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Abstract: Generating aerodynamic downforce for the wheels on the front axle of a car is a much more
difficult task than for the rear axle. This paper, submitted to the special issue of Energies “Future of
Road Vehicle Aerodynamics”, presents an unusual solution to increase the aerodynamic downforce of
the front axle for cars with covered wheels, with the use of an elastic splitter. The effect of the inflatable
splitter on the aerodynamic forces and moments was studied in a DrivAer passenger car and a fast
sports car, Arrinera Hussarya. Providing that the ground clearance was low enough, the proposed
solution was successful in increasing the front axle downforce without a significant increase in drag
force. The possibility of emergency application of such a splitter in the configuration of the body
rotated by up to 2 degrees with the front end raised was also analyzed. An elastic, deformed splitter
remained effective for the nonzero pitch case. The results of the calculations are presented in the form
of numerical data of aerodynamic forces, pressure and velocity distributions, and their comparisons.
The benefits of the elastic splitter are documented, and the noted disadvantages are discussed.

Keywords: fluid–structure interaction; inflatable splitter; computational fluid dynamics; CFD
simulations; aerodynamic downforce

1. Introduction

Some racing classes require an uncovered wheel design. For various reasons, most
other cars have covered wheels. Among others, uncovered wheels are the strongest source
of aerodynamic drag. Therefore, for aerodynamic reasons, cars typically use fenders hiding
the wheels or have their wheels completely covered. Hiding the wheels in the body contour,
on the one hand, lowers its aerodynamic resistance and, on the other hand, makes it
difficult to shape it in such a way as to obtain the necessary aerodynamic downforce of the
front axle.

The car’s directional stability depends on the relationship between the front and rear
axle drift angles. Larger drift angles of the front axle than the rear axle make the car
directionally stable. As the drift angles depend mainly on the wheel vertical load, the
downforce of the front wheels should generally be greater than that of the rear wheels. The
aerodynamic forces, and also the downforce, depend on the speed squared. Depending
on the driver’s preference, the car can be set to oversteer, neutral, or understeer [1]. It
seems that a car with neutral or slightly understeer characteristics gives drivers more room
for maneuver. Operating the torque transferred to the rear axle wheels makes it possible
to change the directional characteristics of the car to oversteer. Therefore, the body of
the car and its additional elements should be shaped in such a way that the directional
characteristics of the car do not change significantly with the change in the driving speed.
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Consequently, the aerodynamic loads on the front axle should be slightly smaller than on
the rear axle within the whole range of usable speeds.

This is how it looks from the point of view of directional stability. However, there is
also a problem of longitudinal stability [2]. The aerodynamic characteristics of the body
and the additional elements placed on it depend on the angle of the body in relation to the
road as well as the distance of the body from the road. Wheel suspensions must be flexible
and the body usually oscillates about the body’s transverse axis, changing the distance
of the front and rear of the body from the road. Typically, lifting the front end causes
the aerodynamic downforce of the front axle wheels to decrease. The same occurs when
driving over hilltops or when the body enters the aerodynamic wake of the preceding car.

Designers of cars with covered wheels have no problem providing significant aerody-
namic downforce to the car’s rear axle; see [3–8]. Using inverted wings and diffusers in
the rear of the body is a typical solution for aerodynamic downforce of the rear wheels [9].
While aerodynamic downforce for the rear wheels can be realized with a relatively small
increase in aerodynamic drag, generating aerodynamic downforce for the front wheels of
a car with covered wheels has always been a problem. In the body’s front part, a range
of solutions is used: slanted inverted wings (canards), splitters, air dams, and local dif-
fusers [10]. The aerodynamic characteristics of aerodynamic elements alone do not reflect
their actual properties when mounted on a car body. This is especially true for aerodynamic
elements designed to operate at the front of the body. The elements themselves generate
aerodynamic forces, but these are compensated for by changes in the body flow structures
behind them. In summary, generating vertical forces at the front end of a vehicle is difficult,
as indicated in [11,12]. The use of flat undersides and flat splitters makes them extremely
sensitive to the amount of underbody clearance. Additionally, the stiffness of the front and
rear suspension affects the angular position of the body with respect to the roadway.

