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Abstract: Groundwater pumping systems using photovoltaic (PV) energy are increasingly being
implemented around the world and, to a greater extent, in rural and electrically isolated areas. Over
time, the cost of these systems has decreased, providing greater accessibility to freshwater in areas
far from urban centers and power grids. This paper proposes a novel sustainability analysis of the
groundwater pumping systems in Tenerife Island as an example of a medium-size isolated system,
analyzing the current status and the business-as-usual projection to 2030, considering the water
reservoirs available and the final use of water. The 2030 projection focused on the PV deployment,
evaluation of the levelized cost of electricity (LCOE), and the availability of the groundwater resource.
HOMER software was used to analyze the LCOE, and ArcGIS software was used for the visual
modeling of water resources. As a result, the average LCOE for a purely PV installation supplying
electricity to a pumping system in Tenerife is 0.2430 €/kWh, but the location and characteristic of
each pumping system directly affect the performance and costs, mostly due to the solar availability.

Keywords: groundwater pumping; photovoltaic applications; LCOE; 2030 scenario; Tenerife

1. Introduction

The world population is growing quickly, is currently estimated to be over 7.7 billion
inhabitants, and is expected to increase by 2.0 billion over the next 30 years [1]. Therefore,
demand for the three natural pillars of human sustainability, namely, cropland, freshwater,
and fossil fuels, has tripled in the last 50 years and will continue to rise in the near future.
Consequently, further exploitation of fossil fuels and freshwater resources to meet the
basic needs of communities will mean that it will not be enough to adequately supply the
population. Currently, approximately 66% of the population does not have adequate access
to these resources [2], increasing the food, energy, and water security deficit worldwide [3,4],
and representing a high risk in terms of human sustainability.

Overall, agricultural and industrial activities, together with the energy production
sector, are responsible for almost 80% of the consumption of freshwater supplies world-
wide [5,6]. For this reason, the current world panorama presents a shortage of freshwater
and a worsening forecast for the coming years. Indeed, according to the World Resource
Institute (WRI), there are currently 17 countries facing high levels of water stress, and by
2040 this number will increase to 33 countries [7,8]. Therefore, water security as a pillar
of the global agricultural, energy, and industrial sectors should face the actual use of this
valuable resource and optimize the final use of water in these sectors.
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Fresh groundwater is one of the main sources of freshwater, but nowadays it is strongly
affected by climate change, mainly due to altered precipitation patterns, acidification of
waters due to pollution, and degradation of freshwater ecosystems. In addition, the high
impact of aquifer exploitation is having serious repercussions worldwide. Indeed, with the
modernization of societies and the increase in the world’s population, more freshwater is
required, so the rate of aquifer exploitation in many locations is higher than the natural
recharge rate of aquifers. This is placing 20% of the 39 million groundwater wells in
40 countries at risk of depletion [9], affecting future water availability, causing ecological
degradation of the soil, and affecting aquifers due to the inflow of seawater [10–12].

The adequate management of freshwater resources is vital for the commitment to
the Sustainable Development Goals (SDGs), in particular Objective 6. However, poor
management of these resources represents a strong threat at a global level. For example,
in Spain, during 2019, around 6,000 Hm3 of groundwater was exploited [13], where the
groundwater pumping in illegal wells was not accounted for. In Spain, during 2018
according to [14], the legal extraction of groundwater was 6290 Hm3/year. However, illegal
extraction was approximately 7059 Hm3/year, 11% more than the legal extraction. These
illegal wells place the population and the water supply of the country at risk.

Despite the global overview, we focus on the framework of insular areas, which
are considered territories that are vulnerable to climatic effects. The consequences of
these climatic changes are increase of temperature, rainfall variation, sea level rise, and
desertification, among others. They are also the most critical in terms of water resources
due to the intense exploitation and, in turn, the high energy cost of groundwater pumping
and purification [15].

