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Abstract: The main goal of hydraulic fracturing stimulation in unconventional and tight reservoirs
is to maximize hydrocarbon production by creating an efficient stimulated reservoir volume (SRV)
around the horizontal wells. To zreach this goal, a physics-based model is typically used to design
and optimize the hydraulic fracturing process before executing the job. However, two critical issues
make this approach insufficient for achieving the mentioned goal. First, the physics-based models are
based on several simplified assumptions and do not correctly represent the physics of unconventional
reservoirs; hence, they often fail to match the observed SRVs in the field. Second, the success of the
executed stimulation job is evaluated after it is completed in the field, leaving no room to modify
some parameters such as proppant concentration in the middle of the job. To this end, this paper
proposes data-driven and global sensitivity approaches to address these two issues. It introduces a
novel workflow for estimating SRV in near real-time using some hydraulic fracturing parameters that
can be inferred before or during the stimulation process. It also utilizes a robust global sensitivity
framework known as the Sobol Method to rank the input parameters and create a reduced-order
(mathematically simple) model for near real-time estimation of SRV (referred to as DSRV). The
proposed framework in this paper has two main advantages and novelties. First, it is based on a pure
data-based approach, with no simplified assumptions due to the use of a simulator for generating the
training and test dataset, which is often the case in similar studies. Second, it treats SRV generation as
a rock mechanics problem (rather than a reservoir engineering problem with fixed fracture lengths),
accounting for changes in hydraulic fracture topology and SRV changes with time. A dataset from
the Marcellus Shale Energy and Environment Laboratory (MSEEL) project is used. The model’s
input parameters include stimulation variables of 58 stages of two wells. These parameters are stage
number, step, pump rate and duration, proppant concentration and mass, and treating pressure.
The model output consists of the corresponding microseismic (MS) cloud size at each step (i.e., time
window) during the job. Based on the model, guidelines are provided to help operators design more
efficient fracturing jobs for maximum recovery and to monitor the effectiveness of the hydraulic
fracturing process. A few future improvements to this approach are also provided.

Keywords: stimulated reservoir volume (SRV); hydraulic fracturing; machine learning; reduced
order model (ROM); data-based modeling

1. Introduction

Hydraulic fracturing stimulation is an integrated part of unconventional and tight
reservoir development. Its primary purpose is to maximize hydrocarbon recovery by creat-
ing an efficient stimulated reservoir volume (SRV) around horizontal wells. A conventional
approach for designing hydraulic fracturing parameters, such as proppant concentration,
fluid type, and rate, is to run several simulated reservoir models with different parameters.
This approach has two shortcomings: the simplified assumptions of the simulator and com-
putational cost. The physics-based models used for building simulated reservoir models
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do not often represent the physics of fluid flow in unconventional and tight reservoirs.
They also fail to account for the high uncertainty involved in reservoir properties in these
reservoirs. Moreover, the high computational cost is a severe bottleneck for the coupled
flow-geomechanical simulation of tight and unconventional reservoirs. Ref. [1] compared
the run time of a high-fidelity physics-based model with the pre-processing and runtime
of three data-driven models. They showed that the run time of a high-fidelity numerical
model can reach up to ~3000 times compared to the data-based model. Although recursive
model updating could be utilized to reduce the computation time of dynamic models, a
more efficient approach for designing and controlling the hydraulic fracturing process is
desired. This study proposes two frameworks, namely, pure data-driven and reduced-order
SRV modeling, to address the issues mentioned in using high-fidelity numerical models for
solving hydraulic fracturing problems. Our approach differs from most previous studies
by accounting for dynamic changes in the fractured zone topology, allowing for different
fractured volumes along the length of the horizontal well. The other difference between
this approach and similar works is that it is purely based on field-recorded data and not on
synthetic data (typical) generated by numerical models.

In the last decade, a rich body of literature has been produced for solving production-
related and hydraulic fracturing problems of unconventional reservoirs using data-based
models. Refs. [2,3] utilized data-based approaches to optimize the design of the hydraulic
fracturing process in unconventional reservoirs. They developed models using random
forest and artificial neural networks (ANN) and used parameters such as TVD and proppant
volume to estimate the first-year production from unconventional fractured wells. Ref. [4]
built ANN models to predict the first-year production from geologic and completion input
parameters such as porosity, depth, and water saturation in the Mid Bakken formation.
Ref. [5] used a long short-term memory (LSTM) neural network to predict gas production
from shale formations. Ref. [6] utilized machine learning and reduced-order models for
forecasting gas production from unconventional reservoirs. Ref. [7] studied the HF–NF
interactions and their significance for SRV development. They also used machine learning
to rank the importance of parameters involved in HF–NF interactions. Ref. [8] applied a
machine learning approach for modeling SRV, fracture network characterization, and well
interference. Ref. [9] presented a state-of-the-art review on hydraulic fracture modeling
using machine learning (ML)/artificial intelligence (AI) algorithms, focusing on design,
interpretation, real-time prediction, and re-frac candidate selection. Other examples can
be found in [10,11], where the effect of several input parameters on SRV was examined
using fully synthetic data from a simulator. In [11], the well spacing was examined to avoid
frac-hit while drilling more wells in the field.

