient SIC states for the DL NOMA network. However, it
did not include parameters that influence the BER, such as distance and power location
coefficients in [28]. Three power assignment strategies are proposed to improve NOMA SE
by optimizing the given power to each NOMA in [29,30]. The impact of interference on
users of the energy allocation process, nevertheless, has not been investigated or examined.
Investigate the attainable rates of UP NOMA with a synchronized transmission in [31] and
estimate both the upper and lower bounds of a synchronized NOMA system’s possible
rates, illustrating that the measured lower bound is approximately the rate achievable
by conventional synchronized NOMA systems. Nonetheless, each user is provided with
a relatively limited number of transmitted symbols, which may lead to inaccurate find-
ings. The ergodic rate achievable in [23,24] is monitored and checked to ensure optimal
performance of the encoder and pre-detection systems that simplify decoding in the dual
receive channels used for DL and UL transmissions. Nevertheless, the number of users
is insufficient to confirm the optimal situation, and there has been no research into the
method’s impact on OP or BER, for example.

In this paper, we examine the impact of varying the bandwidth and the number of
antennas in a 5G network on the bit error rate (BER) and spectrum efficiency (SE) of the
downlink, and the average capacity rate and outage probability (OP) of the uplink in a
network subject to Rayleigh fading. During the analytical process, the integral expressions
of the BER, SE, capacity rate, and OP were generated. In addition, modeling is used to verify
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all the potential configurations of the system. The following are some of the research’s most
significant contributions:

• Two different bandwidths (BWs) for the NOMA system over a Rayleigh fading channel
are proposed and investigated;

• Improvements in the system have been examined when NOMA and MIMO are used
together to handle four users.

The article addresses the NOMA technique which is considered one of the main bullets
of 5G technology. Our main innovative idea in the article is remodeling NOMA-MIMO
for the power domain for a higher data rate, capacity, and throughput. This has been
performed by proposing a new power domain scheme for NOMA-MIMO.

The remainder of the paper is structured as follows: Section 2 contains previous and
related works. Section 3 discusses the proposed system mathematical model. Simulation and
simulation parameters are presented in Section 4. The results and discussions are presented
in Section 5 and, finally, Section 6 concludes the paper and presents further future work.

2. Related Work

Multiple beams forming with a single carrier are utilized in NOMA systems to accom-
modate numerous users as a two-stage beam forming solution for modular beam forming
vectors, according to the author in [32]. A reduced total transmission packet shaping issue
is built to identify both users’ packet-shaping vectors and power.

The author in [33], established successful precoding and detecting procedures to
produce a considerable difference between users’ effective channel gains, allowing NOMA’s
potential to be achieved even when the users’ initial channel conditions are comparable.
The author investigated the performance of MIMO-NOMA when numerous users are
aggregated into a group, finding that MIMO-NOMA outperforms MIMO-OMA in terms of
total channel capacity and total practical capacity [34].

Using statistical channel state information at the transmitter, the ergodic capacity max-
imization problem for selective Rayleigh fading MIMO-NOMA systems was investigated
in [30]. The MIMO-NOMA schemes greatly outperform the conventional OMA scheme,
according to numerical results.

Following a review of the concept of integrating NOMA downlink with MIMO, an
experiment was carried out to assess the performance of NOMA downlink combined with
MIMO under realistic settings in [35]. In UL, the user connection. The author investigated
NOMA in [36], considering numerous specified power allocation techniques. It has been
demonstrated that NOMA with the suggested user pair technique outperforms NOMA
with the previously described signal realignment.

The author looked in [37] at many NOMA DL and UL user power field-based com-
munication systems with different fading bindings for all users who can follow one of the
many conceivable distributions. At high SNRs, analytical expressions of the OP for the
NOMA DL and UL systems were derived.

An unmanned aerial vehicle-assisted NOMA network with UL and DL transmissions
was explored, and analytical expressions of OP as the major measure were derived in [38].
The author explores a novel UL/DL NOMA system with a uniform relay and set decode
order that involves the use of statistical channel state information, resulting in enhanced
fairness and applicability [39]. The author evaluated the potential of UL and DL resource uti-
lization, adaptive control, and power control for wireless communications systems under the
assumptions of in-band full-duplex BSs, NOMA operation, and queue stability limitations.

