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Abstract: Groundwater flow and transport are crucial for performance and safety assessment in
the radioactive waste geological disposal. This study presents the groundwater flow and advective
transport simulations for assessing the performance of a reference repository placed in fractured
rocks. The study involves the concept of radionuclides migrating into the mobile water in fractures
surrounding the deposition hole and calculates two specific quantitative indicators in the field of
radioactive waste geological disposal. The indicators equivalent flow rate (Qeq) and flow-related
transport resistance (F) are used to express the groundwater flow and transport resistance in the
host rock. Based on the hydrogeological conceptual model, the study employs DarcyTools to model
the groundwater flow and advective transport of a base case. This study then conducts sensitivity
analyses by varying the hydraulic conductivity of the key hydrogeological unit and the excavation
damage zone. The uncertainty analysis employs multiple discrete fracture network (DFN) realizations
to quantify the influences of DFNs on the flow and advective transport. Results show that the
hydraulic conductivity of host rock dominates the flow and advective transport in the model domain,
and the highest Qeq is 1.91 × 10−4 m3/year, and the lowest F is 7.77 × 105 year/m. Results also
indicate that simulations of the hydraulic conductivity variations of hydrogeological units are more
critical than those obtained from the variations of DFN realizations (i.e., the uncertainty analysis).
The solutions could be useful for site investigations to modify the hydrogeological conceptual model
in the study.

Keywords: fractured rock; DarcyTools; groundwater flow; advective transport; sensitivity and
uncertainty study performance measures

1. Introduction

Groundwater flow and characteristics depend highly on the hydraulic conceptual
model, e.g., model domain, hydrogeological unit distribution, flow properties of hydrogeo-
logical units, and boundary conditions. In addition, the distribution and characteristics
of fracture systems are the dominant factors influencing the flow and transport results in
fractured rocks. The transmissivity of fractures is recognized to be more significant than
that of rock matrix by several orders of magnitude. The large discrepancy of flow properties
between fractures and rock matrix has made flow and transport simulation challenging,
especially for three-dimensional (3D) large-scale and complex problems [1,2]. The discrete
fracture network (DFN) [1–5] and equivalent continuum porous medium (ECPM) [6–8] are
two representative models for discrete and continuous approaches, respectively. The DFN
model generates the fracture system based on the DFN recipe (i.e., the list composed of the
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statistic distribution of geometric and flow properties of fractures) to simulate the complex
fracture system in fractured rock. The DFN model neglects the contribution of flow and
transport by rock matrix and only focuses on the dynamic within fractures in detail, so it is
usually employed for problems with complex fracture systems and small-scale domains.
However, for a practical problem with a large modeling domain, the DFN model might be
computationally expensive because of the generation of the computational mesh and the
associated flow and transport simulations.

The ECPM model efficiently addresses problems with large-scale domains, high
fracture intensity, and complex hydrogeological units. The ECPM model treats the flow
properties in each computational cell as equivalent values by lumping the flow properties
of fractures and rock matrices together. The equivalent value in each cell can be considered
as a tensor, revealing the anisotropic characteristic of the fractured rock. The ECPM model
allows the hydrogeological units and objects embedded in the model domain and assigns
the corresponding flow properties. Therefore, the model has been widely used in solving
problems with complex conceptual models and large-scale domain in the hydrogeological
analysis of geological disposal of radioactive waste in fractured rock. For example, to
realize the flow and transport in the candidate site of final radioactive waste disposal
in Sweden, the Svensk Kärnbränslehantering AB (SKB) employed the ECPM model to
simulate the head distribution and release paths of radionuclides from canister to biosphere
in a relatively large-scale domain [9–11].

According to the “Nuclear Materials and Radioactive Waste Management Act” in
Taiwan, the radioactive waste producer, Taiwan Power Company (TPC), is responsible
for the management, storage, and final disposal of radioactive material, including nuclear
source material, nuclear fuel, and radioactive waste [12]. In addition, radioactive waste
is classified as spent nuclear fuel (SNF) (SNF is the same as high level waste according
to the “Nuclear Materials and Radioactive Waste Management Act” in Taiwan) and low-
level waste (LLW) [13]. To fulfill the demands of the regulatory body, TPC has proposed
a spent nuclear fuel disposal (SNFD) program since 2005 [14]. TPC adopted the Swedish
KBS-3 disposal concept developed by SKB to develop geological disposal technology and
capability. The concept involves encapsulating the SNF in copper canisters which are then
emplaced, surrounded by the buffer material, which is bentonite clay, in deposition holes
at a depth between 400 and 700 m in the bedrock [15]. TPC selected the crystalline rock
for research and development purposes and generated a reference case composed of the
geological unit and thermal, hydraulic, mechanical, and chemical (THMC) properties and
a conceptual disposal facility based on the reference design of the KBS-3 concept. The
geological unit and THMC properties refer to the data of field investigation and laboratory
experiments of an offshore island in the western part of Taiwan [16]. The data of the
reference case is open to the public and researchers who can access the same fundamental
information to iterate the technical ability for the radioactive waste disposal project based
on experience from the Japanese H12 report [17] and site descriptive model (SDM) concept
from SKB [18].

The KBS-3 disposal concept considers groundwater flow and transport characteristics
critical factors [9–11,19,20]. The spent nuclear fuel is encapsulated in a corrosion-resistant
and load-withstanding copper canister surrounded by buffer in the deposition hole (DH).
The KBS-3 disposal concept illustrates three of the safety functions of a canister for con-
tainment, including (1) providing corrosion barrier, (2) withstanding isostatic load, and
(3) withstanding shear load [20]. The groundwater flow characteristics in the nearby area
of and inside the DH, called near-field, play an essential role in calculating buffer erosion
and canister corrosion. Once a canister is destroyed, i.e., loses its safety function, the ra-
dionuclides will dissolve into the groundwater and migrate from the disposal facility to the
humans and the environment, i.e., the biosphere. Therefore, the transport simulation and
its trace information in the host rock, i.e., far-field, are necessary for the safety assessment
and risk calculation [21].
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At this current stage, TPC has adopted the KBS-3 disposal concept to develop the
geological disposal technology and capability in Taiwan based on a reference case, and the
hydrogeological analysis of flow and transport is one of the critical works for the following
performance and safety assessment in the near-field and far-field [16]. This study aims
to employ the ECPM model and the computer code, DarcyTools [22–24], for flow and
advective transport of a reference case in Taiwan. Specifically, a conceptual disposal facility
has been embedded inside the model domain, and the concept of radionuclides released
from canisters will also be considered based on the KBS-3 concept [20,21]. An example
DFN was firstly generated, and the associated equivalent flow properties in each com-
putational cell calculated. Next, the study simulates the flow field, advective transport,
and performance measures (PMs) of the base case with recommended flow properties
for hydrogeological units. The PMs are the key parameters for performance and safety
assessment in the near-field and far-field based on groundwater flow and advective trans-
port simulation [9–11,19–21]. The study then used a series of cases based on adjusting the
lower- and higher-bound of flow properties for each hydrogeological unit. The quantitative
comparison of the PMs in each case is conducted based on the safety function indicator of
acceptable hydrogeological conditions in the geosphere. Those results are the key factors in
evaluating the flow properties of a conceptual disposal facility in the reference case. They
are the input data for performance assessment and provide the feedback for the following
geological investigation in the radioactive final disposal project [16,21].

2. Materials and Methods

This study employed DarcyTools for modeling the flow and advective transport. The
calculations of PMs in the reference case are composed of a hydrogeological conceptual
model and a conceptual disposal facility. DarcyTools is a research-based computer code
developed by SKB for modeling the flow and transport of a radioactive disposal facility in
fractured rocks [22–24]. DarcyTools has been widely used in the radioactive final disposal
project in Sweden and Finland. The detailed theory can be obtained through reports
and the associated investigations [22–24]. Here, we focus on presenting the fundamental
algorithms, such as those governing equations for flow and transport, particle tracking
method, and DFN generation in the DarcyTools. In addition, we present the reference case
for flow and advective transport simulations and calculations of PMs in this study.