In these areas, groundwater exploitation by pumping becomes one of the main strate-
gies for obtaining freshwater resources to the islanders. Examples include the Lakshadweep
archipelago or the Canary Islands [10,16,17]. However, the impact of pumped freshwa-
ter extraction represents greater energy expenditure than extraction from surface water
sources or water distributed by gravity. On islands, diesel generators or the connection to
the electrical grid to pump fresh groundwater, which have substantial polluting impacts,
economic costs, and operational difficulties, are the most used systems.

Many research studies propose using photovoltaic systems, photovoltaic–wind hybrid
systems, and diesel generators for freshwater pumping [18–23]. Most of the research on
sustainable pumping applications is focused on the agricultural sector, as it represents
the largest water consumer in insular areas [24,25]. Worldwide, approximately 70% of
groundwater extraction is used for irrigation, an amount that can vary depending on the
characteristics of each territory, the climate, energy resources, and the economic relevance of
the sector in the territory. Therefore, renewable energy alternatives, such as the photovoltaic
water pumping system (PVWPS), has become an energy opportunity for water pumping in
agriculture [26–30].

Currently, in several territories, irrigated crops are mainly operated with diesel-
powered equipment. In fact, the diesel approach is nowadays one of the most chosen
solutions by the agricultural sector [27], operating in very shallow wells and small agri-
cultural areas [30], as the investment costs are halved compared to those of a pumping
photovoltaic (PV) power plant [27]. However, although the PVWPS has a high initial in-
vestment cost, it also has many features that make it an alternative energy source for water
pumping. Among these features, the PVWPS solution is modular, produces no carbon
emissions when operating, generates no noise, and has a low operating and maintenance
cost, which allows for higher well yields, creating a clean and very competitive generation
system [20,31,32].

On the other hand, these diesel-powered systems for pumping applications are based
on imported diesel fuels, which generate a high levelized cost of electricity (LCOE).

However, before a decision on the implementation of PV pumping is performed, it
is important to know the evolution of the availability of water in the aquifer, the energy
consumption required, and the evaluation of the feasibility of a PV or hybrid project.
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Without an effective study that relates energy consumed, expected water production, and
associated costs, the operation of a well can become unsustainable over time [33].

To analyze the performance of the solar pumping systems, Tenerife was chosen as a
representative mid-size island with a larger number of wells, where the pumps are directly
connected to the electrical grid.

This paper analyzes groundwater obtained by pumping in Tenerife and proposes
sustainable exploitation in relation to energy required for the activity (energy–water nexus).
The study proposes a 100% renewable scenario through the evaluation of the LCOE ac-
cording to the characteristics of the aquifer and the energy resources available. Section 1
discusses the importance of groundwater resources at global and local levels on the island.
Section 2 analyzes the current situation of the freshwater resource in Tenerife, including
the initial characteristics of the wells, their location, and the demand for fresh water in
recent years. The global context of the energy resource is also presented. Section 3 presents
the methodology applied in this research. Finally, Section 4 shows the results and a brief
discussion of the assumptions for a future 100% renewable scenario.

2. Groundwater and Energy Review in Tenerife

The Canary Archipelago is composed of eight islands and is located in the Atlantic
Ocean, in southern Spain, off the Saharan coast of Africa (28◦28′11′′ N–16◦15′18′′ W). Tener-
ife is the largest of the Canary Islands in size and population, with an area of 2034 km2 and
a population of 917,841 inhabitants (2020), divided into 31 municipalities [34] (Figure 1).
Tenerife has a tropical climate with over 11 microclimates, and it is the most socioeconomi-
cally important of the entire archipelago due to its tourism and agricultural sectors, with
an average of 8,324,697 visitors per year [35].
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2.1. Water Resource Information

In terms of water resources, Tenerife is an island without rivers, mainly supplied by
groundwater and desalinated water. It is considered the second Canary Island with the
highest rainfall rate, with an average annual precipitation of about 400 mm per m2, and
irregular in time [36]. In 2018, the island produced 204.58 Hm3 of fresh water from various
sources: 42.5% from galleries, 23.4% from wells, 1.5% from springs, 0.3% from imported
water, 26.9% from desalination, and 5.4% from reclaimed water (2019) [37].