The importance of the aerodynamic downforce of the front wheels is highlighted by a
number of spectacular accidents that occurred on race tracks over the years. For example,
in 1999, when a vehicle followed its predecessor [13], or when climbing a hill [14], causing
aerodynamic components in the front of the body to stop working. Analysis of aerodynamic
force changes in a much wider range of pitch angles was performed in [15]. There is a
film [16] presenting the causes and course of the accident of Yannick Dalmas in a Porsche
GT1 in Road Atlanta very precisely. The driver of the Porsche, being in the aerodynamic
wake of its predecessor, accelerated too rapidly, causing a loss of downforce on the front
axle and ending in a loop in the air and a lucky landing partly on wheels. Even in the case
of such a tragic accident as the 1955 Le Mans crash, caused by a collision between two cars,
the possible influence of aerodynamic elements on the accident is sought [17].

This issue was addressed by several researchers. In [18], the solution of a lowered
rounded spoiler located under the front bumper of the Mitsubishi 3000 GT and its effect
on the generation of the car’s lifting force is presented. In [19], it is presented that a
deployable front spoiler with a rounded valance leading edge surface was incorporated in
the construction of the Ford Probe IV. A more modern solution in the form of the profile
deployed at high speed is presented in [20], and in [21] a movable spoiler or air dam
is deployed by a pneumatic actuator. In [22], the aerodynamic performance of a car at
different overhang lengths of a splitter attached to the body of a 2019 NASCAR model is
analyzed using computational fluid dynamics (CFD). In [23], a methodology for obtaining
various performance modes, such as oversteer, understeer, minimum drag, or maximum
downforce is shown, with the use of active aerodynamics including an active splitter.
In [24], transient aerodynamic characteristics were studied for a pitching motion.

This study aimed to test the aerodynamic properties of a slightly different solution. A
concept of an elastic bottom surface located under a rigid splitter base that expands toward
the roadway under the influence of air delivered over it at a specified pressure is presented.

There are known solutions called hidden wings, as in the case of Toyota [2]. They have
the form of convex cylindrical surfaces. The analyzed solution of the inflatable splitter is
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similar, except that the curvature of the bottom surface of the splitter is three-dimensional
instead of two-dimensional.

The proposed and analyzed inflatable splitter system is somewhat similar to that
studied in the Mercedes 500 ESF 2009 Experimental Safety Vehicle [25]. This is a system
utilizing a special airbag equipped with friction surfaces, mounted under the front of
the car’s body. PRE-CRASH sensors installed in Mercedes-Benz cars are able to initiate
preventive measures to protect passengers in critical driving situations. If the sensor
system determines that an impact is imminent, the PRE-SAFE® system not only initiates
automatic emergency braking but also deploys a braking airbag. Thanks to the car body’s
vertical inertia and a friction coating, the airbag supports the car against the road surface,
shortening the braking distance. The braking airbag also gives the effect of an additional
crumple zone—Mercedes engineers have calculated that even at a low speed of 50 km/h,
the additional braking has the same effect as extending the front by 180 mm. However, this
braking airbag is built differently and is designed to implement a different physical process.

The concept of a flexible inflatable splitter is studied in this paper with the use of
computational fluid dynamics (CFD) and mechanical analyses. First, the methodology of
the performed two-way fluid–structure simulation is described. As a preliminary analysis,
the already deformed elastic splitter was mounted on a DrivAer passenger car body and
compared with solutions without or with a rigid splitter. As a continuation of the work
carried out on passenger cars, the elastic splitter was then mounted on the sports car
Arrinera Hussarya. The study on Arrinera Hussarya was extended by the verification of
the performance of the elastic splitter for pitch angles up to two degrees.

This paper is a small contribution to the solution of the problem of balanced aerody-
namic axle loading of a car with covered wheels. The goal is to improve downforce on
the front axle and improve safety (countering the pitching moment). The context is both
sports cars and passenger cars, hence the analyses for the DrivAer and Arrinera Hussarya
cases. The obtained results are also compared in Appendix A against the existing data of
Mercedes LMP-class cars [14].