2.1. Mathematical Formulations
2.1.1. Conservation and State Laws

DarcyTools uses the mass conservation equation expressed as below for the case of
water and solids [22–27]:

∂ρφ

∂t
+

∂

∂x
(ρu) +

∂

∂y
(ρv) +

∂

∂z
(ρw) = Q (1)

where ρ is the density (kg/m3), φ is the porosity (-), t is the time (s), and u, v, and w are the
directional components of the Darcy velocity (m/s). Notations x, y, and z are the location
in a Cartesian coordinate system (m), and Q is the source/sink term per volume of fluid
mass [kg/(m3s)]. In DarcyTools, the mass conservation equation of the chemical species is
expressed as:

∂ρφC
∂t + ∂

∂x

(
ρuC− ργDx

∂C
∂x

)
+ ∂

∂y

(
ρvC− ργDy

∂C
∂y

)
+ ∂

∂z

(
ρwC− ργDz

∂C
∂z

)
= QC + Qc

(2)

where C is the transport mass fraction (-), γ is the compaction coefficient (-), and Dx, Dy,
and Dz are the normal terms of diffusion-dispersion tensor (m2/s). Notation Qc is the
source/sink term representing the exchange with immobile zones [(kg/(m3s)]. DarcyTools
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assesses the physical meaning of a change in volume due to a change in pressure by the
following expression:

φ = φ0γ (3)

γ = 1 +
Ss

φ0

(P− P0)

ρg
(4)

where φ0 is the reference porosity (-) given for a referenced dynamic pressure P0 [kg/(ms2)].
The Ss is the specific storage (1/m), P is the dynamic pressure [kg/(ms2)], and g is the
gravity acceleration (m/s2). The Darcy velocity of the mass conservation equation and the
mass transport equation can be rewritten based on Darcy’s law as follows:

ρu = −Kx

g
∂P
∂x

(5)

ρv = −
Ky

g
∂P
∂y

(6)

ρw = −Kz

g
∂P
∂z
−Kz(ρ− ρ0) (7)

where Kx, Ky, and Kz are the hydraulic conductivity (m/s), and ρ0 is the referenced fluid
density (kg/m3). The dynamic pressure relative to the referenced hydrostatic pressure can
be described as:

P = p + P0 (8)

where p is the gauge pressure [kg/(ms2)].
The fluid properties like dynamic viscosity and density at an isothermal condition are

given by the state laws:
µ = µ0 (9)

ρ = ρ0[1 + αS] (10)

where µ0 is the reference viscosity [kg/(ms)], α is a constant value (-), and S is the salinity (-).

2.1.2. Fracture Generation

DarcyTools uses the power-law size distribution for fracture generation, which can be
written in terms of equivalent radius as follows:

f(r) =
krrkr

o

rkr+1 , kr ≥ 2, r0 < r < ∞ (11)

where r is the equivalent radius (m), kr is the scaling characteristic of fractures as a function
of size (-), and r0 is the mathematical minimum radius (m) (the smallest fracture described
by the power-law). The notation r0 is the location factor and kr is the shape factor. The
scaling relationship of fracture intensity and fracture size is defined by the fracture surface
area intensity, P32 (r ≥ r1) (m2/m3), which is related to the intensity of all fractures larger
than the minimum radius, P32 (r ≥ r0) (m2/m3):

P32(r ≥ r1) = P32(r ≥ r1)

(
r0

r1

)kr−2
(12)

where r1 is the specific fracture radius (m). It is necessary to generate a truncated fracture
size distribution rmin ≤ r ≤ rmax (m) in reality. The intensity within the size interval is
described as:

P32(rmin, rmax) = P32(r ≥ r0)

(
r2−kr

min − r2−kr
max

r2−kr
0

)
(13)
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where rmin is the minimum fracture radius (m) and rmax is the maximum fracture radius
(m). DarcyTools generates square-shaped fractures, so the length of equivalent fracture
square is calculated as:

L = r
√
π (14)

where L is the length of equivalent fracture square (m). The number of square-shaped
fractures in a size range can be described as:

n =

[(
L + dL

Lref

)D
−
(

L
Lref

)D
]

I
D

(15)

I = P32,tot(kr − 2)
Lkr−2

Lkr
ref

(16)

where n is the number of square-shaped fractures (-), and Lref is the reference length of the
square-shaped fracture (m). Notation I is the number of fractures per unit volume (-), and
D is the negative value of the shaped factor (-). DarcyTools generates random fractures
in space. This process is accomplished by utilizing independent uniform probability
distributions for the location of fracture centers. The orientation of the fractures obeys
the Fisher orientation distribution, where each fracture set is defined by mean pole trend,
plunge, and concentration. The direction cosines of the generated fractures are defined
as follows:

λ1 = cos(90− tr) cos(pl)κ (17)

λ2 = sin(90− tr) cos(pl)κ (18)

λ3 = − sin(pl)κ (19)

where λ1, λ2, and λ3 are the directions of the generated fractures (-), tr is the pole trend (-),
pl is the pole plunge (-), and κ is the concentration parameter of fisher distribution (-).

2.1.3. Computational Grids and Representation of Fractures on a Grid

DarcyTools uses an unstructured adaptive Cartesian grid to avoid the generation of
useless cells in regions of low interest. Starting from a single cell that covers the entire do-
main, the grid generator splits cells requiring refinement into two halves cells (i.e., 221 rule).
It repeats this procedure for each direction until the cell size specification is reached. Then,
cells outside the model domain are removed (including above the topography), and the
remaining cells are assigned according to their characteristics or properties, e.g., cells inside
DH, cells in the contact between DH and host rock, cells inside the deposition tunnel (DT).
Structure and disposal facilities with different cell sizes can be defined from predefined
objects such as lines, planes, and cylinders, but from triangulated shapers stored from CAD
software using the Stereo Lithography (STL) file format.

DarcyTools is based on the finite volume method and generates the staggered grid.
The different control volumes can be assigned the different variables according to the distri-
bution of fractures and rock matrix within the different volumes. Directional properties
are calculated on the faces between two adjacent grids. Anisotropy can be defined parallel
to the three main directions on a Cartesian coordinate system. The scalar properties are
calculated at the center of each control volume. If one takes hydraulic conductivity as
an example, the concept for estimating the scalar and directional properties in a control
volume is described as follows:

Kcv =
TfLfWf

Vcv
(20)

where Kcv is a control volume (m3), and Kcv is the representative hydraulic conductivity
for a control volume (m/s). Notation Tf is the transmissivity of an interesting fracture
inside a control volume (m2/s), Lf is the length of an intersecting fracture inside a control
volume (m), and Wf is the width of an intersecting fracture inside a control volume (m).
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If the control volume contains more than one fracture, each fracture will contribute to the
representative value of the property for the control volume.

2.1.4. Particle Tracking Algorithms

DarcyTools uses the typical particle tracking algorithm, the traditional approach
of moving the particle along the local velocity vectors, to simulate the transport in the
numerical domain. In this study, we focus on advective transport, i.e., no chemical reactions,
diffusion, or dispersion. Therefore, we ignore the influences of sorption, degradation, and
decay on the transport processes. The movement of particles is predicted by integrating
the trajectory equations for individual particles, using the instantaneous fluid velocity
along the particle path. Once the flow fields are available, the solution to the first-order
differential equation can employ classical numerical solvers such as Euler and Runge-Kutta
methods. In the study, the Euler method yields the following formula:

X(t + ∆t)= X(t)+V(x, t)∆t (21)

where x is the particle location in space (m), t is the time (s), V is the seepage velocity in
a particular location (m/s), and ∆t is the specified time step (s) for the particle tracking. The
calculations of the particle traces and the traveling times rely on accumulating the recorded
particle locations at different time steps.

2.1.5. Performance Measures

In the KBS-3 disposal concept, containment and retardation are two critical issues
throughout the assessment period. The understanding and evaluation of repository safety
require a more detailed description of how the containment and retardation are maintained
by the barriers, i.e., canister, buffer, backfill, and host rock. Among these barriers, the
host rock should provide an acceptable hydrogeological and geochemical environment for
the engineered barriers, limit fluid flow, and retard the migration of harmful substances
that could be released from the repository [9–11,19–21]. Therefore, the host rock has
critical functions in controlling the transport resistance in the buffer/rock interface and
high resistance in the geosphere to limit the transport of solutes. In the quantitative
evaluation of safety, it is desirable to express the functions to measurable or calculable
quantities, called the safety function indicator. One of the safety functions of the host
rock is to provide acceptable hydrogeological and transport conditions according to the
KBS-3 disposal concept [9–11,19–21]., There are two indicators involved in evaluating the
acceptable conditions. One indicator is the transport resistance in the buffer/rock interface,
which is the equivalent flow rate (Qeq) (m3/s). Based on the KBS-3 disposal concept request,
Qeq in the buffer/rock interface below 1.0 × 10−4 m3/year can be acceptable [20]. Another
indicator is the resistance in the geosphere, which is the flow-related transport resistance
(F) (s/m). Previous investigations have shown that the acceptable F value needs to be
above 1.0 × 104 year/m for the flow paths from the repository to the biosphere [20]. The
safety function indicator is to make the safety function measurable and calculable. Even
if the hydrogeological conditions do not meet the criteria for the indicator of Qeq and
F, it does not mean the repository will be damaged or cause a considerable impact on
the geosphere. However, the engineered barriers (i.e., the waste form, canister, buffer,
and backfill) provide additional barriers that contain the waste and retard radionuclide
transport, thus contributing to the performance of the total repository system [20]. In this
study, we focus on Qeq and F calculations. The comparisons between the calculation results
and the indicator criteria will be conducted to evaluate the hydrogeological condition of
the reference case.