There are two general approaches for solving and optimizing hydraulic fracturing
problems: the pure fracturing approach and the reservoir/production approach. The
pure fracturing approach typically involves using fracturing parameters such as surface
pressure and proppant concentration and predicting production directly. However, most
reservoir/production approaches focused on production prediction, and less attention was
given to predicting SRV’s dynamic growth (size and direction). They typically used SRV as
an input to their models for predicting the production in the future or as a tool to estimate
the total production from a well. In addition, the input data set for the training of both
approaches is mainly generated using a high-fidelity numerical simulator (c.f., [1]). Another
shortcoming of this approach is that most of the fractures along the length of the horizontal
well are assumed to have the same length. This assumption contradicts the field evidence
that only 70–80% of the stages contribute to production and that the majority of production
comes from only 20–30% of the clusters [12,13]. In addition, due to the perturbed stress
regime in multistage hydraulic fracking of horizontal stress (known as stress shadow),
hydraulic fractures in a horizontal well will have different topologies [14]. The low effi-
ciency is due to high uncertainty in unconventional reservoirs and an inefficient hydraulic
fracturing design. Therefore, there is a gap in the literature for a data-driven model that
can account for dynamic changes in the SRV along the length of the horizontal well.
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Sensitivity analysis (SA) is a common approach used for quantifying the importance
of the models’ input parameters to the variance of the output parameter(s). Generally, there
are two types of sensitivity analysis: global sensitivity analysis (GSA) and local sensitivity
analysis (LSA) [15,16]. The difference between these two approaches is that the uncertainty
of the output parameter from simultaneous changes in all input parameters is investigated
in GSA, while in LSA, the uncertainty of the individual parameters is studied. Refs. [17,18]
developed a GSA method for calculating the input variable(s) influences on the output
of a complicated mathematical model. The advantage of this method over other GSA
techniques is that it can be applied to highly nonlinear functions and even in situations
where the governing function is not known explicitly. The technique can also be used
to create reduced-order models (ROM) for the original function. ROM is a simplified
model, typically polynomial, built using a complex base model and can represent it with a
controlled error. This study used the Sobol GSA technique to build a ROM for estimating
SRV in near real-time. Ref. [19] used the Sobol method to rank the parameters affecting the
pore pressure and stresses around hydraulic fractures. They also developed a ROM for
calculating pressure and stresses around hydraulic fractures. Ref. [20] developed a fully
coupled hydro-mechanical ROM to simulate fractured media. Ref. [21] presented a ROM
for the propagation of multiple radial hydraulic fractures. Ref. [22] calculated the pressure
drop due to stress shadow along the fractures in a horizontal well using a data-based ROM.
Ref. [23] introduce sparse proper orthogonal decomposition (SPOD)–Galerkin methodology
for deriving ROMs for propagating fractures. In all the studies mentioned here, the ROM
is typically built for analyzing the primary hydraulic(s) behavior, and less attention is
given to estimating the SRV containing the induced and activated microfractures critical in
production from unconventional and tight reservoirs.

This paper uses a similar workflow to [24] to fill a gap in the literature and introduce a
framework for estimating the SRV in near real-time. Two central parts of this research are
a predictive (data-based) model and a ROM. In the first part, several ML algorithms are
developed and used to predict SRV in small time steps. A time-lapse prediction of SRV is
called dynamic SRV (DSRV). The hydraulic fracturing data of wells MIP-3H and MIP-5H
from the Marcellus Shale Energy and Environment Laboratory (MSEEL) project are used
to predict a volume enclosing most microseismic events and at different steps from the
beginning of the job. The second part developed an efficient near-real-time ROM for the
created data-driven models. The ROM is built based on previous studies (e.g., [24]) and
can easily be used to improve the effectiveness of the well stimulation process. It can also
be used to estimate the SRV (quantity of interest (QI) in this study) in near-real-time (i.e.,
seconds or minutes) and at any location and time along the lateral of the horizontal well.
Temporal and spatial estimations of the mentioned QIs are essential for visualizing the
fluid flow and depletion.

The paper is organized as follows. Section 2 briefly describes the workflow and details
of the methodologies used in this paper. The specifics of data-based models, including the
pre-processing, input and output data generation, and created models hyperparameters,
are summarized in Section 2.1. In Section 2.2, the mathematical background of the Sobol
global sensitivity analysis is presented. A workflow using the Sobol method for complex
(not known explicitly) functions is also presented. Then, the results of the generated ML
models are discussed in Section 3. Section 3.1 starts with the performance evaluation of
the models and then presents a GSA of the created models for ranking the importance of
the input parameters in Section 3.2. Later, a ROM for estimating SRV in near-real-time is
presented in Section 3.3. In Section 3.4, suggestions for further improvements of the models
are given. Lastly, a summary of the research and conclusions are drawn in Section 4.

2. Methodologies and Mathematical Formulation

During a typical hydraulic fracturing job, different types of information are recorded.
From this information, design-related parameters and rock response are the main parame-
ters investigated in this paper. The paper’s primary goal is to construct an efficient solution
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to relate these two types of parameters. Design-related parameters are those parameters
that are selected or measured before (or during) hydraulic fracturing. These parameters
include pump rate, fluid volume, proppant density, concentration, and the recorded surface
pump pressure. The response parameters are the ones caused by the first group of variables
(induced fractures in this study). The rock response due to the design parameters is the
passive microseismic data. Recorded microseismic data have been widely used to indicate
the stimulated reservoir volume extent. The workflow for creating a ROM in this paper
is shown in Figure 1. It starts with the recorded filed data from both types of parameters
during the hydraulic fracturing process to build the input dataset and the output variable,
which is a scalar representing SRV. The details of how the SRV is estimated are discussed
later. The next step in this workflow is to use a data-based approach to find a function that
maps the input variables to the quantity of interest. Then, this unknown function is used
to perform a GSA using the Sobol method for two primary purposes: quantify and rank
the importance of the input parameters and create a ROM using simple functions. The
ROM then can be simply implemented in an application such as MS Excel to estimate the
SRV in near time during the hydraulic fracturing process, allowing for changes in some
parameters for a more efficient stimulation job.
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2.1. Data-Based Framework for SRV Prediction

This section discusses the development of several ML models to address some chal-
lenging questions regarding the extent of the SRV in the MSEEL. The aim was to use the
operational inputs, which could be obtained before or during the wellbore stimulation
job. The models presented in this study include KNN, AdaBoost, Random Forest, ANN,
and a Stack model to predict the value of the SRV as a single scalar during and after the
stimulation job. The models are constructed using the data from two wells in MSEEL.
The following section provides a summary of the MSEEL project, the pre-processing, and
the steps taken to prepare the data for analysis which is the most time-consuming part
of the study. Then, the results of the five ML models are presented. A discussion on the
parameters affecting the models’ performance and an approach toward predicting the evo-
lution direction of SRV is also discussed. It should be noted that the python programming
language and the Orange software were used for the model developments in this study.