A method is proposed for solving by finding a correlation similarity in [40]. The
efficacy of different NOMA plots over the tapping delay line channel in both normal and
fast UE speed and correlation-level modeling was explored by the author in [40–42]. With
UE’s normal and fast speed, NOMA methods work differently.
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3. System Model
3.1. DL Scenario

Consider a wireless network with four DL NOMA users and a 64× 64 MIMO system (as de-
picted in Figure 1). U1, U2, U3, and U4 are the four users with different bandwidths of 80 and
200 MHz [43]. Let d1, d2, d3, and d4 represent their various BS distances, d1 > d2 > d3 > d4
indicating the preferred order. Depending on the distance, U1 is the weak/far user while U4
is the strong/near user from BS. Let hT1, hT2, hT3, and hT4 identify which selective Rayleigh
fading coefficients they correspond to |hT1|2 < |hT2|2 < |hT3|2 < |hT4|2.
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The total Rayleigh fading channel for each user is given by [44]:

h Ti = ∑M
i=1 hTi (1)

where, i = 1, 2, 3, 4 is the number of users, and M = 64 is the number of channels. α1, α2, α3
and α4 show their respective power coefficients. According to the NOMA (power domain)
principles, the lower user must have more power and the better user should have less
power [45,46]. As a result, the power coefficients must be modified as α1 > α2 > α3 > α4.
Let x1, x2, x3 and x4 be the QPSK-formed messages to send to BS U1, U2, U3, and U4.
The BS’s encoded overlay signal is then given by as in [47].

x =
√

p(
√

α1x1 +
√

α2x2 +
√

α3x3 +
√

α4x4) (2)

U1 decodes y1 directly when it has maximum power, interfering with the 2nd, 3rd,
and 4th U signals. As a result, the first possible U rate is

R1 = log2

(
1 +

α1P|hT1 |2

α2P|hT1|2 + α3P|hT1 |2 + α4P|hT1 |2 + σ2

)
(3)

The obtained rate is for U2 after SIC eliminated U1 data.

R2 = log2

(
1 +

α2P|hT2|2

α3P|hT2 |2 + α4P|hT2|2 + σ2

)
(4)
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The achieved rate is for U3 after SIC deleted U1 and U2 data.

R3 = log2

(
1 +

α3P|hT3 |2

α4P|hT3 |2 + σ2

)
(5)

The acquired rate is for U4 after SIC deleted U1 data, U2 data, and U3 data.

R4 = log2

(
1 +

α4P|hT4|2

σ2

)
(6)

To calculate the spectrum efficiency.

SE =
Th
BW

(7)

where the SE is spectrum efficiency, Th is the throughput and BW is the bandwidth.

3.2. UL Scenario

The power domain multiplexing for uplink NOMA is almost entirely different. In
downlink NOMA, the BS employed superposition coding to offer power domain multi-
plexing; however, the user’s transmit power is limited only by their battery capacity in the
uplink. That is, both users can transmit at full strength. Changes in the users’ channel gains
cause variation in the power domain at the receiver side of BS.

Let x1, x2, x3 and x4 represent the messages that will be sent by four UL NOMA users
U1, U2, U3, and U4, accordingly. Suppose that both users’ signals have the same strength
and consider the 64 × 64 MIMO system and BW equal to 80 MHz on a wireless network
(as depicted in Figure 2). Let d1 > d2 > d3 > d4 denote the various BS distances, with
d1 > d2 > d3 > d4 being the preferred order. U1 from BS is the weak/far user, while U4
is the strong/near user, depending on the distance. Let hT1, hT2, hT3, and hT4 determine
which selective Rayleigh fading coefficients they relate to |hT1|2 < |hT2|2 < |hT3|2 < |hT4|2.
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The total Rayleigh fading channel for each user is given by:

h jT = ∑N
j=1 hjT (8)
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where j = 1, 2, 3, 4 is the number of users and N = 64 is the number of channels.
The signal was received at the BS.

y =
√

Px1h1T +
√

Px2h2T +
√

Px3h3T +
√

Px4h4T + w (9)

where w is the noise power.

3.2.1. Capacity Rates Achievable of Four Users UL NOMA

The signal from the close user is decoded first, with the signal from the distant users
being treated as interference. Therefore, the rate at which the BS can decode the data of a
nearby user is, according to [48,49].

RU4 = log2

(
1 +

P|h4T |2

P|h1T |2 + P|h2T |2 + P|h3T |2 + σ2

)
(10)

After the SIC has been calculated, the maximum rate U3 can be obtained.