In the KBS-3 disposal concept, radionuclides will leak out from the canister and
migrate into the buffer material once the canister is damaged. One of the pathways is that
radionuclides migrate into the mobile water in fractures surrounding the deposition hole
(Q1 path) [9–11,19,20]. Figure 1 presents the schematic concept of the disposal facility and
Q1 pathways for radionuclides to leave from the DH to the near field. Qeq is for calculating
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the concentration of the compartments in contact with flowing water in a fracture in the
rock. It is a fictitious flow rate of water that carries a concentration equal to that at the
interface between buffer material and rock [28,29]. Qeq depends on the geometry of the
contact area, the water flux, and the diffusivity. For example, Qeq for a fracture intersecting
a DH is given by:

Qeq= 2UW
√

4Dwtw/π (22)

where Qeq is the equivalent flow rate (m3/s), U is the equivalent initial flux in the fracture
system averaged over the rock volume adjacent to the DH (m/s), W is the diameter of DH
(m), Dw is the diffusion coefficient in free water (m2/s), and tw is the advective travel time
(s), which is the time a water parcel is in contact with the compartment. In the process of
calculating Qeq, it is recognized as the DH volume. Otherwise, the advective travel time is
defined as the time needed for a particle to traverse a cell of the total time of the particle
movement from a start location to an end location.
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Figure 1. The schematic concept of the disposal facility and Q1 pathways for radionuclides to leave
from the DH based on the KBS-3 disposal system. The fracture (in red color) interests the DH.

The particle tracking method is used to simulate the trajectory from DH to the bio-
sphere [9–11,19]. For each particle trace, the flow path length (L) (m), advective travel time
(tw) (s), and F are calculated. The L values rely on adding the particle’s travel path length
through each computational cell. The advective travel time tw accounts for the time needed
for a particle to pass a cell or the total summation time of a particle as it moves from a start
location to the end location. For safety assessment, F is an important parameter reflecting
the transport resistance in the geosphere. The study estimates F along a flow path. In
DarcyTools, F in each cell of the domain is represented as:

F =

(
arL
q

)
i

(23)

where F is the flow-related transport resistance (s/m), ar is the flow-wetted surface per
volume of rock (m2/m3), L is the length of the cell (m), and q is the Darcy flux through
the cell (m/s). The total F relies on the summation of piecewise F along the flow path of
a particle. Note that all particles are only released at the fracture intersecting the DH with
the highest flow rate (if multiple fractures intersect a DH). No particle will be released if
a DH is without an intersection by any fracture. It is also noted that the additional release
concept from the excavation damaged zone (EDZ) and DT can be of interest based on the
releasing concept of the KBS-3 system. However, this study only considers the Q1 path.

2.2. Reference Case

There is no proposed candidate area or site for radioactive waste final disposal in
Taiwan. To provide the researchers who can have the same fundamental information
to iterate the technical ability, the reference case, which is a hypothetical platform, has
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been proposed. The essential geological data for the reference case is mainly based on
the investigations and research of the eastern part of an offshore island of Taiwan [16].
We have translated coordinates for simulation purposes so that the coordinate is only for
determining the domain size. In this section, we present the geometry of a conceptual
disposal facility and then show the distribution of the main hydrogeological units of the
reference case. The hydrogeological conceptual model includes the flow properties of
hydrogeological units, the disposal facility, and the boundary conditions. Note that this
study focuses on the flow and advective transport simulation in a numerical domain
composed of fractured rock and a disposal facility. The detailed information about the
investigation, experiment, in-situ tests, and the exact location for the reference case will not
be presented and discussed here.

2.2.1. Conceptual Disposal Facility

We generate a basic disposal facility composed of the main tunnel (MT), DT, DH, and
EDZ based on the concept of the KBS-3 system in this study. A complete disposal facility
consists of the central area, shafts, ramps, and others. However, we only consider the
primary disposal facility to be embedded in the numerical domain Q1 pathways and for
the calculations of PMs. The geometry and location of MT, DT, DH, and EDZ are usually
stored in the Stereo Lithography (STL) format and separated into four files, respectively.
In this study, the basic disposal facility is assumed at a depth of 500 m and composed of
two panels. Each panel contains an MT and 52 DTs. The length of the MT is 1000 m, and
the length of DT is 250 m with 25 DHs capacity in the western panel, while the length of
DT is 300 m with 30 DHs capacity in the eastern panel. The total number of the repository
components contains two 1000 m long MT, 104 from 250 to 300 m long DTs, and 2860 DHs.
Figure 2 shows the layout of a basic disposal facility. Figure 2a presents the plan view of
the disposal facility. Figure 2b shows the MTs (in red color) and DTs (in green color) created
by the four STL files. Figure 2c is the close view of parts of an MT (in red color), DTs (in
green color), and DHs (in blue color). The diameter and height of each DH are 1.75 m and
8.155 m, respectively.
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Figure 2. The basic disposal facility in this study. (a) The layout and location of the basic disposal
facility are composed of two panels; (b) The design of MTs (in red color) and DTs (in green color).
There are 2 MTs and 104 DTs; (c) The close view of parts of a MT (in red color), DTs (in green color),
and DHs (in blue color). There are 2860 DHs in this conceptual disposal facility in this study.

2.2.2. Hydrogeological Conceptual Model

Figure 3 shows the hydrogeological conceptual model of the reference case. The length
of the model domain is 30 km on the x- and y-axis, respectively (in Figure 3a), and the depth
of the bottom boundary is −2000 m (in Figure 3c). The detail domain boundary is stored as
a text file (XY file), and the surface topography as another text file (XYZ file). The model
includes land and sea, and the salinity (3.2% for sea) is included in the model. The density
of seawater is specified as 1.03 g/cm3 [16]. The temperature is considered uniform so that
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there is no buoyancy due to the temperature variations. The lateral boundary condition is
assigned as a specified hydrostatic pressure along the sea, and specified salinity is set as all
lateral boundaries and at the bottom boundary. The bottom boundary is given as a no-flow
boundary. The top boundary is assigned a specified recharge rate with fresh water of
68 mm/year [16]. In the model, the initial salinity condition is assigned as fresh water
inside the island. Therefore, the fresh and saltwater interfaces are available based on the
model simulations. Figure 3b presents the location and layout of a conceptual repository in
the numerical domain.
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Figure 3. The hydrogeological conceptual model for the reference case: (a) The land and sea and the
salinity (3.2% for sea) are considered in the model. There are two faults, including F1 (in pink) and F2
(in dark red), in the eastern area. The conceptual repository is in the northeast area of the simulation
domain (marked with a dashed line); (b) The close view of the conceptual repository defined in (a);
(c) The depth of the bottom boundary and the repository elevation.

The reference case is mainly composed of granitic gneiss, which is a kind of fractured
rock, and there are two main water-conductive structures, fault (F1) and fracture zone (F2)
within the area (in Figure 3a). The 70 m thickness of the topmost is assigned as the regolith
(R0) based on the estimation of six borehole data for fracture intensity determination (in
Figure 3c) [30–32]; whereas the remaining part is assigned as the rock domain (R#) which is
composed of the fractures and rock matrix. Table 1 lists the distribution and flow properties
of the hydrogeological units in the reference case. The range of hydraulic conductivity for
R0 is from 5.0 × 10−6 to 1.0 × 10−4 m/s, and the recommended value is 1.0 × 10−5 m/s.
The effective porosity of R0 is 1.0 × 10−3 (-). The range of hydraulic conductivity for R# is
from 4.1 × 10−12 to 1.0 × 10−9 m/s, and the recommended value is 1.0 × 10−10 m/s. The
effective porosity of R# is 5.4 × 10−3 (-). The attitude of F1 is N64E/70N, and its width
is 200 m. The attitude of F2 is N80E/50S, and its width is 20 m. Note that F1 and F2 are
constrained inside the eastern part of the island. Since there is no further information to
prove the extent of F1 and F2 outside the island, we assume that F1 and F2 have limited
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lengths. The range of hydraulic conductivity for F#, i.e., F1 and F2, is from 3.0 × 10−8 to
1.0 × 10−4 m/s, and the recommended value is 5.0 × 10−6 m/s. The effective porosity of
F1 is 1.0 × 10−2 (-), while the effective porosity of F2 is 1.5 × 10−2 (-). The hydrogeological
conceptual model shall not be treated as a real site descriptive model representing the
complete site understanding of a potential area or site [16,17].