As groundwater resources predominate on the island, we analyzed their behavior
during the last decade. Figure 2 shows how groundwater extraction in recent years
(2010–2019) has caused a water depletion in aquifers, represented by a 7.0% decrease
in natural water extracted by wells and a 15.0% decrease in galleries. Although for the year
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2019 the values increased 6.6% in comparison with 2018, the reduction of extracted water
in recent years is worrisome.
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Figure 2. Water extraction from wells and galleries between 2010 and 2019. Data obtained from [37].

In the Table 1, the yearly groundwater supply in 2019, registered by municipality and
separated by water extraction infrastructure of the island is shown.

Table 1. Number of wells and galleries by municipality (2019). Data obtained from [37].

Municipality
Galleries Wells

Municipality
Galleries Wells

Number Hm3 Number Hm3 Number Hm3 Number Hm3

Adeje 32 2.00 26 1.57 Los Realejos 168 9.81 6 0.87
Arafo 41 3.07 10 1.84 El Rosario 36 1.03 8 1.87
Arico 73 4.66 23 2.65 El Tanque 12 2.69 0 0.00
Arona 9 2.04 32 0.51 Los Silos 29 1.51 9 0.10

Buenavista del
Norte 43 1.18 7 0.00 La Victoria de

Acentejo 18 1.60 5 0.29

Candelaria 39 2.42 10 1.56 Puerto de la Cruz 1 0.87 13 1.90

Fasnia 20 2.98 6 0.74 San Juan de la
Rambla 28 1.17 1 0.00

Garachico 25 2.37 9 0.44 San Miguel 1 0.06 14 1.87
Granada de

Abona 37 0.61 36 4.05 Santa Cruz de
Tenerife 52 1.33 30 0.99

Guía de Isora 50 9.81 27 6.47 Santa Úrsula 36 2.38 7 0.84

Güímar 40 3.69 23 3.55 Santiago del
Teide 30 2.88 9 0.81

Icod de los Vinos 41 5.08 12 0.92 Sauzal 19 1.05 2 0.92
La Guancha 23 11.29 4 0.22 Tacoronte 24 0.64 3 0.63
La Laguna 40 0.90 43 9.87 Tegueste 19 0.08 7 1.21

La Matanza de
Acentejo 12 1.48 3 0.49 Vilaflor 37 0.66 4 0.00

La Orotava 86 11.22 12 3.66

2.1.1. Groundwater Wells

Wells are vertical structures that allow the intense exploitation of fresh groundwater
and that are vital sources of freshwater for the islanders. Groundwater can be collected in
diverse types of wells: (i) ordinary: vertical boreholes of less than 25 m depth; (ii) conven-
tional: characterized by having a diameter of about 3 m and reaching an average depth
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of 100 m; (iii) boreholes: mechanical boreholes up to 700 mm in diameter with an average
depth of 380 m for those currently in exploitation [37].