RU3 = log2

(
1 +

P|h3T |2

P|h1T |2 + P|h2T |2 + σ2

)
(11)

After the SIC has been calculated, the maximum rate U2 that can be accomplished

RU2 = log2

(
1 +

P|h2T |2

P|h1T |2 + σ2

)
(12)

After the SIC has been calculated, the maximum rate of U1 can be achieved.

RU1 = log2

(
1 +

P|h1T |2

σ2

)
(13)

3.2.2. OP of Four Users UL NOMA

Consider that the four users have different target rates.

r1 = 1, r2 = 2, r3 = 3, r4 = 4

The capacity U4 is calculated as follows:

C4 =
N

∑
i=1

log2

(
1 +

P|h4|
P|h1|+ P|h2|+ P|h3|+ N4

)
(14)

U3′s capacity is calculated as follows:

C3 =
N

∑
i=1

log2

(
1 +

P|h3|
P|h1|+ P|h2|+ N3

)
(15)

U2′s capacity is calculated as follows:

C2 =
N

∑
i=1

log2

(
1 +

P|h2|
P|h1|+ N2

)
(16)

U1′s capacity is calculated as follows:

C1 =
N

∑
i=1

log2

(
1 +

P|h1|
N1

)
(17)
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For U1, the OP condition is:

Pr (C1(k)) < r1) || Pr (C2(k) < r2) || Pr (C3(k) 〈 r3|| Pr (C4(k) < r4)) < r

The OP of U1:

Pr(U1) = (∑N
i=1Pr(C1(k)) < r1)‖Pr(C2(k) < r2)‖Pr(C3(k)〈r3||Pr(C4(k) < r4))/N (18)

For U2, the OP condition is:

Pr (C2(k) < r2) || Pr (C3(k) 〈 r3|| Pr (C4(k) < r4)) < r

The OP of U2:

Pr(U2) = ( ∑N
i=1 Pr (C2(k) < r2)

∣∣∣∣∣∣ Pr (C3(k) 〈 r3 || Pr (C4(k) < r4))/N (19)

For U3, the OP condition is:

Pr (C3(k) 〈 r3|| Pr (C4(k) < r4)) < r

The OP of U3:

Pr(U3) = ( ∑N
i=1 Pr (C3(k) 〈 r3 || Pr (C4(k) < r4))/N (20)

For U4, the OP condition is:

Pr (C4(k) < r4)) < r4

The OP of U4:

Pr(U4) = ( ∑N
i=1 Pr (C4(k) < r4))/N (21)

where N is the number of transferred samples.

4. Simulation Parameters

The system model and simulator parameters for the DL and UL NOMA power do-
mains in 5G networks with and without MIMO were implemented using the MATLAB
software program. Tables 1 and 2 show the simulation parameters that are properly
considered in the simulation model.

Table 1. Simulator parameters for the DL scenario.

No. Parameters Values

1. Number of users 4 users
2. Transmit power 0 to 40 dBm

3. Bandwidth
BW 1 80 MHz
BW 2 200 MHz

4. Distances

User 1 800 m
User 2 600 m
User 3 300 m
User 4 100 m

5. Power coefficients

User 1 0.75
User 2 0.188
User 3 0.047
User 4 0.011

6. Path loss exponent 4
7. MIMO 64 × 64
8. Modulation QPSK
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Table 2. Simulator parameters for the UL scenario.