2. Materials and Methods
2.1. CFD Models
2.1.1. Passenger Car

In the past, many numerical analyses in the field of vehicle aerodynamics were carried
out on highly simplified models such as Ahmed’s body, or on models of real vehicles freely
chosen by the authors. In the latter case, due to different geometries, it was difficult to
compare the obtained results. In order to solve this problem, a generally available realistic
car model (DrivAer body) was developed. Several types of bodywork are available to
download [26]. For the purpose of this analysis, a fastback configuration was selected,
which is shown in Figure 1.
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The analysis of a DrivAer car was performed for a symmetric half of the model. The
domain size is shown in Figure 2.
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Figure 2. Computational domain for the DrivAer case, with length L = 4.6 m, height H = 1.4 m, and
width W = 1 m.

A polyhedral mesh was created in Fluent Meshing 2021R1. A boundary layer consist-
ing of 15 layers with a growth rate of 1.2 was generated for the wall function approach, as
shown in Figure 3a,b.
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Figure 3. Mesh for the DrivAer case: (a) side view of the car; (b) zoomed in view of the boundary
layer mesh.

The inlet velocity was set to 40 m/s with 2% turbulent intensity and a turbulent length
scale of 0.04 m. Considering the length of the vehicle, this corresponds to a Reynolds
number of ca. 12 × 106. The rotational velocity of the wheels was taken into account by
means of a moving wall boundary condition. The ground was treated as a moving wall.
The side and top faces had a symmetry boundary condition. The k-Omega BSL turbulence
model has been chosen, taking into account suggestions presented in [27].
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A mesh sensitivity test was carried out. For this purpose, five simulations were
performed for meshes with cell counts ranging from 675,000 to 2.8 million. A mesh
with a cell number of 2.2 million was selected as the target and, as for denser mesh, the
aerodynamic force coefficients did not change by more than 0.003. Results are shown in
Figure 4.
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Iterative calculations were performed with a coupled pseudo-transient scheme. If
oscillations were present, then iterative calculations were run until 10 periods of stable
oscillations were captured and the mean value was taken as a result. Consequently, when
pressure and velocity contours or plots are reported, they are averaged fields from a number
of periodic oscillations.

Lift and drag coefficients CL and CD are nondimensionalized by the reference values
of inlet velocity, the density of 1.225 kg/m3, and the area of 1.102 m2 which corresponds to
the projected front area of a symmetric half of the car. The pitching moment was computed
along an axis placed in the middle of the distance between car axles. The moment coefficient
CM was nondimensionalized by the distance between the axles, which was equal to 2.794 m.
A positive moment coefficient indicates dominating downforce on the front axle.

To confirm the correctness of the constructed model, the results obtained for the basic
configuration of the car, without additional aerodynamic elements, were compared with the
results of simulations and experiments available in the literature. The comparison is shown
in Table 1. It confirmed the validity of the assumptions made during the construction of
the model.

Table 1. Comparison of drag coefficients between the simulation and experimental data from [24].

Experiment Simulation, k-Omega SST This Work, Simulation k-Omega BSL

Drag coefficient 0.254 0.260 0.259

2.1.2. Sports Car

The CFD mesh for the sports car consisted of around 12 million cells generated with
the hexcore algorithm. Based on our knowledge and good practices [28], the boundary layer
had five prism cells on the car body generated for the wall function approach. Boundary
conditions were set in the same way as for the DrivAer case, and the realizable k-epsilon
turbulence model was used. The grid convergence test, together with validation of the
numerical model of Arrinera Hussarya, were reported by the authors of [29], where com-
pliances of drag coefficient and lift coefficient of 3.8% and 6.5% were obtained, respectively.
The inlet velocity was set to 40 m/s with 2% turbulent intensity and a turbulent length
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scale of 0.04 m. The rotational velocity of the wheels was taken into account by means of a
moving wall boundary condition. The ground was treated as a moving wall. The side and
top faces had a symmetry boundary condition. Domain extent is shown in Figure 5a, and
mesh is shown in Figure 5b,c.
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L = 4.6 m height H = 1.1 m, and width W = 2.2 m; (b) surface mesh and zoomed in view of the
boundary layer; (c) a cross-section of the volume mesh.