The fractures are generated within R0 and R# domains based on the DFN recipe.
The DFN recipe is composed of a series of fracture parameters in Table 2. We focus on
DFN generation and the flow and advective transport simulation in the numerical domain
composed of the fractured rock and a disposal facility. The detailed information about
building up the DFN recipe can be referred to in previous studies [30–32]. The fractures
are generated according to the Fisher distribution. Each fracture cluster is defined using
pole trend, pole plunge, and concentration parameter of fisher distribution. There are four
clusters in R0 and five clusters in R# based on the borehole fracture orientation analysis.
The fracture intensity (P32) is assumed as 2.4 and 0.3 for R0 and R#, respectively. The
power-law shaper factor (kr) of 2.6 is assigned for the fracture size distribution. The
location parameter of minimum radius (r0) is assigned as 0.1 m, and the minimum fracture
radius (rmin) and maximum fracture radius (rmax) are 4.5 and 564 m, respectively. The
spatial arrangement of the fracture center is assumed to be a stationary random (Poisson)
process. The transmissivity of fracture is a function of fracture size based on the empirical
function from the Swedish Forsmark site [18]. The fracture aperture is the function of
fracture transmissivity.

Table 1 also lists the flow properties of the components of the disposal facility. The
hydraulic conductivity is 1.0 × 10−10 m/s for MT and DT to represent the flow properties
of backfill material, while the hydraulic conductivity is 1.0 × 10−12 m/s inside DH to
represent the property of buffer material [33]. A canister should be in the DH center based
on the formal KBS-3 disposal concept. Here, we ignore the canister and assume each DH is
all deposited by buffer material. In addition, according to the studies, the width of EDZ
is around 30 cm, and the transmissivity varies from 1.0 × 10−9 to 1.0 × 10−7 m2/s [34].
Therefore, the recommended transmissivity for EDZ is 1.0 × 10−8 m2/s, and the porosity
is 1.0 × 10−4 (-). We directly calculate the hydraulic conductivity of EDZ according to
transmissivity and width of EDZ. The hydraulic conductivity of EDZ is 3.3 × 10−8 m/s
based on the transmissivity divided by the width.

Table 1. The flow properties of hydrogeological units and EDZ for the conceptual model in this study.

Units Lithology or
Material

Distributions/Attitude
and Width

Range of Hydraulic
Conductivity (m/s)

Recommended Hydraulic
Conductivity (m/s) Porosity (-)

R0 Regolith 70 m thickness of the
topmost domain 5.0 × 10−6–1.0 × 10−4 1.0 × 10−5 1.0 × 10−3

R# Granitic gneiss - 4.1 × 10−12–1.0 × 10−9 1.0 × 10−10 5.4 × 10−3

F1 Fault N64E/70N, 200 m width 3.0 × 10−8–1.0 × 10−4 5.0 × 10−6 1.0 × 10−2

F2 Fracture zone N80E/50S, 20 m width 3.0 × 10−8–1.0 × 10−4 5.0 × 10−6 1.5 × 10−2

MT Backfill material - - 1.0 × 10−10 4.0 × 10−1

DT Backfill material - - 1.0 × 10−10 4.0 × 10−1

DH Buffer material - - 1.0 × 10−12 4.0 × 10−1

EDZ Granitic gneiss - 3.3 × 10−9–3.3 × 10−7 3.3 × 10−8 * 1.0 × 10−4

* The recommended transmissivity of EDZ is 1.0 × 10−8 m2/s [34]. The width of EDZ is around 30 cm, so the
hydraulic conductivity is calculated via the transmissivity divided by the width.
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Table 2. The DFN recipe for R0 and R#.

Fracture Domain R0 R#

Elevation Depth below surface < 70 m Depth below surface > 70 m

Fracture clusters (Pole trend,
pole plunge, κ, P32, rel)

Cluster 1 (198, 18, 18, 26%) (65, 17, 20, 15%)
Cluster 2 (155, 4, 15, 24%) (344, 38, 18, 24%)
Cluster 3 (264, 23, 16, 18%) (281, 29, 16, 30%)
Cluster 4 (98, 81, 11, 32%) (174, 22, 17, 10%)
Cluster 5 - (175, 75, 19, 21%)

Fracture intensity(P32) 2.4 0.3

Fracture size

Power law : kr = 2.6,
r0 = 0.1 m,

rmin = 4.5 m,
rmax = 564 m

Power law : kr = 2.6,
r0 = 0.1 m,

rmin = 4.5 m,
rmax = 564 m

Fracture location Stationary random (Poisson) process Stationary random (Poisson) process

Fracture transmissivity (T, m2 ⁄s)

T = 1.51 × 10 −7 × (L0.7);
L =

√
(πr2)

L is the equivalent size (m) of a
square fracture.

T = 3.98× 10−10 ×
(

L0.5
)

;

L =
√
(πr2)

L is the equivalent size (m) of a
square fracture.

Fracture Aperture (e, m) e = 0.5
√

T e = 0.5
√

T

3. Numerical Examples
3.1. Workflow for the Study

There are three main tasks in this study. One is the flow and advective transport
simulation and PMs calculation for the base case. Since the recommended flow properties
are determined for each hydrogeological unit, it is necessary to simulate the flow and
transport as a basis for this reference case. The second task is the sensitivity analysis of
flow properties in the hydrogeological units and EDZ, and the third one is the uncertainty
analysis of collected DFN realizations. More specifically, in the first task, we model the flow
and advective transport based on the conceptual model and the associated recommended
flow properties for hydrogeological units. Then, we calculate the PMs based on the flow
and advective transport results. For the second task, we focus on adjusting the hydraulic
conductivity of each hydrogeological unit (i.e., R0, R#, F#) and EDZ and estimating its
influence on the calculations for PMs. Table 1 lists the range of hydraulic conductivity
for four hydrogeological units, and the upper and lower bound of hydraulic conductivity
are selected as the sensitivity cases. There are eight cases, based on calculating four
hydrogeological units for two bounding hydraulic conductivities. For the third task, we
focus on generating a series of additional DFNs and estimating their influence on the
calculations for PMs. We generated additional 48 realizations and involved the stochastic
modeling concept to analyze the distribution of the realizations systematically.

There are various steps included in the workflow for this study (see Figure 4). The
main steps in the first task are the computational grid generation, DFN generation, fracture
connectivity analysis, intersected DH calculations after applications of rejection criteria,
effective hydraulic property transformation, flow simulation, particle tracking simula-
tion, and then the PMs calculation. First, we check the geometry and distribution of the
hydrogeological conceptual model (in Figure 3) and create the objects for the following
computational grid generation. We then generate an example DFN based on the DFN
recipe (in Table 2), and the fracture connectivity analysis is conducted to maintain the con-
nected fracture system. The connected fracture system is up-scaled to the specific effective
hydraulic conductivity in each cell based on the concept of the ECPM model. The flow field
is then simulated based on the boundary condition in Figure 3. Qeq for each DH can be
calculated based on the head distribution and the results of intersected DH calculations
after applications of rejection criteria. In addition, the intersected DH calculations also
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provide the start location for the particle tracking simulation. The particle tracking method
can record the particle locations on the cell in each step and the total length and time
accumulate the step-by-step distance and time from a start location to the end location.
Finally, the trace information, including L, tw, and F, is calculated by abstracting the flow
path data.
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Figure 4. The main steps involved in the workflow are to simulate flow and advective transport and
calculate the PMs for three tasks in this study.