No. Parameters Values

1. Number of users 4 users
2. Transmit power −30 to 30 dBm

3. Bandwidth
BW1 80 MHz
BW2 200 MHz

4. Distances

User1 800 m
User 2 600 m
User 3 300 m
User 4 100 m

6. Path loss exponent 4
7. MIMO 64 × 64

5. Results and Discussions
5.1. The Outcomes of the DL Scenario

The DL NOMA system results showed that using 64 × 64 MIMO improved the SE and
BER performance. The near–far user’s problem is also resolved, where the performance of
all users becomes close to each other’s for different power location coefficients, transmitted
power, and distance parameters when compared without MIMO DL NOMA performance.
Figure 3 depicts the DL NOMA BER performance versus transmitted power at 80 MHz BW.
The findings indicate that the BER performance decreases as transmitted power increases.
As an outcome, the U4 BER performance is best for all users, because U4 is the nearest
one. At a transmitter power of 25 dBm, the BER rate for U1, U2, U3, and U4 is found to
be 20%, 28%, 22%, and 8%, respectively. Figure 4 shows the DL NOMA BER performance
against transmitted power at 200 MHz BW; the findings show that the BER performance
decreases as transmitted power increases. As a result, the U4 BER performance is best when
compared with all users because U4 is the nearest one. At a transmit power of 25 dBm, the
BER rates for U1, U2, U3, and U4 are found to be 27%, 36%, 31%, and 13%, respectively.
The 64 × 64 MIMO DL NOMA enhances the performance of BER for the best user U4 from
10−1.7 to 10−5.2 at 80 MHz then, from 10−1.5 to 10−5 at 200 MHz BW at a transmitter power
of 40 dBm in Figure 4. In contrast, the SE performance for the best user U4 is improved by
8 × 10−3 bps/Hz for 80 MHz BW and by 10−2 bps/Hz for 200 MHz BW at a transmitter
power of 40 dBm. The UL NOMA systems results obtained using 64 × 64 MIMO enhanced
the average capacity rate performance by 12 bps/Hz, reduced the OP by 15 × 10−3 for
80 MHz BW at SNR of 1 dB.
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Figure 4. BER against transmitting power for four users with varying distances and power coefficients,
for DL NOMA at BW (200 MHz).

At 80 MHz BW and 64 × 64 MIMO, Figure 5 shows the DL NOMA BER performance
versus transmitted power. When transmitted power is 20 dBm, the BER rate for U1, U2, U3,
and U4 is found to be 19 × 10−4, 18 × 10−4, 8 × 10−4, and 5 × 10−4, respectively. Figure 6
shows the DL NOMA BER performance against transmitted power at 200 MHz BW and
64 × 64 MIMO, at a transmitted power of 25 dBm, the BER rates for U1, U2, U3, and U4
are found to be 46 × 10−4, 43 × 10−4, 19 × 10−4, and 7 × 10−4, respectively. The MIMO
system reduces the BER performance.
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Figure 6. BER against transmitting power for four users with varying distances and power coefficients
for DL NOMA at BW 200 MHz with 64 × 64 MIMO for DL NOMA.

Figure 7 shows the performance of the DL NOMA SE vs. transmitted power at
80 MHz BW, with the outcomes demonstrating that SE performance improves as transmit-
ted power increases. As an outcome, the U4 BER performance is best for all users, because
U4 is the nearest one. There is a clear separation of SE performance for all users from one
another until the transmitted power reaches 5 dBm. Figure 8 depicts the DL NOMA SE
performance versus transmitted power at 200 MHz BW, with the results indicating that
increasing transmitted power improves SE performance. The U4 SE performance is best
when compared with all users because U4 is the nearest one. The outcomes are superior to
those of the best U2 users in [38], with an improvement rate of 10−2.3 in the BER.
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Figure 8. SE against transmitting power for four users with varying distances, with power coefficients
and BW 200 MHz for DL NOMA.

The performance of the DL NOMA SE in terms of transmitted power at 80 MHz BW
and 64 × 64 MIMO is shown in Figure 9. At the transmitting power of 5 dBm, the SE for all
users is relatively close. Figure 10 depicts the DL NOMA SE performance versus transmit
power at 200 MHz BW and 64 × 64 MIMO. At a transmitter power of 10 dBm, the SE for
all users is relatively close. The MIMO improved SE performance.
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5.2. The Outcomes of the UL Scenario

The UL NOMA average capacity rate vs. SNR at 80 MHz BW is depicted in Figure 11.
The result shows that the average capacity rate for U4 is best for all users because U4 is the
closest. At SNR of 1 dB, the average capacity rate for U1, U2, U3, and U4 is found to be
1.6873, 2.8718, 6.4960, and 12.7814, respectively. Figure 12 shows the UL average capacity
rate against SNR at 200 MHz BW. At SNR of 1 dB, the average capacity rate for U1, U2,
U3, and U4 is found to be 2.6015, 3.9841, 7.7910, and 14.1068, respectively. The results
reveal that when an SNR increases, the average capacity rate performance rises as well. The
64 × 64 MIMO improved the performance of the capacity average rate by 12 bps/Hz and
reduced the OP by 15 × 10−3 for 80 MHz BW at SNR of 1 dB; it enhanced the performance
capacity average rate by 12 bps/Hz, and decreased the OP by 12 × 10−3 for 200 MHz BW
at 0.17 dB SNR for the user U4. In general, an increase in BW increases the capacity average
rate and BER while decreasing OP and SE. MIMO significantly enhances the throughput of
all users.
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Figure 12. Average capacity rate against SNR for four users with varying distances and BW 200 MHz
for UL NOMA.