2.2. Flexible Splitter Model

To obtain a better balance between downforce generated on the front and rear axles,
an elastic inflatable splitter was proposed. The solution shown in Figure 6 uses a flexible
bottom surface located under the rigid base of the splitter, which expands toward the
roadway due to the applied pressure. The deformation of the bottom elastic shell takes
place because of the pressure difference between its interior and exterior. To be able to
calculate the elastic deformation of the splitter, the fluid–structure interaction technique
was employed.



Energies 2022, 15, 5543 7 of 28

Energies 2022, 15, x FOR PEER REVIEW 7 of 29 
 

 

calculate the elastic deformation of the splitter, the fluid–structure interaction technique 

was employed. 

 

Figure 6. Elastic splitter mounted on the Arrinera Hussarya car body. 

Structural and fluid domains were solved in steady state using ANSYS Mechanical 

and ANSYS Fluent solvers, respectively. The coupling is presented schematically in Fig-

ure 7. Data exchange was carried out only on the splitter’s flexible face. The pressure dis-

tribution on the car with the splitter calculated in ANSYS Fluent was used as a boundary 

condition for the splitter structural model. The splitter deformed due to the pressure dif-

ference between the interior and the exterior faces. The geometry of the deformed splitter 

face was sent back to the Fluent software, which forced Fluent to generate a new mesh 

and obtain a new flow field. Thirty mechanical solver iterations were calculated per single 

fluid iteration. The iterations between solvers were repeated several times to achieve a 

balance between the pressure distribution and the deformation of the elastic shell. 

 

Figure 7. Data transfer scheme in steady-state fluid–structure interaction simulation. 

Since 2003, the authors have been involved in simulations of airbag deployment 

based on a proprietary validated code developed using a lumped parameter model of an 

airbag shell in a compressible air environment [30–32]. The effect of air inertia in front of 

a fast-moving gasbag shell was taken into account. In the current paper, due to the compli-

cated external zone around the flexible splitter surface strongly influenced by its shape, 

professional software was chosen for simulations. 

The structural model consisted only of the flexible face of the splitter. It was modeled 

as a membrane, without taking into account the bending stiffness. Its thickness was equal 

to 5 mm. As the thickness of the membrane was at least one order of magnitude lower 

than the two remaining dimensions, the splitter was modeled as a shell body. It was 

meshed using triangle SHELL181 finite elements of a size equal to 2.5 cm. The mesh 

Figure 6. Elastic splitter mounted on the Arrinera Hussarya car body.

Structural and fluid domains were solved in steady state using ANSYS Mechanical and
ANSYS Fluent solvers, respectively. The coupling is presented schematically in Figure 7.
Data exchange was carried out only on the splitter’s flexible face. The pressure distribution
on the car with the splitter calculated in ANSYS Fluent was used as a boundary condition
for the splitter structural model. The splitter deformed due to the pressure difference
between the interior and the exterior faces. The geometry of the deformed splitter face
was sent back to the Fluent software, which forced Fluent to generate a new mesh and
obtain a new flow field. Thirty mechanical solver iterations were calculated per single fluid
iteration. The iterations between solvers were repeated several times to achieve a balance
between the pressure distribution and the deformation of the elastic shell.
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Since 2003, the authors have been involved in simulations of airbag deployment
based on a proprietary validated code developed using a lumped parameter model of an
airbag shell in a compressible air environment [30–32]. The effect of air inertia in front
of a fast-moving gasbag shell was taken into account. In the current paper, due to the
compli-cated external zone around the flexible splitter surface strongly influenced by its
shape, professional software was chosen for simulations.