2.1.1. Used Dataset

The dataset used in this study is from MSEEL, an unconventional gas reservoir in
the Northeast of the U.S. The MSEEL project aims to provide a long-term field site to
develop and validate new knowledge and technology to improve recovery efficiency
and minimize environmental implications of unconventional resource development. The
project involves several universities, companies, and U.S. research labs for evaluations in
geology, geomechanics, completions, production, and completions areas. Figure 2 shows
the subsurface and surface information of MSEEL. This project is located in Morgantown,
WV. It consists of four horizontal wells, one vertical microseismic monitoring well, and
five surface seismic locations. Of the four horizontal wells on the site, there was access to
fracturing and microseismic monitoring of wells MIP-3H and MIP-5H. Therefore, the data
from these two wells were used for training and testing the ML models.
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Figure 2. Surface and subsurface information about the MSEEL project. (a) The surface location of
the site. The field is located next to the Monongalia River in Morgantown, WV. It consists of four
horizontal wells, one microseismic monitoring well (the dot between wells MIP-3H and MIP-5H),
and five surface seismic stations (yellow dots). (b) Location and direction of the two wells used in
this study. Figures adapted from [25].

The two wells are parallel, and the monitoring well was drilled in the spacing between
the wells, as shown in Figure 3. Well MIP-3H was stimulated by 28 stages, out of which
22 stages were monitored using microseismic monitoring. In addition, well MIP-5H was
fractured using 30 stages, and poor MS monitoring was available at stages greater than 22.
Figure 3b shows the location of the MSE, colored by stage. As can be seen, the directions of
the microseismic clouds are perpendicular to the well and separate from each other. These
clouds are good representatives of SRV.
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2.1.2. Model Construction

The volumes (rectangles in 2D) that represent each stage of microseismic activities
are shown in Figure 4. SRV at each step (using this approach) is calculated using volumes
enclosing most of the microseismic events and represented as the QI. Several input variables,
such as proppant volume, fluid volume, average treating pressure, etc., will be used as the
model output (Figure 4). It should be noted that each of the hydraulic fracturing stages
will be divided into multiple steps containing unique fluid type, proppant concentration,
etc. Please also note that the ANN network in Figure 4 is used to illustrate the relationship
between input and output variables. Details of the created ML models are discussed in
the following sections. An approach for creating more advanced ROM can be to use a
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combination of datasets generated by simulators and actual data. In this case, each method
is intended to generate the required data to make the models in another approach as
detailed as possible (fill the missing data). However, limited resources for running the
high-fidelity simulators provided access to only the actual field data.
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Figure 4. The conceptual workflow of estimating SRV in this study.

The pre-processing stage included converting the MSEEL reports from pdf format to
MS Excel file and combining them as a single file. The variables include stage, step, step
name, slurry volume, pump rate, pump time, cumulative pump time (new variable), fluid
name, ramp up fluid, proppant name, proppant concentration, proppant mass, average
treating pressure, maximum treating pressure, and minimum treating pressure. Table 1
shows a few examples of these variables for stage 8 of MIP-3H. In the table, the concept
of steps is shown. Basically, a step is a substep of a stage with unique properties. This
approach also helped to increase the sample number to ~800 and apply a model that can
predict the SRV volume in near-real-time. Moreover, a new variable called cumulative
pump time is created in the table to relate the input variables at each step. Later, this new
variable will be used to correlate the observed MS events to the pump schedule.

Table 1. Input table generated from MSEEL stimulation reports.

Well Stage Step Step
Name

Slurry
Vol.

Pump
Rate

Pump
Time

Pump
Time
Cum.

Fluid
Name

Ramp
Fluid
Vol.

Propp.
Name

Propp.
Conc.

Propp.
Mass

Avg.
Treat-
ing

Press.

Max.
Treat-
ing

Press.

Min.
Treat-
ing

Press.

bbl bbl/min min min gal ppa lb psi psi psi

MIP-3H 8 1 Rate 20 15 01.30 1.30 1 840 0 0 0 5470 5833 4303
MIP-3H 8 2 Acid 71 15 04.80 6.10 2 2999 0 0 0 6028 6101 5839
MIP-3H 8 3 Pad 595 80 07.40 13.50 1 25,000 0 0 0 7996 9143 6028
MIP-3H 8 4 0.25 PPA 529 80 06.60 20.10 1 22,000 100 0.20 5500 8991 9089 8900
MIP-3H 8 5 0.5 PPA 803 80 10.00 30.10 1 33,000 100 0.50 16,500 8877 8902 8855
MIP-3H 8 6 0.75 PPA 902 80 11.30 41.40 1 36,667 100 0.70 27,500 8913 8948 8893
MIP-3H 8 7 1 PPA 1149 80 14.40 55.80 1 46,200 100 1.00 46,200 8951 8988 8915
MIP-3H 8 8 1.5 PPA 1025 80 12.80 58.60 1 40,333 100 1.50 60,449 9058 9150 8944
MIP-3H 8 9 1.75 PPA 1156 80 14.50 83.10 1 44,982 100 1.80 78,718 9153 9197 9124
MIP-3H 8 10 2 PPA 748 80 09.40 92.50 1 28,812 100 2.00 57,624 9066 9200 8361

Table 2 shows the generated output table from the recorded microseismic events.
The data contained the x, y, and z location of the events and their magnitude. However,
the magnitudes were excluded from this study and can be used later for adjusting the
calculated SRV. Cumulative time (from the start of fracking) columns were created in the
output table, similar to the cumulative time from the input table. In that period, all recorded
microseismic events were assigned to the corresponding input step, and the volume of a
geometrical shape enclosing the points was calculated as DSRV. Next, a wrapper file was
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created to loop through the stage, step, and cumulative time, find the corresponding MS
events for that specific step, and calculate the SRV.