The study employs the generated computational grids and adjusts the hydraulic
conductivity of each hydrogeological unit for R0, R# and F#, and EDZ. The study uses the
same computational grid and the example DFN but changes the hydraulic conductivity
for hydrogeological units and EDZ once a time based on the upper and lower bound of
hydraulic conductivity shown in Table 1 (marked with red text in Figure 4). Eight cases
are simulated for the flow and advective transport based on the same boundary condition
assigned in the base case, and the PMs for each case are calculated. For the third task,
additional 48 realizations of DFN are generated and up-scaled to be the effective flow
properties in each grid. The third task uses the same computational grid but generates
additional 48 realizations for the simulations. For each realization, the model conducts the
fracture connectivity analysis, the intersected DH calculations based on rejection criteria,
and the up-scaled effective flow properties (marked with blue text in Figure 4). We employ
the stochastic modeling concept to analyze the effective fracture number and the number of
the potential canister failure induced by DH rejection criteria for the one example DFN and
additional 48 realizations, i.e., a total of 49 realizations. The mean (M), standard deviation
(SD), maximum (Max), and minimum (Min) values are analyzed (in blue color). We then
choose the realizations related to the statistics to simulate the flow and advective transport
and calculate the PMs based on the same boundary condition assigned in the base case.

In summary, this study aims to assess the flow and advective transport based on
the hydrogeological conceptual model of the reference case. The computational grid and
boundary conditions are the same for all three proposed tasks. In the sensitivity analysis, the
study varies the hydraulic conductivity for each hydrogeological unit and EDZ. Simulation
results are the basis for quantifying the influence of hydraulic conductivity variations on
flow and advective transport. The additional 48 realizations of DFNs are for the uncertainty
analysis of flow and advective transport in the study.
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3.2. DFN Generation, Fracture Connectivity Analysis, and Intersections between Fractures
and Repository

The DFN generation and fracture connectivity are critical issues for flow and transport
dynamics in fractured rock. In addition, the intersections between fractures and the disposal
facility dominate the detailed flow in the repository area and the PMs in the near-field.
The fracture connectivity controls the regional flow field and advective transport in the
numerical domain. Figure 5 presents an example of DFN realization using the DFN recipe
shown in Table 2 and the associated geometry of the repository. Figure 5a shows the
connected (in light blue color) and isolated (in orange color) fractures in contact with the
repository. Figure 5b is a close view of the repository. DarcyTools focuses on flow in the
connected fracture to the disposal facility since only the connected fracture is potentially
providing the flow paths. The fracture connectivity analysis removes all isolated fractures
before calculating the up-scaled hydraulic conductivity for all the computational grids.
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fractures (in orange color).

In this study, all DH locations are evaluated based on DH rejection criteria, which
examines the intersection of a DH by a fracture and conservatively assumes shear failure
of the canister caused by fractures. There are two DH rejection criteria, including (1) full
perimeter criterion (FPC) and (2) extended full perimeter criterion (EFPC). Figure 6 shows
the schematic concept of the geometric DH rejection criteria for FPC and ECPC. FPC states
that if a fracture intersects the full perimeter of the DT, and the hypothetical extension
of the fracture would intersect a DH, the DH is rejected (in Figure 6a). EFPC states that
if a fracture intersects one DH and also intersects four or more adjacent DHs, these five
or more DHs are to be rejected (in Figure 6b). We involve the DH rejection criteria to
calculate the number of rejected and remaining DHs. Based on Figure 5, the numbers of
DHs intersected by connected and isolated fractures are listed in Table 3. In addition, the
number of DHs for connected fractures can be divided into the rejected and the remaining
DH numbers. There are three potential release paths from the canister. The Q1 path is the
dominant one for the dose calculation in this study. Therefore, the simulations of release
paths focus on the Q1 paths.

Table 3 illustrates an example to show the intersection detected based on the realization
of the base case, i.e., the results in Figure 5. Figure 5a shows the view of fractures near
the repository. Figure 5b is a close view of the MT (in red color), DT (in green color), the
connected fractures (in light blue color), and isolated fractures (in orange color). In the
demonstrated realization, there are 365 DHs intersected by the connected fractures and
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47 DHs intersected by the isolated fractures. Table 3 presents the number of remaining
DHs after applying the rejection criteria. The remaining DHs are 148, the target for particle
tracking simulation and PMs calculation. In the study, we generate additional 48 DFN
realizations based on the same DFN recipe listed in Table 2. Therefore, the DHs intersected
by connected and isolated fractures must be calculated based on the 48 DFN realizations.
Besides, the effective fracture number (i.e., the number of connected fractures) for each
realization is calculated for the stochastic analysis.
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Table 3. The numbers of DHs obtained from the intersected fractures in the example DFN.

Number of DH
Intersected by

Isolated Fractures

Number of DH
Intersected by

Connected Fractures

Number of DH with
Rejection Criteria

Remained Number
of DH for Q1 Path

47 365 217 148

3.3. The Computational Grid and Effective Flow Properties Field for the Base Case

In this study, the domains for R0, R#, and F# and the disposal facility components are
stored as the STL file, and DarcyTools can directly read the files and assign the cell size
for each structure and object. The cell refinement is applied from the default cell size of
256 m × 256 m × 256 m by setting a small cell size of 32 m × 32 m × 32 m in the F1 and
F2. The cell size on the top of the domain is 32 m × 32 m × 2 m. The spatial refinement
in the z-direction is to fit the detailed variations of the topography. The grid is globally
refined in the repository zone with a cell size of 8 m × 8 m × 8 m. Smaller cell sizes are
generated near the tunnels (1 m × 1 m × 1 m), EDZ (0.25 m × 0.25 m × 0.25 m), and DH
(0.125 m × 0.125 m × 0.125 m) to capture the flow near the DH and the advective transport
pattern close to the repository. The successive refinement leads to a total of 11,613,681 cells
in the study (see Figure 7). Figure 7a shows the horizontal plane of the grids at z = −504 m,
i.e., the center of gravity of DH. The cell size in F1, F2, and repository zone have been
refined accordingly. Figure 7b presents the zoom-in view on F1, F2, and the repository
zone of the horizontal cut at z = −504 m. Figure 7c is the close view of the refinement grids
for the repository on the plane of z = −504 m. Figure 7d further shows the region for the
DTs and DHs on the horizontal plane at z = −504 m. Figure 7e shows a vertical profile
along x = 56,265, a vertical plane across the repository. Figure 7f is the profile view of the
generated grids for an MT and DTs along x = 56,265.

The next step is to upscale the flow properties of fractures and rock matrix to become
the effective flow properties in each grid. Figure 8 demonstrates the resulting hydraulic
conductivity fields of the example realization for the base case. In Figure 8, the up-scaled
hydraulic conductivity values are on the plane of z = −504 m. The hydraulic conductivity
of F1 and F2 are assigned as the constant value of 5.0 × 10−6 m/s based on the hydrogeo-
logical conceptual model. The up-scale hydraulic conductivity varies from 1.0 × 10−9 to
1.0 × 10−10 m/s in R#, which meets the original range from the results of the field hydraulic
test and laboratory experiments. A similar strategy is applied to the case of R0.
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Figure 7. The computational grid in this study. (a) The horizontal plane view of the grids on the
plane of z = −504 m; (b) The zoom-in view of girds for F1, F2, and repository zones based on the
selected local area (red dashed line) shown in (a); (c) The refined grids for the repository area based
on the selected local area (yellow dashed line) defined in (b); (d) The further zoom-in view of the
DTs and DHs on the plane of z = −504 m. The local area is marked with the blue dashed line in (c);
(e) The vertical profile of grids along x = 56,265; and (f) The close view of the refine grids for an MT
and DTs in the area marked with the orange dashed line defined in (e).
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4. Results and Discussions

This section focuses on presenting the results based on the specified steps defined
in the workflow. The base case uses the hydrogeological conceptual model derived from
the reference case in Taiwan and an example DFN generated according to the site-specific
DFN recipe. The sensitivity analysis considers the steady-state groundwater flow and the
associated particle traces for the PMs. An additional 48 DFN realizations are employed
to conduct the uncertainty analysis. We focus on the Q1 path for all the assessments of
the PMs.