The structural model consisted only of the flexible face of the splitter. It was modeled
as a membrane, without taking into account the bending stiffness. Its thickness was equal
to 5 mm. As the thickness of the membrane was at least one order of magnitude lower than
the two remaining dimensions, the splitter was modeled as a shell body. It was meshed
using triangle SHELL181 finite elements of a size equal to 2.5 cm. The mesh consisted of
1617 nodes and 3044 elements. The linear material model of Young’s moduli E = 10 MPa
and Poisson ratio υ = 0.49 was used [33]. Linear mechanical properties can be assumed
for rubbers working in a small deformation range. Translations of the edges of the elastic
splitter’s face were restrained. The pressure distribution calculated in Fluent was applied
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to the outer face of the splitter. A constant pressure of 1000 Pa was applied to the inner
splitter’s face.

3. Results
3.1. Inflatable Splitter

The pressure distributions on inflated and flat splitters which were calculated in
ANSYS Fluent are presented in Figure 8. Due to convexity, the larger suction pressure is
obtained in the case of an inflated splitter. This effect will be used to increase the downforce
acting on the front axle. Due to a nonperfectly symmetric mesh, some asymmetries are
observable in the contour plots.
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Due to the generated pressure difference, the splitter’s maximum deflection was ap-
proximately 6.5 cm. The deformation is presented in Figure 9. The spatial dimensions of the
splitter are approximately 0.65 m × 1.9 m. Thus, the deformation of 6.5 cm was recognized
as small compared to the outer dimension. However, there is no clear border between the
linear and nonlinear deformation. To answer that, the linear model deformation should be
compared with the nonlinear one. In this work, as the deformation amplitude is not a key
result, for simplicity reasons, the linear material model was used.
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3.2. Passenger Car

As a preliminary analysis, the deformed splitter’s shape was applied to the passenger
car. In this case, the splitter deformation was calculated using an uncoupled mechanical
simulation. Then, the deformed splitter geometry was added to the passengers’ car geom-
etry as a rigid body. The splitter deformation was calculated using the same numerical
approach as for the Arrinera, described in the previous section.

The study analyzes the influence of a splitter in various configurations on the aero-
dynamic characteristics of the fastback DrivAer car. The baseline design was a vehicle
without add-ons. The tested splitter was equipped with a movable flap, which allowed
controlling the airflow in the channel over the splitter. Two flap setups were considered, i.e.,
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open flap which allowed free flow, and a closed flap which blocked the flow and increased
downforce, as shown in Figure 10.
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Figure 10. Analyzed variants for the DriveAer case: (a) base model without splitter; (b) open rigid
splitter; (c) closed rigid splitter; (d) closed inflated splitter.

Four cases were analyzed in total. The analysis was performed at speeds of 90, 120,
and 144 km/h and it was confirmed that aerodynamic force coefficients for all variants
remain constant in this range of speeds.

The results of the simulations are presented in Figure 11. It can be observed that
tested additional aerodynamic elements cause a moderate increase in drag compared to
the base model, and a significant increase in downforce. Interestingly, even the inflated
splitter, which reduced the lift coefficient by almost 0.4, did not affect the drag force
value noticeably.

Energies 2022, 15, x FOR PEER REVIEW 9 of 29 
 

 

geometry as a rigid body. The splitter deformation was calculated using the same numer-

ical approach as for the Arrinera, described in the previous section. 

The study analyzes the influence of a splitter in various configurations on the aero-

dynamic characteristics of the fastback DrivAer car. The baseline design was a vehicle 

without add-ons. The tested splitter was equipped with a movable flap, which allowed 

controlling the airflow in the channel over the splitter. Two flap setups were considered, 

i.e., open flap which allowed free flow, and a closed flap which blocked the flow and in-

creased downforce, as shown in Figure 10. 

 

Figure 10. Analyzed variants for the DriveAer case: (a) base model without splitter; (b) open rigid 

splitter; (c) closed rigid splitter; (d) closed inflated splitter. 

Four cases were analyzed in total. The analysis was performed at speeds of 90, 120, 

and 144 km/h and it was confirmed that aerodynamic force coefficients for all variants 

remain constant in this range of speeds. 