Currently, the island has 401 wells from which 145 are producing freshwater (in
exploitation), 63.0% of them are conventional wells, 34.0% are exploratory wells, and the
rest are boreholes. Figure 3 shows the number of existing wells in Tenerife, classified
according to the flow rate (L/s) produced by each well (0, ≤2, 2 to 5, 5 to 10, 10 to 25, 25 to
50, and 50 to 100 L/s) in the period 2005–2019. Similarly, the number of wells providing
more freshwater resources (10–25 L/s) showed a downward trend in general, as indicated
in the red box. There is only one well with a flow rate above 50 L/s, maintained quite
constantly since 2010. After the analysis of the actual trend, it is expected that the number
of active wells will decrease.
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Figure 4 shows the total freshwater flow contributed by the wells on the y-axis, classi-
fied according to the flow rate (L/s) produced by each well (0, ≤2, 2 to 5, 5 to 10, 10 to 25, 25
to 50, and 50 to 100 L/s) in the last 15-year period, 2005–2019, on the x-axis. The largest wa-
ter contribution to the island comes from the wells with 10–25 L/s freshwater flow, which
are identified in a red box and will be analyzed consecutively. In total, 60 wells registered in
2005 (Figure 3) provided approximately 975 L/s (Figure 4); likewise, in 2015—represented
by the yellow color—only 45 wells provided 732 L/s to the island, and in 2018—represented
by the green color—the number of wells increased to 51 with a total supply of 794 L/s.
With a general overview, the 401 wells registered in the year 2005 supplied 1702 L/s of
freshwater, reducing this flow in the year 2018 to 1568 L/s, and increasing it in the year
2019 to 1614 L/s. This shows a reduction of 5.17% of freshwater from wells in the last
14 years; that is, an annual water reduction of approximately 0.189 Hm3.
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2.1.2. Location of the Wells

The coastal areas of the island have most of the socioeconomic activities, which
explains why most of the groundwater extraction takes place in these areas. Figure 5 shows
the location and flow rate of each well, highlighting the most productive ones. Rodeo de la
Paja is the well with the highest flow in the island, with an annual extraction of 2.1 Hm3

per year [38]. This well is in the municipality of San Cristóbal de La Laguna and has a flow
rate of 65.37 L/s [39]. It is currently being retrofitted to replace the borehole. The Ramonal
well, located in the municipality of San Miguel and the Cardonal or El Dorado well in the
municipality of Guía de Isora provide flows between 40 and 45 L/s, respectively. The Rio
Ebro and Jagua wells, located on the northeastern side of the municipalities of La Laguna
and Güímar, respectively, have a flow rate of 25 and 35 L/s, and a daily contribution
between 2500 and 3100 m3. Wells with hourly flows greater than 15 L/s and less than
34 L/s are in Himeche, Tonazo, La Florida, and Chiguengue (Figure 5).

2.2. Groundwater Demand

Water demand in Tenerife is divided according to the consumption sectors: residential,
touristic, industrial, and agricultural. Currently, the agricultural sector is the largest
consumer of freshwater on the island [40], with an annual consumption of 87.76 Hm3/year,
equivalent to 42.9% of the total water demand [37].

The cultivated area of Tenerife corresponds to 16,517 hectares (ha). The cultivation
land is 72.0% irrigation (69.0% of the water is provided by galleries and 31.0% by wells) [41]
and 28.0% rain-fed agriculture. From the irrigated agricultural area (11,683 ha), bananas
(4849 ha) represent 42.0% of the land, vineyards 17.0%, potatoes and tomatoes 15.0%, and
flowers and other crops 12.0%. In terms of water requirements, vines and potatoes stand
out for the productive use of water, offering more food while using less water per unit of
land. The difference with banana plants is that these are among the crops that use larger
amounts of water in the world, with an approximate annual consumption between 12,375
and 18,000 m3/ha [42–44]. In Tenerife, the average annual consumption for banana plants
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is 12,076 m3/ha [37], with substantial variations depending on the microclimatic conditions
and type of exploitation (open air/greenhouse).
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To understand the large consumption of freshwater in the agriculture sector, we
detailed the occupation of the island through the spatial distribution presented in Figure 6.
The agricultural area occupies approximately 19.3% of the island’s surface, 8.1% is currently
cultivated, and about 10.4% is uncultivated [45]. We also show the geographic location
of the crops, specified by typology. The largest banana plantations on the island are
geographically located in the southern area, usually at altitudes below 300 m above sea
level. This allows them to have easy access to the island’s freshwater sources (galleries and
wells). This particular crop consumes approximately 60.0% of agricultural water, potatoes
use about 15.4%, and tomatoes 6.5%.