4.1. Steady-State Flow, Particle Tracking, and Calculation of PMs for the Base Case

Figure 9 shows the dynamic pressure, salinity, and Q1 paths of the base case. Figure 9a
presents the dynamic pressure distribution and Q1 paths on the repository depth and
in two vertical profiles across the center of the repository. Figure 9b shows the salinity
field and Q1 paths on the repository level and two vertical profiles across the center of
the repository. The pressure results show that the central area is likely to be higher, and
the pressure decreases gradually from the center to the coastal line. The result indicates
that the groundwater could flow from the central area to the coastline. The salinity result
shows a clear seawater and freshwater interface beneath the island, and flow paths would
be affected accordingly. Based on the groundwater flow field results, we use the particle
tracking method to model potential release Q1 paths. The particle release number is highly
related to repository layout, fracture system, and geometrical rejection criteria. According
to the setting of these parameters, the results show a total of 148 potential release locations
for the Q1 paths. The results indicate that the paths are strongly influenced by groundwater
flow and salinity fields. The results also show that particles tend to move toward the north,
the northeast, and the northwest due to the relatively high groundwater potential in the
central area. The seawater and freshwater interface will also influence flow paths near the
coastal area. That is, the downward flow paths turn upward at the interface, leading to
most of the particles discharged near the coastal line.
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Figure 9. The steady-state flow, salinity field, and Q1 paths in the base case. (a) The pressure
distribution and Q1 paths on the repository depth and two vertical profiles across the center of the
repository. (b) The salinity field and Q1 paths on the repository depth and two selected profiles across
the center of the repository.

Figure 10 shows Qeq and F for Q1 paths in the base case. Figure 10a is the cumulative
distribution function (CDF) of Qeq; while Figure 10b is the CDF of F. Figure 10a indicates
that the maximum value of Qeq is 8.72 × 10−5 m3/year, which fulfills the requirements of
safety function indicator (i.e., smaller than 1.0 × 10−4 m3/year). The minimum value of
Qeq is 4.55 × 10−5 m3/year. The maximum value is higher than the minimum value of
1.92 times. The result indicates a stable flow field in the repository area. Figure 10b shows



Energies 2022, 15, 5585 17 of 26

that the minimum value of F is 2.51 × 106 year/m, which fulfills the requirements of the
safety function indicator (i.e., higher than 1.0 × 104 year/m). The maximum value of F is
4.78 × 107 year/m. The maximum value is higher than the minimum value by 19.01 times.
The high variations are between the fraction of 0 to 20%, but the curve becomes smooth
when F is higher than 1.16 × 107 year/m.
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Figure 10. Qeq and F for the Q1 path in the base case. (a) The Qeq for the Q1 path of the base case;
(b) The F for the Q1 path of the base case.

4.2. Sensitivity of Hydrogeological Units and EDZ on Flow, Particle Tracking, and PMs

Figure 11 shows the plane and profile views for the steady-state flow and particle traces.
Figure 11a presents the base case results, i.e., the same results as described in Figure 9a.
We use the base case as the basis for the qualitative comparisons between the base case
and hydraulic conductivity sensitivity cases. Figure 11b,c are the hydraulic conductivity
sensitivity cases for R0, i.e., the regolith. Figure 11b shows the hydraulic conductivity de-
creases to 5.0 × 10−6 m/s, and Figure 11c presents the hydraulic conductivity increases to
1.0 × 10−4 m/s. Figure 11d,e are the hydraulic conductivity sensitivity cases for R#, i.e., the
host rock. Figure 11d shows the hydraulic conductivity decreases to 1.0 × 10−12 m/s, and
Figure 11e presents the hydraulic conductivity increases to 1.0 × 10−9 m/s. Figure 11f,g
are the hydraulic conductivity sensitivity cases for F#, i.e., the fault and fracture zones.
Figure 11f shows the hydraulic conductivity decreases to 1.0 × 10−8 m/s. Figure 11g
presents the hydraulic conductivity increases to 1.0 × 10−4 m/s. Figure 11h,i are the hy-
draulic conductivity sensitivity cases for EDZ. Figure 11h shows the case with hydraulic
conductivity decreasing to 3.3 × 10−9 m/s. Figure 11i results display the hydraulic conduc-
tivity increasing to 3.3 × 10−7 m/s.

Figure 12 shows the CDF of Qeq and F for cases of hydraulic conductivity sensitivity
study. Figure 12a shows Qeq of the hydraulic conductivity sensitivity cases. For R0
cases, the decrease of hydraulic conductivity of R0 (i.e., R0_5.0 × 10−6 m/s) makes all
of Qeq larger than those obtained from the base case by 1.03 times. The minimum Qeq is
4.69 × 10−5 m3/year, while the most significant value is 9.01 × 10−5 m3/year. The result
indicates that the lower hydraulic conductivity for R0 has no considerable impact on Qeq.
On the other hand, the increased hydraulic conductivity of R0 (i.e., R0_1.0 × 10−4 m/s)
makes all of Qeq lower than those obtained from the base case from 1.43 to 3.45 times. The
minimum Qeq is 1.32 × 10−5 m3/year, while the maximum value is 6.08 × 10−5 m3/year.
The result indicates that the higher hydraulic conductivity for R0 could lead to a higher
flow rate from the top boundary to the repository depth than those of the base case. This
behavior makes the Qeq values higher than those obtained from the base case. In addition,
the deviation between the smallest and largest values is 4.61 times greater than that in the
base case.
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creases to 3.3 × 10−9 m/s; and (i) The hydraulic conductivity of EDZ increases to 3.3 × 10−7 m/s. 

Figure 11. The steady-state flow fields for cases of hydraulic conductivity sensitivity analyses. The
selected horizontal planes for the plots are on the repository depth, and two vertical profiles are
defined across the center of the repository. (a) The base case; (b) The hydraulic conductivity of R0
decreases to 5.0× 10−6 m/s; (c) The hydraulic conductivity of R0 increases to 1.0× 10−4 m/s; (d) The
hydraulic conductivity of R# decreases to 1.0 × 10−12 m/s; (e) The hydraulic conductivity of R#
increases to 1.0 × 10−9 m/s; (f) The hydraulic conductivity of F# decreases to 1.0 × 10−8 m/s; (g) The
hydraulic conductivity of F# increases to 1.0 × 10−4 m/s. (h) The hydraulic conductivity of EDZ
decreases to 3.3 × 10−9 m/s; and (i) The hydraulic conductivity of EDZ increases to 3.3 × 10−7 m/s.
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For R# cases, the decrease of hydraulic conductivity of R# (i.e., R#_1.0 × 10−12 m/s)
makes all of Qeq smaller than those obtained from the base case. The minimum Qeq
is 5.88 × 10−6 m3/year, while the maximum value is 4.12 × 10−5 m3/year. The result
indicates that the lower hydraulic conductivity for R# considerably decreases the flow rate
in the repository region. On the other hand, the increased hydraulic conductivity of R#
(i.e., R#_1.0× 10−9 m/s) leads all of Qeq to be higher than those obtained from the base case
from 2.19 to 3.28 times. The minimum Qeq is 1.49 × 10−4 m3/year, while the maximum
value is 1.91 × 10−4 m3/year. The result indicates that the higher hydraulic conductivity
for R# could lead to a higher flow rate in the repository region. Specifically, all values
are more significant than the safety function indicator for the acceptable hydrogeological
condition in the geosphere (i.e., smaller than 1.0 × 10−4 m3/year).

For the F# cases, whether the hydraulic conductivity for F# is lower or higher than the
value of the base case (i.e., 5.0× 10−6 m/s), most Qeq values are lower than those of the base
case. When the hydraulic conductivity of F# is lower than the base case value, the minimum
Qeq is 4.55 × 10−5 m3/year, while the maximum value is 7.39 × 10−5 m3/year. The result
indicates a behavior similar to that in the base case. When the hydraulic conductivity is
larger than the recommended value, the lowest Qeq is 3.76 × 10−5 m3/year, while the
highest value is 6.07 × 10−5 m3/year. The result indicates that the increased hydraulic
conductivity of F# makes all Qeq smaller than those obtained from the base case, varying
from 1.21 to 1.44 times. The flow field in the repository region is toward the north, northeast,
and northwest, according to the top boundary and terrain. Further, the repository is far
from the F#, and the influence might not be significant once the hydraulic conductivity for
F# is changed.

For EDZ cases, whether the hydraulic conductivity for EDZ is lower or higher than the
value of the base case (i.e., 3.3 × 10−8 m/s), all Qeq are similar to those obtained from the
base case. When the hydraulic conductivity of EDZ is lower than the base case value, the
minimum Qeq is 4.62 × 10−5 m3/year, while the maximum value is 7.67 × 10−5 m3/year.
The result indicates a minor influence of the EDZ hydraulic conductivity on the flow. When
the hydraulic conductivity is larger than the value of the base case, the minimum Qeq is
4.48 × 10−5 m3/year, while the maximum value is 7.53 × 10−5 m3/year. The result shows
that the increase of hydraulic conductivity of EDZ makes all Qeq similar to those obtained
from the base case. Note that the discussion only focuses on Qeq for the Q1 path. Once the
target switches to another releasing path based on the KBS-3 disposal concept, Qeq results
might be different.