The results of the simulations are presented in Figure 11. It can be observed that 

tested additional aerodynamic elements cause a moderate increase in drag compared to 

the base model, and a significant increase in downforce. Interestingly, even the inflated 

splitter, which reduced the lift coefficient by almost 0.4, did not affect the drag force value 

noticeably. 

 

Figure 11. Drag and lift coefficients for various studied splitter variants. 

The pressure coefficient contours shown in Figures 12 and 13 confirm the effective-

ness of the proposed solution. No downstream elements seem to be affected by the in-

flated splitter. 
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The pressure coefficient contours shown in Figures 12 and 13 confirm the effective-
ness of the proposed solution. No downstream elements seem to be affected by the
inflated splitter.
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Figure 13. Pressure coefficient distribution of the car body for various splitter variants, bottom view.

The additional total downforce is applied to the front axle, as evidenced by the
increased positive moment coefficient shown in Figure 14.
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Figure 14. Moment coefficients for various studied splitter variants.

To explain how the splitter works in the configurations analyzed, the pressure dis-
tributions on the body surface in the symmetry plane are shown in Figure 15. The red
color denotes the pressure differences between the upper and lower body parts generating
the force that lifts these body parts upwards, the green color indicates pressing the body
to the ground, and the yellow color denotes areas with zero net generated force in the
vertical direction.

The effect of the splitter in all configurations is limited to a small zone in its vicinity.
The splitter generates an area of pressure close to the stagnation pressure associated with
the speed of the vehicle to create a downward force on the surfaces extending in front of the
body. At the same time, under the rigid splitter plate near its front edge, a flow detachment
area is formed with a rapidly disappearing low-pressure region which contributes to
generating additional downward force on the splitter.

The splitter with a flexible bottom surface generates similarly low pressures but builds
up more slowly and spreads over a larger area. Forces generated by the rigid upper surface
of the splitter are similar in both versions, while the splitter with the flexible bottom surface
generates a slightly higher downforce on the bottom surface with a slight increase in the
aerodynamic drag force.
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Figure 15. Pressure distribution of the symmetry plane for various studied splitter variants. Red color
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zones are marked by yellow.

Figure 16 compares the body pressure distributions in the plane of symmetry for a car
with a closed rigid splitter and a closed inflated splitter. The green color indicates areas
where the inflated flexible splitter generates more downforce than the rigid splitter and the
purple color indicates areas where the rigid splitter generates more downforce than the
inflated splitter. The advantage of the inflatable splitter in the generation of aerodynamic
downforce is clearly visible.

In the case of the previously tested models, the splitter was slightly lower than the
chassis of the car. Another configuration was tested, called a high splitter, in which the
splitter was attached directly to the lower surface of the bumper. Unfortunately, in this
configuration adding a pumped diaphragm to the splitter did not improve the driving
characteristics of the tested model, i.e., the value of the downforce practically did not
change, as shown in Table 2.
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Table 2. The effect of a high splitter mount on the aerodynamic forces.

Closed Rigid Splitter, High Mount Closed Inflated Splitter, High Mount

Drag coefficient 0.30 0.29
Lift coefficient 0.00 −0.01

The pressure distribution for the car model with the low mount of the inflatable
splitter (Figure 17) indicates a low-pressure area under the bulging splitter surface, as
opposed to the high position of the inflatable splitter. In the case of a low position of
the inflatable splitter, a negative pressure is created under the inflated splitter due to the
acceleration of the airflow, while in the case of a high position of the splitter, the flow slows
down and a positive pressure is created, which reduces the downforce effect. The velocity
distribution around the car model with the inflatable splitter lowered shows a high velocity
underneath and no increase in velocity at the high position of the inflatable splitter. Tested
configurations with a high rigid splitter and an inflatable splitter proved to be ineffective.
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It can be concluded that in the case of a passenger car characterized by a high value of
underbody clearance, the prerequisite for proper operation of the splitter with the inflated
diaphragm is a small distance between the roadway and the lowest surface of the splitter.
This opens a wide area for the use of inflatable splitters with a shape controlled only by the
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pressure inside of them. In the case of a passenger car, the car directional characteristics
can be changed smoothly towards oversteer by adjusting the pressure inside the splitter.