2.3. Energy Supply

In a summarized context at the island level, Tenerife’s primary energy supply in 2019
(1985 ktoe) was 98.1% dependent on fossil fuels [34]; 50.0% of the diesel and 71.8% of the
heavy oil supplied to the island was consumed at the Granadilla thermal power plant,
which supplied 82.7% of Tenerife’s electricity. In 2019, the electricity generation capacity
on the island was 1426 MW, with a total electricity demand of 3514 GWh. Only 17.8% of
electricity was produced by renewable resources from wind and PV power plants (195 and
116 MW, respectively) [34].

The electricity demand of the island’s wells was 57.27 GWh for the year 2018, equiv-
alent to a 1.7% of the energy demand in Tenerife, related with extraction, elevation, and
desalination of water processes.

PV has become the best option to reduce fossil fuel consumption in Tenerife. Solar
radiation provides enormous photovoltaic potential, especially in rural areas, as it is shown
in Figure 7. According to [35], the island currently has 116.07 MWp of installed PV capacity,
and its global annual radiation is between 3.5 and 5.5 kWh/m2. Currently, most installations
are in the south-eastern territory (Figure 7).
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Nowadays, PV technology is being implemented all over the world and to a significant
extent in many islands due to their high solar potential. Currently, most PV installations
in Tenerife are directly supplying electricity to the grid. However, at present there are no
PV installations supplying electricity directly for pumping. The wells are in areas with an
average PV production of 3.8 kWh/m2/day.
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3. Methodology and Preliminary Analysis

In this paper, the sizing of the PV pumping system for the wells on the island was
methodologically performed based on the following phases (Figure 8):

i. Data: obtaining data and characteristics of the Tenerife Island in terms of water and
energy (Section 2).

ii. Methodology review: reviewing PV pump design methodologies based on different
studies and the projection of future water resources.

iii. Current scenario in Tenerife: implementing the methodology that allows modeling
of a hypothetical scenario in which all wells are powered 100% by PV, and a study
of the surface area required for the PV installations.

iv. Economic study: evaluating the economic performance of a PV pumping system.
v. Tenerife 2030 scenario: an approximation of the future water scenario reaching the

Sustainable Development Goals for 2030.
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3.1. PV Capacity

For the definition of the capacity required, different factors must be considered, such
as the average temperature of the area, the daily hours of solar irradiance, the relationship
between the output power of the PV system in operating conditions, and its output at
the maximum power point, as well as the daily efficiency of the subsystem [30,47]. The
parameters considered are listed below.

3.1.1. Pumping Energy (Eh)
Hydraulic energy varies depending on the height (H) and the volume (V). The expres-

sion for hydraulic energy can be written as the following subsystem [34]:

Eh =
ρ·g·H·V

3.6× 106 , (1)

where the hydraulic energy (Eh) is expressed in kWh/day, the volume (V) of daily water
in m3/day, the height (H) of the total pumping in m, the acceleration due to gravity (g) in
m/s2, and the density (ρ) of water in kg/m3.

3.1.2. PV Capacity (P)

In order to determine the PV capacity (P), the average temperature of the area under
study and the daily sun hours must be considered [47].

In the first step, we verify the relationship between the effective area of the PV system
(APV) and its efficiency (ηr):

P = 1000·APV ·ηr , (2)
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where (APV) is the effective area of the PV array expressed in m2; the solar radiation at a
reference temperature is equal to

(
1000 W

m2

)
; likewise, the efficiency of the PV array at the

reference temperature (25 ◦C) is expressed as (ηr). This will determine the power of the
photovoltaic array (P) expressed in Wp.