Table 2. The generated table for MS.

Well Stage Step Time
Time

Difference Cum. Time
YLoc XLoc TVD (Z)

Ft Ft Ft

MIP-5H 2 1 10:30:10 00:00:00 00:00:00 407,735.31 1,831,598.25 −5986
MIP-5H 2 1 10:30:34 00:00:24 00:00:24 407,753.94 1,831,645.44 −5968
MIP-5H 2 1 10:30:41 00:00:07 00:00:31 407,653.12 1,831,692.37 −6271
MIP-5H 2 2 10:32:38 00:01:57 00:02:28 407,590.36 1,831,319.54 −5865
MIP-5H 2 3 10:37:08 00:04:30 00:06:58 407,606.55 1,831,496.50 −5840
MIP-5H 2 3 10:44:45 00:07:37 00:14:35 1,831,301.72 407,706.51 −6135
MIP-5H 2 7 11:01:14 00:16:29 00:31:04 1,831,879.96 407,641.13 −5475
MIP-5H 2 9 11:11:24 00:10:10 00:41:14 1,831,688.69 407,965.96 −6320
MIP-5H 2 9 11:11:53 00:00:29 00:41:43 1,831,600.45 408,043.02 −6503
MIP-5H 2 9 11:14:01 00:02:08 00:43:51 1,831,564.41 407,803.99 −6201

This approach resulted in a group of distinguished MS events for each step. Figure 5
shows an example of such grouping for MIP-3H stage 7. Note that the MS events are
color-coded for each step (note: the steps are smaller periods inside each stage). Also note
that two parameters are changing from one step to another. These parameters are the
extent of the SRV and its enclosing points (i.e., the density of the MS events in the enclosed
geometry). This study focused only on estimating the extent of the SRV. However, it is
critical to consider the density of the changes in the SRV, valuable information that can be
obtained from the MS points in the plots, and the direction of the SRV growth. For example,
the direction of SRV growth is NW–SE and NE–SW in the 2D plots shown below. The SRV
direction can be further analyzed to track the evolution of the SRV in near-real-time.
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respectively. The microseismic events are color-coded for each step (a period with a unique fluid, 
Figure 5. Example of MS event observed in MIP-3H stage 7. (a–c) 3D view and two vertical planes
respectively. The microseismic events are color-coded for each step (a period with a unique fluid,
pump, and proppant properties inside a specific stage, where each stage could be divided into several
steps) discussed above. One 3D and two 2D snapshots of the MS events are shown in the picture.

As was mentioned, the last step towards creating the output parameter (i.e., SRV)
is estimating a volume enclosing the MS events. For this purpose, a threshold may be
devised that eliminates the isolated MS events and does not seem to contribute to the
overall SRV estimations. This study enclosed all points in an irregular geometry, and
later in the cleaning data section, the samples with volumes much bigger than a certain
threshold are removed from the dataset. Figure 6 shows two examples of the estimated
SRV for MIP-3H stage 7 and MIP-5H stage 12. The volumes that are calculated as SRV are
color-coded for the steps.
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Figure 6. Example of the calculated SRV from MS events for two stages of MSEEL. (a) MIP-3H
stage 7 (b) MIP-5H stage 12.

Once the SRVs (or DSRV) are known for each step, they are added to the input
table as a new column and used as our target variables. The next step toward building
the ML models was to perform some exploratory data analysis to find the relationship
between the input parameters and their relationship with the output parameters. This was
performed in several ways. An example is plotted in Figure 7. This study started with
all 15 variables that were available in the input table. As shown in the confusion matrix,
several relationships were identified between the input samples. For example, average,
max, and min pressures have similar effects on the SRV, as highlighted in green boxes.
In addition, some variables seem to have linear correlation (see, for example, ramp-up
fluid volume and slurry volume). Moreover, some of the inputs resulted in multiple SRVs
(e.g., pump rate) and could negatively impact the model performance. Finally, some of the
variables have outliers that need to be removed. An example of this case is the estimated
SRV, as explained previously. Some of the SRV values were considerably bigger than the
others, indicating the non-productive MS events.

As a result, some of the mentioned columns were removed from the input features,
and some were corrected by removing outliers to avoid any model bias (Figure 8). Finally,
eight parameters were selected from the analysis performed in the previous step. The final
input/output table is shown in Table 3. The parameter “well name” is selected metadata.
The input columns used to create the models were stage, step, slurry volume, pump time,
cumulative pump, proppant concentration, proppant mass, and average treating pressure.
Note that some of the SRVs in the output column are zero, indicating no creation of SRV.
Some of these rows with zero SRV were also removed from the data, especially if they were
in the middle of the stage, where the pump rate and prop concentrations were maximum
(it was assumed that the high injection rate should result in some SRV creation, especially
if the steps before or after created SRV). The zero SRV can be related to an error in MS
monitoring or not creating an SRV (smaller chance).

Table 3. The final set of input/output. The maximum calculated SRV in this study is about ~14 times
bigger than what was reported in Barnett shale [26].

Well Stage Step
Slurry

Volume
Pump
Time

Pump Time
Cum.

Propp.
Conc.

Propp.
Mass

Avg. Treating
Press.

SRV
(Estimated)

bbl min min PPA lb × 103 psi ft3

Min - 1 1 - - 0 0 - 5000 0
Max - 26 24 1500 20 160 4 100 9000 3 × 108
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After all the changes were made to the initial data, 582 samples remained. The
remaining samples were then grouped into 482 and 100 samples (80/20) for training and
testing. It should also be noted that the data was shuffled and normalized to a [0, 1] interval
before creating the ML models.