3.3. Sports Car
3.3.1. Zero Pitch Angle

As a continuation of the work carried out on passenger cars, the deformed splitter
was mounted on the sports car Arrinera Hussarya. In such cars, it is important to provide
a proper force balance between the front and rear axles to maximize performance on the
track. The reference Arrinera Hussarya model had no splitter and it was equipped with a
rear spoiler. Different configurations were tested, which are shown in Figure 18.
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Figure 18. Studied splitter variants for the Arrinera Hussarya case.

The cut splitter shown in Figure 18 is based on the inflated splitter. It was cut in half,
expecting that the sharp edge would induce flow separation. Thus, it would lead to a
pressure decrease under the front axle and a downforce increase.

The pressure coefficient distribution on the symmetry plane for all configurations is
presented in Figure 19. It can be seen that using any type of splitter decreases the pressure
coefficient around the car front, leading to a downforce increase in that region. Obviously,
the biggest effect of the splitter is in the front part of the car but it also influences the
flow in the rear axle region negatively. This effect is better observable in Figure 20 where
streamlines are presented.
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Drag and lift coefficients are presented in Figure 21. In the case of Arrinera Hussarya,
the projected frontal area was 2.1 m2. Total downforce did not change significantly if the
elastic splitter was used instead of a rigid one. However, the distribution of this force is
shifted towards the front axle, as shown in Figure 22. The total downforce does not increase
as the splitter with low ground clearance disrupts the operation of the diffuser.
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The moment coefficients are shown in Figure 22. It can be seen that the baseline
configuration without splitter results in a negative moment. The largest positive moment
is obtained for the closed inflated splitter variant. The summary of all coefficients is also
presented in Table 3.

Table 3. Drag, lift, and moment coefficients for various splitter configurations.

Splitter Variant CD CL CM

No splitter 0.421 −0.224 −0.139
Closed rigid splitter 0.424 −0.434 0.032

Closed inflated splitter 0.435 −0.464 0.108
Closed inflated and cut splitter 0.429 −0.423 0.058

The contours of the pressure coefficient and velocity magnitude are presented in
Figures 23–25. An enlarged low-pressure zone is observed for the inflated splitter. In-
teraction between the splitter and the diffuser is also visible. The cut splitter design,
although it induced separation and provided a larger area of the low-pressure zone, did
not manage to provide adequately low pressure values. In total, the uncut inflated design
remained superior.
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3.3.2. Nonzero Pitch Angle

When driving on a hilly track, conditions that promote front end lift occur at the top of
the track. In addition, driving close to the aerodynamic wake generated by the preceding
vehicle can reduce the front axle downforce [7].

For this reason, another analysis, using the Arrinera Hussarya model as an example,
examined the effect of a flexible splitter on forces and moments with increasing pitch angle.

The model for this study is shown in Figure 26a. Simulations were performed for three
pitch angles: 0, 1, and 2 degrees. The car was pitched with respect to an axis, which was
0.45 m from the ground, at a distance of 3

4 L from the front axle, where L is the distance
between axles.
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From the previous analyses, it was determined that low ground clearance is required
for the splitter to work properly. The following models were made: without a splitter, with
a flat splitter, and with a flexible splitter, which was deformed enough to have a ground
clearance of 2 cm. The deformed splitter was also tested in both closed and opened variants,
as shown in Figure 26b. The front view of the inflated splitter with lower ground clearance
is shown in Figure 26c. The analyses were performed for a different model of the Arrinera
Hussarya vehicle than in the previous section, with lower overall ground clearance. Hence,
slightly different results will be observed for the no-splitter variant.

Obtained results are summarized in Table 4. Moment coefficients were determined
with the use of a reference area of 1.0382 m2, which corresponds to a symmetric half of the
model. The reference area was kept constant regardless of the pitching angle. CLf and CLr
are lift coefficients at the front and rear axle, correspondingly. Additionally,

CL = CL f + CLr. (1)

Table 4. Influence of flexible splitter on aerodynamic forces and moment coefficients for various
pitch angles.