According to [30,47], the required area of the PV solar pump (APV) array depends
on the properties of the well, such as the height of the well (h); the volume (V), defined
as the daily amount of water required; water density (ρ); gravity (g); and the daily solar
radiation during the most unfavorable times of the year, in this case December or January
(GT), on the surface of the PV array expressed in kWh/m2; (ηPV) being the efficiency of the
PV array at operating conditions and (ηs) the subsystem efficiency:

APV =
ρ·g·h·V

GT ·ηPV ·ηs
. (3)

Substituting Equation (3) in Equation (2), we obtain:

P =
Eh

Adi·F·E , (4)

where (F) is the array mismatch factor. The accepted value of the design of a PV system is
0.85–0.90; (E) is the daily efficiency of the subsystem with values between 0.2 and 0.6, and
(Adi) is the average daily solar irradiation.

A safety factor for AC/DC and thermal losses during production was considered [34]
(Equation (5)):

P f = 1.2·P , (5)

where 1.2 is a safety factor that compensates for energy losses due to high heat, dust,
aging, etc.

The working parameters used for the case of Tenerife were selected according to the
location of each well, where we identified: pumping height (m) according to the type of
well, water flow (m3/day), solar irradiation (kWh/m2), and the price of electricity from the
network (€/kWh).

3.2. LCOE

The economic analysis for the PV pumping system in Tenerife is based on the standard
LCOE method, which allows investment options to be compared over time, where the cost
is represented in €/kWp. Currently, the PV LCOE is below 10 c€/kWh in several countries,
and by 2030 it may be below 4 c€/kWh [48].

The LCOE can be calculated as shown in Equation (6):

LCOE =
∑n

t=1
it+Mt+Ft
(1+i)r

∑n
t=1

Et
(1+i)r

, (6)

where it is the investment, Mt is the maintenance, and Ft is the fuel in year t and in a period
of n years. Et is the estimated annual energy produced by the PV system. The costs and
annually energy obtained are affected by the discount rate r [49].

To obtain the feasibility of the solar water pumping system proposed for each well,
we used HOMER, considering the values in the schematic diagram presented in Figure 9.

i. The PV plant only has an initial investment cost in the first year, t = 1. The cost is
proportional to the peak power and was set to 1000 €/kWp.

ii. Battery initial investment (Surette 4KS25P/6CS25P): 50 €/unit, where the battery
is used to store energy when there is no solar resource available. Battery lifetime:
8 years.

iii. Hybrid inverter initial investment: 150 €/kW.
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iv. The lifetime of the whole system was set in 25 years for the solar panels, 15 years for
the inverter, 8 years for the battery, and 20 years for the pump and hydraulic system.

v. The annual energy production is according to the daily flow rate.
vi. Discount rate.
vii. Annual maintenance costs O & Mt(PV) were considered to be 4.5% of the initial cost,

an annual investment.
viii. Annual maintenance costs O & Mt(Battery) were considered as 5 €/year.
ix. Inverter efficiency of 97% for all sizes was considered.
x. The primary load was considered to be between 9:00 and 15:00, the usual irrigation

time.
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Since Tenerife Island has different values of solar radiation depending on the geo-
graphical area, and wells have different technical characteristics, we established the LCOE
costs by zones (box). Indeed, we defined a grid at the island level with quadrant areas of
16 km2. This grid will give a rough spatial cost resolution for specific geographical locations
and finally at the more general island level.

To determine the LCOE cost per box, first we identified the number of wells per box,
and from those, we identified the well with the highest (Eh1) and the lowest (Eh2) pumping
energy demand (Equation (7)). Then, we obtained the LCOE1 and LCOE2 for the respective
wells using HOMER. Based on the information obtained, we applied the following equation
to obtain an average cost per area/frame selected:

LCOE(A1) =
LCOE1 Eh1 + LCOE2 Eh2

Eh1 + Eh2
. (7)

3.3. Water Resource Projection to 2030

The future groundwater production was calculated as follows: as a first step, based on
the water resources provided in recent years, the groundwater trend was estimated from a
linear regression. Once Equation (8) was obtained, it was possible to determine the linear
flow rate for a given year in the future as:

Wabst,X = −3.3983·X + 168.56, (8)
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where Wabst,X represents the groundwater pumped in Tenerife in Hm3.
Once the pumped groundwater was projected, we identified the ratio of water ob-

tained from galleries and wells in recent years, shown in Section 2.2. Then, the water
obtained from the wells for the future year (Wabst(w)) was obtained by using Equation (9),
where 0.30 is the historical ratio of water extracted from wells compared with the total
groundwater abstracted:

Wabst(w) = Wabst·0.30. (9)

Secondly, to know the water that will be supplied from each well in the future, it
is important to know that due to topographic conditions, the flow, rainfall, climatology,
among other variables, vary annually. Therefore, the first step was to obtain the flows
contributed by each well in recent years (information obtained from [39]). After that, the
proportion of water generated by each well was calculated for the different years in which
the information was available.

With the above information, the water that will be generated by each well in the future
was calculated using the following equation:

Wi
aw = Σ ri

ww ·Wabst(w), (10)

where ri
ww is the average proportion of water generated by each well during the years of

study from the wells in Tenerife Wabst(w). This gave the water that will be generated by
each well in future year Wi

aw, in Hm3.

4. Results and Discussion
4.1. PV Pumping for the Actual Scenario

Groundwater PV pumping consist of a PV array supported on a mechanical structure
and an inverter, a submersible water pump, and batteries. These systems have a high
front-end cost compared to diesel pumps, but the operation and maintenance costs are
lower in the long term [50]. The productivity of these systems is affected by several factors,
such as ambient temperature, maintenance of the panels in terms of cleanliness, and relative
humidity of the air [51].

The capacity of the PV array of each well was determined from: (a) the productivity
of each well (m3/day); (b) its depth (m); and (c) the solar radiation in the specific location
(kWh/m2/day). Based on the initial characteristics and according to the methodology
proposed in Section 3.1.1, we estimated the hydraulic energy required to pump the water
from each well to evaluate the maximum power of the PV system (kWp).

Based on the above, Figure 10 shows the hydraulic energy for each well on the island,
and Figure 11 shows the maximum capacity of the PV array (kWp). As specific cases,
the Rodeo de la Paja and El Ramonal wells are the ones that require the largest hydraulic
energy on the island (5848 and 3822 kWh/day). According to [46], San Diego, San Juan 2,
and Viña Grande wells have the lowest radiation during the month of January/December,
which increases the maximum power of the solar panels.

4.2. Required Surface Area

The PV panels occupy an area that depends on the surface power density of the
available PV modules. Therefore, if 1 kWp corresponds to an area between 8 and 10 m2, the
total PVWPS on the island would require a total area of 330,705 m2. To compare the surface
requirements, to supply the energy for the residential sector on the island, 6.279 km2 of
roof are required [52]. Figure 12 shows the approximate required surface area for each well.
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4.3. LCOE Analysis

For the economic analysis, we established a grid of 16 km2 squares (boxes) on the
island in order to determine an average LCOE value for each box, as specified in Section 3.2.
This grid has a matrix of 19 × 19 squares (Figure 13). Each grid containing one or more
wells was studied, resulting in a total of fifty-seven squares.
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When running the HOMER model with the parameters described in the methodology,
the average LCOE for a PV pumping system of the island was calculated at 0.2430 €/kWh.
In comparison with the specified LCOE published in [51], the results obtained were higher,
mainly due to the land price, the use of batteries as a storage system, and operation and
maintenance costs. Figure 14 shows the number of wells per quadrant, and the LCOE,
reporting 50.9% of the areas under study below the average value of the LCOE. On the
contrary, as the well of Viña Grande registered very low solar radiation values in the winter
season, it had the highest LCOE; 50.9% of the LCOE values ranged between 0.217 and
0.265 €/kWh.
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4.4. 2030 Trend Scenario

The simulation model showed the results for a system composed of the photovoltaic
array, batteries, and inverter for each quadrant under analysis. The variation in LCOE
depended on the groundwater pump demands and the solar radiation of the area under
study, varying between 0.179 and 0.290 €/kWh. It is important to note the price of land.
According to [53], 1 hectare of land varies between €36,000 and €40,000. If the land is rented,
the cost is between 1800 and 2300 €/ha per year. This cost was included in the model.