Figure 12b shows F for the hydraulic conductivity sensitivity cases. For R0 cases,
the decrease of hydraulic conductivity of R0 (i.e., R0_5.0 × 10−6 m/s) makes most of F
slightly smaller than those obtained from the base case up to 1.43 times. However, only
the minimum F (2.54 × 106 year/m) is slightly larger than the base case at 1.01 times.
The maximum value (6.15 × 107 year/m) is higher than that obtained from the base
case up to 1.29 times. The result indicates that the lower hydraulic conductivity for
R0 has less impact on F. On the other hand, the increased hydraulic conductivity of R0
(i.e., R0_1.0 × 10−4 m/s) makes F larger than those obtained from the base case, and the
values vary from 2.30 to 15.92 times as compared to those obtained from the base case.
The minimum F is 5.78 × 106 year/m, while the maximum value is 7.61 × 108 m3/year.
The result indicates that the higher hydraulic conductivity for R0 might lead to a higher
flow rate from the top boundary to the repository depth. The behavior reduces the particle
transport velocity from the repository to the top of the model domain. In addition, the
deviation between the smallest and largest values is 131.60 times, reflecting the high
variations between the traveling traces of particles.

For R# cases, the decrease of hydraulic conductivity of R# (i.e., R#_1.0 × 10−12 m/s)
makes F larger than those obtained from the base case, and the differences vary from
6.00 to 12.37 times. The minimum F is 1.51 × 107 year/m, while the maximum value
is 5.91 × 108 year/m. The result indicates that the lower hydraulic conductivity for R#
considerably decreases the flow rate in the entire numerical domain. It causes a lower
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travel velocity for each particle and makes considerable deviations in the particle traces.
The increased hydraulic conductivity of R# (i.e., R#_1.0 × 10−9 m/s) leads to F values
smaller than those obtained from the base case, and the differences vary from 2.05 to
3.24 times. The minimum F is 7.77 × 105 year/m, while the most significant value is
2.33 × 107 year/m. The result indicates that the higher hydraulic conductivity for R#
makes the flow rate higher than that obtained from the base case. The relatively high flow
rate could reduce the transport time for each particle from the repository to the biosphere.
Although all the values are higher than the safety function indicator for the acceptable
hydrogeological condition in the geosphere (i.e., higher than 1.0 × 104 year/m), several
values are smaller than the 1.0 × 106 year/m, which is relatively low compared to the
other cases in this study.

For F# cases, whether the hydraulic conductivity for F# is higher or lower than the
value of the base case (i.e., 5.0 × 10−6 m/s), most F values are higher than those obtained
from the base case. When the hydraulic conductivity of F# is lower than the value of the base
case, the minimum F is 1.41 × 106 year/m, while the largest value is 6.17 × 107 year/m.
The result indicates that 20% of F values are slightly smaller than those in the base case,
while 80% of F values are slightly larger than those in the base case. When the hydraulic con-
ductivity of F# is larger than the value of the base case, the minimum F is 4.29 × 106 year/m,
while the maximum value is 6.83 × 107 year/m. The result indicates that the increased
hydraulic conductivity of F# makes F slightly larger than those obtained from the base case,
and the differences vary from 1.43 to 1.71 times for 80% of F values. The result could be
that the flow field in the repository region is toward the north, northeast, and northwest,
according to the top boundary and terrain. Besides, the repository is far from the F#.
Therefore, the influence might not be significant when the hydraulic conductivity for F#
is changed.

For EDZ cases, whether the hydraulic conductivity for EDZ is lower or higher than the
value of the base case (i.e., 3.3× 10−8 m/s), most F values are very similar to those obtained
from the base case. When the hydraulic conductivity of EDZ is lower than the value of
the base case, the minimum F is 2.24 × 106 year/m, while the most significant value is
5.33 × 107 year/m. The result indicates that 60% of F values between fractions from 25% to
95% are slightly smaller than those of the base case, while 25% of F values between fractions
from 0% to 25% are very similar to those of the base case. When the hydraulic conductivity
of EDZ is higher than that of the base case, the minimum F is 1.88 × 106 year/m, while
the maximum value is 5.29 × 107 year/m. The result shows that the increased hydraulic
conductivity of EDZ makes F values slightly smaller than those obtained from the base
case, but the maximum value is higher than those obtained from the base case.

This study evaluated the sensitivity induced by the hydraulic conductivity variations
for the hydrogeological units (including R0, R#, F#) and EDZ. Table 4 lists the maximum
and minimum values of Qeq and F for the base case and cases with hydraulic conductivity
sensitivity analysis. The results show that the hydraulic conductivity of R0 dominates Qeq
in the repository area. Specifically, Qeq will not fulfill the safety function indicator for the
acceptable hydrogeological condition in the geosphere when the hydraulic conductivity
of R# is 1.0 × 10−9 m/s. Although all F values are higher than the safety function
indicator for the acceptable hydrogeological condition in the geosphere (i.e., higher than
1.0 × 104 year/m), there are few values smaller than the 1.0 × 106 year/m, which is
relatively low in this study.
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Table 4. The maximum and minimum values of Qeq and F for the base case and the sensitivity
analysis cases.

Cases Base Case R0_5.0 × 10−6 R0_1.0 × 10−4 R#_1.0 × 10−12 R#_1.0 × 10−9 F#_1.0 × 10−8 F#_1.0 × 10−4 EDZ_3.3 × 10−9 EDZ_3.3 × 10−7

Maximum
Qeq

(m3/year)
8.72× 10−5 9.01 × 10−5 6.08 × 10−5 4.12 × 10−5 1.91 × 10−4 7.39 × 10−5 6.07 × 10−5 7.67 × 10−5 7.53 × 10−5

Minimum
Qeq

(m3/year)
4.55× 10−5 4.69 × 10−5 1.32 × 10−5 5.88 × 10−6 1.49 × 10−4 4.55 × 10−5 3.76 × 10−5 4.62 × 10−5 4.48 × 10−5

Maximum
F (year/m) 4.78 × 107 6.15 × 107 7.61 × 108 5.91 × 108 2.33 × 107 6.17 × 107 6.83 × 107 5.33 × 107 5.29 × 107

Minimum
F (year/m) 2.51 × 106 2.54 × 106 5.78 × 106 1.51 × 107 7.77 × 105 1.41 × 106 4.29 × 106 2.24 × 106 1.88 × 106

4.3. The Stochastic Simulations for 49 DFN Realizations
4.3.1. Effective Fracture Number

Table 5 shows the calculations of the effective fracture numbers for the 49 DFN realiza-
tions. Here, we have focused on the univariate description of the parameters, i.e., M, SD,
Max, and Min. Note that the realization numbers in Table 5 are to give the specific names for
different realizations. Table 6 lists these parameters and their relative realization numbers.
We then focus on modeling the flow field and particle tracking and calculate the PMs for
the realizations. Figure 13a shows Qeq for the Q1 path of the realizations relative to the
statistical results of effective fracture numbers. The result shows that the realization number
51 has the highest Qeq 8.11× 10−5 m3/year, which meets the scenario with the highest effec-
tive fracture number. The realization number 06 has the lowest Qeq 1.77 × 10−5 m3/year,
but this realization represents the statistical result for M + 1 SD, which doesn’t meet the
scenario for the minimum Qeq. The trends for all the results are very similar, except for the
realization number 06, which has lower values when the fraction is lower than 30%. We
found that some small fractures intersect the DH and remain in the simulation domain.
These small fractures could lead to extremely small Qeq values. However, all Qeq values
fulfill the safety function indicator, i.e., lower than 1.0 × 10−4 m3/year.

Table 5. The effective fracture numbers of the 49 DFN realizations.

Realization number * 01 02 03 04 05 06 07 08 09

Fracture number ** 8,320,632 8,341,248 8,156,556 8,278,347 8,285,150 8,300,106 8,239,884 8,225,342 8,252,640

Realization number 11 21 31 41 51 61 71 81 91

Fracture number * 8,195,941 8,253,067 8,237,262 8,265,553 8,385,158 8,264,897 8,301,048 8,241,552 8,230,608

Realization number 12 22 32 42 52 62 72 82 92

Fracture number * 8,273,013 8,231,334 8,253,960 8,279,343 8,308,163 8,206,153 8,269,453 8,219,716 8,210,454

Realization number 13 23 33 43 53 63 73 83 93

Fracture number * 8,235,503 8,353,253 8,258,874 8,214,399 8,304,313 8,186,264 8,205,598 8,238,796 8,295,528

Realization number 14 24 34 44 54 64 74 84 94

Fracture number * 8,246,436 8,204,342 8,267,200 8,245,352 8,247,883 8,243,216 8,273,206 8,241,587 8,228,915

Realization number 10 20 30 40 - - - - -

Fracture number * 8,182,334 8,269,977 8,191,695 8,283,339 - - - - -

* The realization number is only for defining the name of the realization. ** The values have been rounded to the
nearest whole number.