A heat map of the selected input variables is shown in Figure 9. As can be seen, the
parameters that affect the output parameters the most are slurry volume, pump time, and
proppant mass. In addition, the least affecting parameters are stage and prop concentration.
Moreover, the relationship between pump time and slurry volume has strong correlation
weights in modeling, as shown in the figure.

Five different ML models were trained and tested on the processed data table. The
models are AdaBoost, KNN, Random Forest, AAN, and a stack model including the
Random Forest, KNN, and AdaBoost. For the KNN model, the number of neighbors, metric,
and weight were set as five; Euclidian and distance were set as the model parameters. The
AdaBoost model used the number of estimators and learning rate of 100 and 1, respectively.
In addition, SAMM.R [27] classification algorithm and exponential regression loss function
were used. For the Random Forest model, the number of trees was set as 500, the number
of attributes at each split as 7, and limited the depth of individual trees to 20. Moreover,
three hidden layers were used with 80 nodes each for the ANN model, the ReLu activation
function, and the Adam optimizer. Furthermore, the regularization was set as 0.01 and
the maximum number of iterations as 100. Lastly, the created Random Forest, KNN, and
AdaBoost were used as the learners of the Stack model. In addition, the Ridge Regression
algorithm was used for aggregating the input models. The selection of all of the mentioned
hyperparameters was based on experimentation of the model performance on the test set.
The performance of these algorithms is discussed in the results and discussion section.
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2.2. Global Sensitivity Analysis and Reduced Order Model

A ROM has the following properties: (1) it is a mathematically simple function that
maps a set of input variables to QI (i.e., SRV in the current study), (2) it can replace the
original function, and (3) its error compared to the original model can be controlled. The
actual function may be known, mathematically complicated, or unknown. This technique
may be applied to pure data- and physics-based models. This paper used the [17] method



Energies 2022, 15, 5582 11 of 23

to produce the final ROM from the created data-based models. The technique is a powerful
global sensitivity analysis method, which can also be used to build ROMs. The term ROM
is used in this paper to refer to simple mathematical equations that relate input parameters
of a known (or unknown) function to an output QI. These mathematical equations can
replace the primary function with a controlled error. Creating ROM from raw field data
can be extremely helpful from several perspectives. ROMs may be used in simple software
packages by the field engineers (e.g., MS Excel) to cross-validate solutions obtained by
other methods or replace them. Solutions to these functions are typically obtained faster
than the original function. Therefore, they can be used for real-time decision-making. For
example, a reasonably complex problem requiring several hours of numerical calculations
can be obtained in a few seconds with the corresponding ROM.

2.2.1. The Mathematical Background of the Sobol Method

The mathematical formulation of the Sobol technique for an arbitrary function f (ML
models discussed in the previous section) is summarized as follows [17]:

y = f (x) (1)

where x is a set of input parameters on the n-dimensional hypercube such that:

Ωn := {x|0 ≤ xi ≤ 1, i = 1, . . . , n}

Function f can be written as the ANAVO representation (abbreviated from Analysis
of Variance) as:

f (x) = f0 +
n

∑
s=1

n

∑
i1<...<is

fi1 ....is
(
xi1 , . . . , xi5

)
, 1 ≤ i1 < . . . < is ≤ n, (2)

One may rearrange the previous equation to obtain a series of increasing order Sobol
functions as follows:

f (x) = f0 +
n

∑
i=1

fi(xi) +
n

∑
i=1

n

∑
j=i+1

fij
(
xi, xj

)
+ . . . + fi...n(x1, . . . , xn) (3)

The following statements should be satisfied to make the above equation applicable:

1. f 0 should be constant.
2. The integral of each member over its variables = 0

∫ 1

0
fi1 ...is

(
xi1 , . . . , xi5

)
dxk = 0 ∀k = i1, . . . ., is (4)

3 All the terms in Equation (3) are orthogonal, meaning that if (i1,..., is) 6= (j1, . . . , jt), then∫
Ωn

fi1 ....is f j1 ....jt dx = 0 (5)

where
f0 =

∫
Ωn

f (x)dx = 0 (6)

fi(xi) =
∫

Ωn
f (xi, x∼i)dx∼i − f0 (7)

fij
(

xi, xj
)
=
∫

Ωn−2
f
(
xi, xj,x∼ij

)
dx∼ij − f0 − fi(xi)− f j

(
xj
)

(8)
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where x∼i is the vector corresponding to all variables except xi in the input set x, and x∼ij
is the vector corresponding to all variables except xi and xj in the input set x. Assuming
that f (x) is square-integrable, the total variance of f is given by:

D = V[ f ] =
∫

Ωn
f 2(x)dx− f 2

0 =
n

∑
s=1

n

∑
i1<...<is

f 2
i1 ...is

(
xi1 , . . . , xi5

)
dxi1 . . . . dxis (9)

Equation (9) can also be written in terms of the partial variances of f as:

D =
n

∑
s=1

n

∑
i1<...<is

Di1 ....is =
n

∑
i=1

Di +
n

∑
i=1

n

∑
j=i+1

Dij + . . . .D1...n (10)

where Di, Dij, . . . ., Di...j can be calculated by integrating the corresponding Sobol functions
as follows:

Di =
∫

Ω1
f 2
i (xi)dxi (11)

Dij =
∫

Ω2

f 2
ij
(
xi, xj

)
dxidxj (12)

Di1 ....is =
∫

Ω
f 2
i1 ...is

(
xi1 , . . . , xis

)
dxi1 . . . dxis (13)

From the descriptions, Sobol indices are the ratio of the partial variances to the total
variance as:

Si =
Di
D

(14)

Sij =
Dij

D
(15)

Si1 ...is =
Di1 ...is

D
(16)

In this preparation, higher indices mean a higher effect on the variation of the
output parameter. In addition, Sobol indices are non-negative indices that have the
following property:

n

∑
s=1

n

∑
i1<...<is

Si1 ....is =
n

∑
i=1

Si +
n

∑
i=1

n

∑
j=i+1

Sij + . . . .S1...n = 1 (17)

Sobol indices allow for conducting evaluations according to their Sobol indices to
order input variables.