This approach was based on the socioeconomic context in Tenerife in 2019, but consid-
ering the evolution of the insular aquifers in recent years, a reduction of fresh groundwater
is expected in the island. Then, the PV capacity defined could become over-dimensioned
for 2030 and, consequently, not completely amortized.

Through deep analysis, according to the evolution of groundwater pumped from wells
between 2000 and 2018, it is possible to identify how the behavior of each well would be in
2030. Although the variation of the flow depends on the pumping activity, the recharge
time of the aquifers, or the type of service the water extraction gives, among others, it is
possible to make a future estimate of the resource. Based on the evolution of the resources
at the island level and using the methodology previously shown, it is estimated that in
2030 the freshwater resource provided by wells and galleries will be about 97.2 Hm3.

For future calculations, it is essential to know the variation of solar radiation, which is
the main factor affecting changes in PV generation, as well as other atmospheric variables
such as air temperature and wind speed. However, in Tenerife, the projected annual
average changes in daily irradiation for the two future decades with respect to the current
one are small and not statistically significant. However, if there were any increase such
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as the general increase expected in Spain at the peninsular level, it would be +2.3% [54],
which would not affect the solar radiation in the Canary Islands.

With the reduction of freshwater in the wells by 42.7%, the pumping capacity required
to extract water from the wells would be reduced by 41.9% by the year 2030. In fact, to
accomplish the water demand, new extraction methods must be considered, as brackish,
reuse [55], or desalination processes [56].

Therefore, to dampen the design, one proposal could be to inject the surplus energy
produced annually by each solar pumping installation into the grid, according to the
operation conditions and requirements [57], and to increase the renewable energy share, as
has been proposed in similar islands [58].

The supply of electricity with PV or all groundwater pumping systems in Tenerife
is an ambitious project but can help to reduce the CO2 emissions and should strengthen
the water–energy nexus in municipalities, provide a strategy to promote the fulfillment of
some of the SDG 2030, and contribute to manage a more sustainable water–energy system.

Taking into account the annual data on groundwater resources presented above and
the distribution of production between wells and galleries, it is estimated that the flow
provided by the wells for the year 2030 will be 29 Hm3, 41.0% less than the amount currently
provided (Figure 15).
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decarbonize the electrical systems, the results show the feasibility of the proposal, com-
pletely oriented to accomplish the SDGs, reduce emissions, and mitigate the energy inse-
curity. 
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Figure 15. Water supply from wells on Tenerife Island in 2030.

5. Conclusions

In this paper, the use of photovoltaic water pumping systems to obtain water from
the wells in Tenerife, Canary Island, was analyzed. The PVWPS is proposed to pump
small flows to accomplish the water demands of a specific region in the island, mainly
due to the fact that it has an adequate cost and is environmentally sustainable. The
current wells are connected to the island’s grid generation system, which has a renewable
energy penetration of less than 20%. Therefore, in order to accomplish the European
decarbonization objectives, this work demonstrates that this proposal can be completely
feasible in Tenerife, both at present and in a future trend scenario, due to the solar resource.
The methodology proposed in this paper can be easily applied to medium-sized islands
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with similar conditions. The results reveal a strong influence on the LCOE of the solar
pumping system due to well location.

The results reveal that the average LCOE for a PV pumping groundwater system is
0.2430 €/kWh for the present and in the range of 0.179 to 0.290 €/kWh in the trend scenario
to 2030. The LCOE values obtained for the island are slightly higher than the LCOE reported
in the literature for mainland sites, mainly due to the price of land, being an island with
limited space, and the inclusion of accumulation systems. However, in the path to decar-
bonize the electrical systems, the results show the feasibility of the proposal, completely
oriented to accomplish the SDGs, reduce emissions, and mitigate the energy insecurity.
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