Figure 13b shows F for the Q1 path of the realizations relative to the statistical results
of the effective fracture number. The result shows that the realization number 03 has the
highest value, which is 6.66× 107 year/m, and it meets the scenario with the lowest effective
fracture number. The realization 06 has the minimum F value of 1.95 × 106 m3/year, but
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this realization represents the statistical result for M + 1 SD, which doesn’t meet the scenario
for the lowest F. The trends for all the results are similar, except for the realization number
06, which has lower values when the fraction is lower than 5%. The reason could be that
the very small fractures intersect the DHs and remain in the simulation domain since they
are connected fractures. These very small fractures improve the fracture connection and
increase the transport velocity. However, all values obtained from the DFN realizations
fulfill the safety function indicator for F, i.e., higher than 1.0 × 104 year/m. In summary,
the statistics for the effective fracture number of 49 realizations indicate a low impact of
DFN realizations on the results of Qeq and F.

Table 6. Statistical summary of the effective fracture numbers for the 49 DFN realizations.

Parameters Effective Fracture Number * Realization Number

Min 8,156,556 03
Max 8,385,158 51

M 8,253,971 32
SD 45,126 -

M − 3 SD 8,118,592 - **
M − 2 SD 8,163,718 03
M − 1 SD 8,208,845 92
M + 1 SD 8,299,098 06
M + 2 SD 8,344,224 02
M + 3 SD 8,389,351 51

* The values have been rounded to the nearest whole number. ** There is no realization that meets the effective
fracture number for M − 3 SD.
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4.3.2. Remaining DHs Based on Rejection Criteria for the Q1 Path

Table 7 shows the remaining DHs after involving the rejection criteria for the Q1 path
of the 49 DFN realizations. Table 8 lists the statistics and their relative realization numbers.
We then focus on modeling the flow field and particle tracking and calculate the PMs for
these selected realizations. Figure 14a shows Qeq for the Q1 path based on the realizations
and the associated remaining numbers of the DHs. The result shows that the realization
number 41 has the highest Qeq with 7.76 × 10−5 m3/year), which meets the scenario with
the highest remaining number of DHs. The realization number 72 has the lowest Qeq with
3.84 × 10−5 m3/year, but this realization represents the statistical result for M + 2 SD,
which doesn’t meet the scenario for the lowest Qeq. The overall trends for all the results
are similar. However, all the values fulfill the safety function indicator for Qeq for the
acceptable hydrogeological condition in the geosphere, i.e., lower than 1.0 × 10−4 m3/year.
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Table 7. The remaining numbers of DHs based on the rejection criteria applied to the 49 DFN realizations.

Realization number * 01 02 03 04 05 06 07 08 09

Number of DH ** 138 128 139 153 150 147 167 113 133

Realization number 11 21 31 41 51 61 71 81 91

Number of DH 132 141 152 168 142 142 143 153 114

Realization number 12 22 32 42 52 62 72 82 92

Number of DH 125 125 126 121 132 128 165 132 122

Realization number 13 23 33 43 53 63 73 83 93

Number of DH 138 112 133 130 140 146 130 148 139

Realization number 14 24 34 44 54 64 74 84 94

Number of DH 128 115 129 124 132 117 152 146 144

Realization number 10 20 30 40 - - - - -

Number of DH 148 142 149 126 - - - - -

* The realization number is only for defining the names of different realizations. ** The values have been rounded
to the nearest whole number.

Table 8. Statistics of the remaining number of DHs after involving the rejection criteria for the Q1
paths obtained from the 49 realizations.

Parameters Remaining Number of DH * Realization

Min. 112 23
Max. 168 41

M 137 1, 13
SD 14 -

M − 3 SD 96 - **
M − 2 SD 109 23
M − 1 SD 123 92
M + 1 SD 150 5
M + 2 SD 164 72
M + 3 SD 178 - **

* The values have been rounded to the nearest whole number. ** No realization meets the remaining number of
DH for M − 3 S.D and M + 3 SD.
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Figure 14b shows F for the Q1 path of the DFN realizations. The result indicates that
realization number 72 shows the highest value of 8.19 × 107 year/m, but this realization
represents the statistical result for M + 2 SD. On the other hand, realization 41 yields the
lowest F value of 1.32 × 106 year/m, but this realization represents the statistical result
for Max. The trends for all the results are similar, except for realization 41, which has
lower values when the fraction is lower than 5%. The results might be induced by the
small fractures connected to the DHs. However, all F values fulfill the safety function
indicator for the acceptable hydrogeological condition in the geosphere, i.e., higher than
1.0 × 104 year/m. In summary, the simulations for the remaining DHs obtained from
the 49 realizations show a negligible impact on the results of Qeq and F. The uncertainty
induced by the DFN realization is relatively small.

5. Conclusions

This study developed and presented the flow and advective transport simulation
in fractured rock. Specifically, we involved a reference case composed of a conceptual
repository and a fractured rock in the simulation domain. The study employed DarcyTools
for modeling the flow and advective transport of a radioactive waste geological repository
in fractured rocks based on the KBS-3 disposal concept. This study also used three proposed
tasks to model the base case and conduct sensitivity and uncertainty analyses. We compared
the solutions of PMs in the tasks with the safety function indicator for the acceptable
hydrogeological condition in the geosphere. In this study, we focused on the Q1 path that
represents the concept of radionuclides leaving the canisters.

The numerical modeling domain considered the geometry and flow properties of com-
ponents of a conceptual repository (i.e., MT, DT, DH, and EDZ). The study applied the cell
refinement algorithm to generate computational grids for the important hydrogeological
units and components in the repository. The successive refinement led to a total number
of 11,613,681 cells. In the example DFN case, the total number of 8,182,334 fractures was
generated. Based on the generated fractures, the fracture connectivity analysis enabled the
identification of intersections between fractures and the key components in the repository.
The effective fracture system was then obtained by removing the isolated fractures and was
the basis for the up-scaled flow properties in each computational cell.

After involving the rejection criteria in the base case, the study calculated the remaining
DH and obtained 148 DHs for the Q1 paths based on the KBS-3 disposal concept. The
PMs calculations showed that the maximum value of Qeq was 8.72 × 10−5 m3/year, which
fulfilled the requirements of the safety function (i.e., lower than 1.0 × 10−4 m3/year). The
minimum F value was 2.51 × 106 year/m, which also fulfilled the requirements of the
safety function (i.e., higher than 1.0 × 104 year/m).

In the study, there are eight cases selected for the sensitivity analysis. An additional
48 DFN realizations were used for the uncertainty analysis. The sensitivity analysis showed
that the case with a host rock hydraulic conductivity of 1.0 ×10−9 m/s yielded the highest
Qeq of 1.91 × 10−4 m3/year and lowest F of 7.77 × 105 year/m. In this case, Qeq did
not fulfill the safety function indicator for the acceptable hydrogeological condition in
the geosphere. Although all F values were higher than the safety function indicator, few
values were smaller than 1.0 × 106 year/m, which was relatively low in this study. The
statistical results for the 49 realizations relative to the effective fracture number showed
that the realization number 51 had the highest Qeq of 8.11 × 10−5 m3/year, and the
realization number 06 had the lowest F of 1.95 × 106 year/m. The statistical results for
the 49 realizations relative to the remaining number of DHs after involving the rejection
criteria showed that the realization number 41 had the highest Qeq of 7.76 × 10−5 m3/year
and the realization number 41 had the lowest F of 1.32 × 106 year/m. Simulation results
revealed that the overall behavior of DHs in the 49 realizations is similar, indicating less
impact of fracture distribution on F and Qeq for the proposed reference case in the study. In
addition, all values fulfill the safety function indicator for the acceptable hydrogeological
condition in the geosphere. The solutions were critical for evaluating the radionuclides
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released from the repository for performance and safety assessment in the radioactive
waste geological disposal. Results indicated that the hydraulic conductivity variations of
the hydrogeological units are critical for F and Qeq. The DFN realizations with different
fracture distributions might not be significant for the variations of F and Qeq.
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