2.2.2. Sobol Method for Complex Functions

For functions that are not polynomials, a Monte Carlo integration is necessary to
calculate the integrals required by Sobol analysis [18]. Sobol functions can be calculated
as follows:

f0 =
1
N

N

∑
m=1

f (xm) (18)

D =
1
N

N

∑
m=1

f 2(xm)− f0
2

(19)

Di =
1
N

N

∑
m=1

f (xm) f (xim, xc
∼im)− f0

2
(20)

Dij =
1
N

N

∑
m=1

f (xm) f (xim, xc
∼im)− Di − Dj − f0

2
(21)
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where m is the test number, and N is the sample size of the inputs.
Figure 1 showed the central idea of the approach to creating ROM for estimating SRV

from field observations used in this study. As explained in the previous sections, several
ML models were created to predict the SRV as a scalar in a dynamic fashion (i.e., DSRV).
The ML models are used separately as the f function in Equations (1) and (18). However,
the reported ROM in this write-up is built using the AdaBoost model. Then, using the
Sobol method, this study first identifies the importance of the input parameters in the
ANN models. As stated before, the advantage of the Sobol method in ranking the input
parameters is that it can account for interaction terms. Finally, the ROM is built using the
most dominant input parameters.

3. Results and Discussion

The hydraulic fracturing process is typically executed one stage at a time from the toe
of the horizontal to the heel. At each stage, a certain amount of fracturing fluid is injected
into the wellbore to break the rock and create new surfaces in the reservoir that can help
increase the conductivity (k × w) and hydrocarbon flow toward the wellbore from the
stimulated region. As a result of this injection and depending on several variables such
as the amount of injected fluid, local stress in the rock, and natural fracture density and
orientation of the natural fractures in the pay zone, different “SRV” sizes are generated.
The SRV extent is usually tracked using three different methods: direct far-field, direct
near-wellbore, and indirect fracture diagnostics [28]. The direct far-field techniques are
suited to give the global visual perspective about fracture growth and are conducted in a
separate well. Tiltmeter and microseismic fracture mapping are the two commonly used
techniques for this type of fracture diagnostics.

On the contrary, the second group of fracture diagnostics techniques is implemented
in the same well. It gives information about near-wellbore fracture parameters such as
height, width, and proppant placement. Finally, the most used fracture diagnostics group
is indirect fracture diagnostics. The techniques used in this group can provide estimates of
fracture conductivity, dimension, and stress. This group includes fracture design model
optimization, pressure transient testing, and production data analysis [28].

The multistage hydraulic fracturing process simulation is tedious and requires high-
fidelity models for many reasons. As mentioned, this study used the available data collected
while or before performing hydraulic fracturing as input. These variables include fracturing
fluid type, rate, treating pressure, and proppant properties. On the output side, a volume
enclosing the microseismic events (MSE) from hydraulic fracturing processes is estimated
and used as the output variable.

A function that maps a set of inputs to output parameters is needed to create the
ROM. In the case of SRV prediction, such a function needs to map the hydraulic fracturing
parameters such as pump rate and proppant volume to the volume and growth direction of
the SRV. The function need not be known explicitly. Possible options for such a prediction
could be high-fidelity physics-based models, data-driven models, or a combination of both,
also known as hybrid models. A high-fidelity numerical simulator can be used to generate
the synthetic data required for creating ROM. In this case, an example is to use GEOS [29]
to (1) match the hydraulic fracturing operation in the two MSEEL wells and (2) generate
the dataset required for the Monte Carlo simulation. Then, a similar approach to the one
discussed in the later sections of the paper can be used to construct the ROM. Figure 10
shows an example of the applicability of GEOS for this purpose. In this example, because
of a hydraulic fracture propagation into a naturally fractured reservoir, a microseismic map
is generated that can be used to estimate SRV.
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Figure 10. Examples of synthetic microseismic events using a high-fidelity simulator. (a) Hydraulic
fractures propagating in naturally fractured rock; (b) associated microseismic events (modified
after [30]).

It is essential to characterize and map fractures and fracture networks, including their
topological evolution during stimulation and the hydrocarbon flow through them over
time. Such a characterization is possible through the concept of SRV. The term “fracture”
in the above discussions is used to present rock discontinuities in the macroscopic scale
(i.e., cm to m). These fractures can be in the form of induced or pre-existing. They can also
take or do not take fluid; however, they all have two distinct surfaces that can move in
shear and tensile modes with respect to each other. In addition, the length of these fractures
may change due to pressure/stress changes in the reservoir and fracture. The conductive
network of fractures (induced and pre-existing) that can take fluid and are connected is
referred to as SRV and is of particular interest from the hydrocarbon production aspect.
The following section discusses the results of the data-based models and then performs a
GSA. Finally, the ROM is constructed based on the dominant parameters from the GSA.

3.1. ML Models Performances

The created models’ performances on the training set, including 482 samples, are
shown in Figure 11. The x-axis on the plots shows the predicted values of the SRV, and the
y-axis shows the original value from the test set. In addition, the line on the plots shows the
R-Square of each model. Moreover, the points are color-coded based on the well number.
Please note that the model’s performance on the training set should not be used as a metric
for model performance. As can be seen, the R-square for AdaBoost, KNN, and stack is 1 for
the train set, while Random Forest and ANN have R-squares of 0.96 and 0.85 (overall). All
models perform slightly better on the well MIP-3H compared with MIP-5H. The reason
might be that the number of data samples in MIP-5H was smaller, and there was an error
for several points in the middle stages. More discussions will be provided on this point
later in this section.