The average capacity rate performance for UL NOMA versus SNR at 80 MHz BW
and 64 × 64 MIMO is obtained in Figure 13. The outcomes were achieved for four users
12.7881, 14.4423, 18.4489, and 24.7815, respectively. Figure 14 shows the average capacity
rate performance versus SNR for UL NOMA at 200 MHz BW and 64 × 64 MIMO. The
results show that the average capacity rate performance improves as the SNR increases.
The average capacity rate performance for U4 is the best according to the data obtained for
four users 14.1110, 15.7659, 19.7693, and 26.1040 at the SNR of 1 dB. Users’ performance
has improved considerably.
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Figure 14. Average capacity rate against SNR for four users with varying distances, with
64 × 64 MIMO and BW 200 MHz for UL NOMA.

The BW and average capacity rate have a positive relationship, with an increase in
BW leading to an increase in average capacity rate. The average capacity rate increases
dramatically when the system is enhanced using the MIMO scheme.

The UL NOMA of OP vs. SNR correlation is shown in Figure 15 at 80 MHz BW. When
SNR is 0.17 dB, the results for U1, U2, U3, and U4 are 99.9 × 10−2, 98.9 × 10−2, 44.3 × 10−2,
and 15 × 10−3, respectively. Figure 16 depicts the UL NOMA of OP versus the SNR at
200 MHz BW. At an SNR of 0.17 dB, the results for U1, U2, U3, and U4 are 0.9989, 0.9715,
0.3709, and 0.0120, respectively. The findings show that as the SNR improves, the OP
performance decreases. Results achieved have an improvement in average capacity rate
and are superior to those of the best U2 users in [35].
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Figure 16. OP against SNR for four users with varying distances and BW 200 MHz for UL NOMA.

At 80 MHz BW with 64 × 64 MIMO, Figure 17 depicts the UL NOMA of OP vs. SNR.
At an SNR of 0.17 dB, the outcomes for U1, U2, U3, and U4 are 0.0053, 0.0027, 0.0003, and
0.0000. At 200 MHz BW and 64 × 64 MIMO, Figure 18 depicts the UL NOMA of OP vs.
the SNR. At an SNR of 0.17 dB, the results for U1, U2, U3, and U4 are 21 × 10−4, 10−4,
10−4, and 10−5. The data show that when the SNR increases, the performance of the OP
decreases [39–41].
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Figure 18. OP against SNR for four users with varying distances, with 64 × 64 MIMO and BW
200 MHz for UL NOMA.

The BW and OP have an inverse connection, with an increase in BW resulting in a
drop in OP. The OP drops dramatically when the system is optimized utilizing the MIMO
technique. With an improvement rate of 10−1.9 in OP, the results are superior to those of
the top U2 users in [38].

6. Conclusions and Future Work

This paper demonstrated the performance of DL and UL NOMA PD in a 5G network
with and without 64 × 64 MIMO technologies. The BER and SE performance of DL
NOMA was investigated and analyzed for various distances, power location coefficients,
transmitted power, and BW, whereas the average capacity rate and OP performance of UL
NOMA were examined for various distances, SNR, and BW. The DL NOMA system results
showed that using 64× 64 MIMO enhanced the performance of BER, and SE, and solved the
near–far user’s problem, where the performance of all users becomes close to each other’s
for different transmitted power, distance, and power location coefficients parameters when
compared without MIMO DL NOMA performance. The results demonstrated that the
64 × 64 MIMO DL NOMA enhances the BER performance for the best user U4 from 10−1.7

to 10−5.2 at 80 MHz BW, and from 10−1.5 to 10−5 at 200 MHz BW at a transmitter power of
40 dBm. In contrast, the SE performance for the best user U4 is improved by 0.8% bps/Hz
for 80 MHz BW and by 1.01% bps/Hz for 200 MHz BW at a transmitter power of 40
dBm. The UL NOMA systems results obtained using 64 × 64 MIMO enhanced the average
capacity rate performance by 12 bps/Hz, reduced the OP by 0.0150 for 80 MHz BW at SNR
of 1 dB, improved the average capacity rate performance by 12 bps/Hz, and decreased
the OP by 0.0120 for 200 MHz BW at SNR of 0.17 dB for the best user U4. In general, an
increase in BW increases BER and average capacity rate while decreasing SE and OP. MIMO
significantly improves the performance of all users. In the future, it will be looked into how
MIMO cooperative NOMA and cognitive radio work together.
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