The test data included 100 data samples from both wells. Figure 12 shows the model
performance of the models on the test set. As expected, the performance is lower on the
test model. Again, the results are color-coded for the well number and show that the model
performance is generally better for MIP-3H. The overall R-square for test sets are 0.69, 0.60,
0.68, 0.72 and 0.64 for AdaBoost, KNN, Random Forest, and Stack models, respectively.
As can be seen, among all models, ANN had a better performance on the test set with
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a 0.72 R-square. The model’s performance may be improved by adding more training
samples and details about the target formation properties. For example, an idea about the
distribution, density, and orientation of natural fractures may help better predict the SRV.
One reason for lower overall R-squares is the lower performance on well MIP-5H, which
is caused by the poor prediction of six points. The points are highlighted in the figure
with a yellow shaded area. This weak performance could be an error in data collection or
weak engineering or execution of the fracturing job in that stage. To further investigate
the reason behind models’ weak performances on these six points, another investigation
was performed on the mentioned points, and the results are discussed next. Note that
other metrics may be used to evaluate the performances of the models, but they have been
skipped in this study.
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Figure 11. The model performances on the training data. (a) AdaBoost, (b) KNN, (c) Random Forest,
(d) ANN, and (e) Stack. The x-axis in the plots shows the predicted values by the models, and the
y-axis represents the actual values.

To further investigate the reason for the weak performance of the models, the results
are plotted as a function of three variables, namely, stage number, step, and proppant
concentration. For this purpose, the AdaBoost model was arbitrarily selected. However, the
six points were observed in other models as well. Figure 13 shows the results for the three
selected variables. In this presentation, the size of each bubble represents the magnitude
of the selected variable. For example, a bigger circle means the stage number is bigger
(i.e., closer to the heel). Figure 13a shows the results for stage number. As can be seen,
the incorrectly predicted points are all from the stage in the middle of the well. It can
also be concluded that the steps in five points are toward the end of the fracturing job for
that specific stage, where the pump rates and proppant concentrations were the highest.
Figure 13 confirms this observation. Five of the incorrectly predicted points were from high
proppant concentrations in that figure. More investigations may be conducted to further
analyze the poor model performance in these six points.
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Figure 12. Models’ performances, (a) AdaBoost, (b) KNN, (c) Random Forest, (d) ANN, and (e)
Stack. The x-axis in the plots shows the predicted values by the models, and the y-axis represents the
actual values.
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Figure 13. Further analysis of the models’ weak performances on well MIP-5H. Circle size represents:
(a) stage, (b) step, and (c) proppant concentration. The x-axis in the plots shows the predicted values
by the models, and the y-axis represents the actual values.

3.2. Global Sensitivity Analysis on Parameters Affecting the SRV

In both physics- and data-based approaches discussed in the previous sections, a
Monte Carlo simulation is required to create the ROM since the governing function is not
known. Therefore, a set of input data (variables) and an output QI should be generated.
This study used the AdaBoost model, hereafter, for performing the analysis. The eight
parameters that were used for creating the ML models were used here as well. The first
step toward generating any data-based ROM with real-time prediction capabilities is to
identify the dominant parameters that affect the variation in the output parameter. The
function may later be used to create a ROM that can predict the QI in real-time.
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A Monte Carlo simulation using 180,000 combinations from the input variables (c.f.,
Table 3) was created and used in the ML model to generate the QI (i.e., DSRV). The ranges
of parameters are given in Table 3. The Sobol technique was then applied to the set to
estimate the corresponding indices. This analysis was limited to second-order indices
and neglected higher-order indices (it will become obvious later that they are negligible).
Figure 14 shows the first- and second-order Sobol indices. As seen in the figure, among the
first order Sobol indices, the slurry volume (i.e., S3) has the most significant effect (~0.32)
on SRV. This means that 32% of changes in SRV predictions using the created ML model
come from the slurry volume alone. The second and third most dominant variables among
first-order indices are the stage number and pump time with 25% and 21%, respectively.
Figure 14b shows the Sobol indices of the second-order indices of the input variables. For
example, S13 is the Sobol index related to the simultaneously changing variables S1 and S3.
As shown in the figure, S16 has the most dominant effect among the rest of the second-order
indices (~6%). As mentioned, higher-order Sobol indices, such as S123, were neglected. The
main reason for ignoring those terms is that the summation of the considered indices up to
second order adds up to >90% of the changes in the estimated SRV. If more precise results
are desired, one can include the higher-order terms with the same methodology described
above. Based on the results in this section, one may represent ~90% of the changes in the
pressure drop by considering the following Sobol indices:

S1 + S2 + S3 + S5 + S13 + S16 = 0.9 of the SRV calculated from the ML model
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to the percentage of changes from simultaneous changes in the I and j variables.

Therefore, these four variables and some of their second-order interactions are used to
create the ROM.

3.3. ROM for Predicting SRV Using Recorded Field Data

This section presents the creation of the ROM by applying the Sobol method to the
dominant variables discussed in the last section. The ROM can be used to predict the SRV
(same as the ML model) and has two main advantages over the numerical and data-based
models: (1) it can replace the simulations with a relatively simple mathematical function
and a reasonable accuracy, and (2) the CPU run time can be reduced significantly. Since
the governing function for estimating the SRV from hydraulic fracturing parameters is not
known, a Monte Carlo simulation is used to carry out some of the required integrations.
Figure 15 shows the results for first- and second-order Sobol functions obtained by this
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approach. The y-axis of the plots has the same dimension as SRV (i.e., L3) and indicates
the changes in the estimated SRV from the corresponding input variable. As shown in the
figure, the estimated SRV changes tremendously for the stages in the middle of the well for
an unknown reason. This behavior change could be due to the lack of engineering design,
erroneous MS recording, or uncertainty in the target formation properties. In addition, it
is observed that for the first few initial steps, the estimated SRV does not change much.
However, the estimation changes significantly for the steps where the pump rate reaches
its maximum and proppant concentration is high. Similar trends could be observed for
slurry volume and cumulative pump time.
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Figure 15. The first- and second-order Sobol functions. fi (a–d) and fij (e,f) are the corresponding
functions of xi and xij. This study selected eight input variables for the sensitivity analysis. The
variables and their ranges are summarized in Table 3.
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To obtain the mathematical expression of the scatter plots, fit functions (solid blue line
in single-term functions and surface in double-term functions) are used. The fit can then be
used to replace the integrations that are required for constructing the ROM.

Using the fit functions that were obtained in the previous section and Equation (3),
one can construct the ROM. For this purpose, the Sobol functions need to be built using the
individual and second-order fit function. The summary of the Sobol functions is shown
in Table 4. The lower-case f functions in the table refer to fit functions, and upper-case F
functions refer to the Sobol functions.

Table 4. The reduced-order functions for estimating SRV using input variables.

Function Mathematical Form

F0 f0

F1 f1 − F0

F2 f2 − F0

F3 f3 − F0

F5 f5 − F0

F13 f13 − F1 − F3 − f0

F16 f16 − F1 − F6 − f0

Based on the presented results, the reduced-order function for predicting the SRV can
be written as:

SRV = F0 + F1 + F2 + F3 + F5 + F13 + F16 (22)

The presented ROM can replace the complex high-fidelity models and the created ML
models for estimating SRV. The associated error to this ROM should be about 10% with
respect to the AdaBoost model that was used.

3.4. Steps to Improve the Models

Two variables control the created SRV: operational parameters and rock geomechanical
and mineralogical variables. Operational parameters include pump schedule (e.g., duration,
rate), recorded pressure, and perforation design. However, rock-related parameters include
rock mineralogy, stress state, natural fracture properties such as density and orientation
relative to the wellbore direction, layer height in the pay zone, etc. This study only limited
the operational parameters because of limited data availability. Including the rock-related
parameters will improve the performance of the models. In addition, the number of
examples in this study was relatively small (580), and adding more examples is expected to
improve the performance. Another approach that one may take to improve the performance
of these models is to apply some unsupervised learning algorithms to the data. For example,
Figure 16 shows the result of the self-organizing map (SOM) on different properties. The
algorithm can be used to cluster the input data based on some variables. The figure applies
the algorithm to mesh size, fluid type, and proppant concentration in the figure, as can be
seen. For example, in Figure 16b, the samples with WF115 seem to have similar behavior.
In addition, the points show similar behavior when the proppant concentration is less than
one bb/gal (Figure 16c). This clustering helps to further decrease the model errors.
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Figure 16. An unsupervised learning algorithm clusters the data using a SOM; (a) proppant size, (b)
fluid type, and (c) proppant concentration.

Another parameter that was ignored in this study was MS events magnitude. The mag-
nitude of the events plays a role in the intensity of permeability changes in the stimulated
zone. In future studies, this property will be included in models. In addition, one important
aspect of the SRV evolution is its growth direction. The fractures will not always propagate
symmetrically. The fracture propagation direction can be affected due to stress shadowing
from previous steps or layer confinement in height. Another idea to further address the
evolution direction of SRV is the quadrant idea. This approach divides a sphere (in 3D) into
multiple equal-sized quadrants. Suppose the frac fluid is injected at the point center of a
sphere, and the reservoir rock is uniformly diffusive to fluids expanding radially. In that
case, the sphere can be a proxy shape for isotropic, homogenous reservoir rock. However,
this is not always the case. Figure 17 shows the quadrant idea. In this approach, one needs
to start with a small circle centered at the wellbore (Figure 17b). A new circle is drawn from
the same center with a bigger radius at each step. By tracking the number of points in each
quadrant, one may estimate the evolution direction of SRV. For example, more points are in
the three quadrants of NE, NE, and SW of the example in Figure 17. Therefore, it may be
concluded that the SRV is blocked from propagating in the NW quadrant. A look at the
design and location of the wheels with geological data will be a helpful addition to this
analysis to determine the reason.
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Figure 17. An algorithm for tracking the growth direction of SRV. (a) Conceptual sphere representing
the SRV growth in a homogeneous and isotropic condition (picture adapted from [31]) and (b) 2D
representation of the observed MS events and their corresponding time-laps (color-coded) showing
the SRV growth.
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4. Conclusions

This paper summarized the following developments: (1) a data-driven model to
dynamically predict the SRV, and (2) a ROM for predicting the SRV. The SRV in this
approach is called DSRV and can be used for real-time analysis of the induced stimulated
zone evolution. Each hydraulic fracturing stage has been broken down into several steps in
this approach, each having unique properties such as pump rate, proppant concentration,
and average treating pressure. These properties were used in the input feature table. A data
set from the MSEEL project, including 58 stages from two wells (MIP-3H and 5H), was used.
On the output side, irregular geometrical shapes were automatically created around each
recorded microseismic cloud at each step and represented as SRV. Then the time of each
step was correlated to the SRV volume to make the required table for the model creation.
Several ML models were implemented on the data, including AdaBoost, KNN, ANN,
Random Forest, and a stack algorithm. The models had an R-Square metric of 0.65–0.78 on
the test data, which is an acceptable range for such a limited dataset. The performance
of the models can be improved by adding more training examples (this study only used
~500 samples). Models showed weaker performance in the middle stages of MIP-5H,
negatively impacting the overall performance. This study also proposed two approaches to
estimate the evolution of SRV: volume prediction and quadrant. The volume prediction
in real-time was presented in this study. In future models, the quadrant idea to estimate
the growth direction of SRV can be included. Model performances can be improved by
adding more data samples and information about the target formation. Also, the MS events’
magnitudes will be included to better estimate SRV. For the ROM, Sobol GSA was used.
First, the technique to identify the dominant variables was used. It was observed that Stage
number, step number, slurry volume, pump time, and their combinations account for 90%
of the ML model predictions.
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