Splitter Pitch Angle in Degrees CD CL CLf CLr CM

None 0 0.449 −0.212 0.049 −0.261 −0.143
Rigid closed 0 0.477 −0.441 −0.298 −0.143 0.071
Inflated open 0 0.474 −0.490 −0.421 −0.069 0.163

Inflated closed 0 0.495 −0.284 −0.385 0.101 0.225

None 1 0.507 −0.013 0.189 −0.202 −0.180
Rigid closed 1 0.513 −0.248 −0.072 −0.176 −0.048
Inflated open 1 0.506 −0.338 −0.178 −0.160 −0.008

Inflated closed 1 0.515 −0.443 −0.308 −0.135 0.080

None 2 0.532 0.124 0.323 −0.199 −0.241
Rigid closed 2 0.547 −0.018 0.108 −0.126 −0.107
Inflated open 2 0.530 −0.041 0.071 −0.112 −0.084

Inflated closed 2 0.548 −0.230 −0.053 −0.177 −0.057

In Figure 27, a data snippet concerning the drag coefficient is presented. Introducing
a deformed splitter with a closed gap at zero pitching angle increases the drag by 10% in
comparison to the geometry without a splitter. This is because of the low clearance between
splitter and ground, which introduces a significant stagnation zone at the vehicle front.
At higher pitching angles, clearance increases and all of the models had a similar drag
coefficient with a 5% difference between variants. The effect can be observed on velocity
and pressure contours of the symmetry plane, shown in Figures 28 and 29.
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Looking at the lift coefficient in Figure 29, one can observe a significant aerodynamic
downforce introduced by the splitter.
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For zero pitching angle, the variant with an opened gap performs better than the closed
one. This is due to flow blockage in the variant with a closed gap, which affects all the
downstream elements of vehicle aerodynamics. Most importantly, it eliminates the action
of the diffuser. One can confirm in Figure 30 that in both flexible splitter variants for the
zero pitching angle, the front lift coefficient remains similar, while the rear lift coefficient is
unfavorable for the variant with the closed gap. This is also seen in the pressure coefficient
of the bottom surface, presented in Figures 31 and 32. For larger pitching angles, the
clearance increases and the diffuser operates for the closed-gap splitter variant even better
than for the baseline case with a flat splitter.
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This result seems positive. Total downforce is increased in comparison to the baseline
variant with a flat splitter, even when a positive pitching angle is introduced.

However, from the point of view of vehicle longitudinal stability, the distribution of
this increased downforce is crucial.

As shown in Figure 33, for zero pitching angle, the inflated splitter introduces signif-
icant downforce on the front axle. The rear axle is lifted due to an inactive diffuser. The
splitter solution remains valid up to the pitching angle of ca. 1.5 degrees. For 2-degree
pitch, forces acting on the rear axle outweigh the front axle forces.

Without the splitter, forces acting on the rear axle clearly dominate from the zero
pitching angle. This disproportion increases with increasing pitch.

The flap opening or closing the channel over the rigid splitter wall can be used to
choose the proper configuration depending on the pitching angle: opened at zero pitch
angle, closed at higher pitch angles.

In the case of a sports car with low ground clearance and additional aerodynamic
elements at the rear of the body (diffuser), the situation is different than in the case of
passenger cars with high ground clearance. For a car pitch angle of 0 and very low ground
clearance under the inflatable splitter and a closed channel above the splitter, not enough air
flows under it for the rear diffuser to work effectively. This configuration is advantageous
when it is intended to prevent front underflow. Opening the flow in the channel above
the inflatable splitter allows enough air to supply the rear diffuser to operate. With a
larger pitch angle, the gap under the inflatable splitter is large enough to ensure the rear
diffuser works.

This case study can be summarized with Figure 34, which presents the pitching
moment coefficient. The positive moment coefficient indicates dominating downforce on
the front axle. Without any splitter, a negative pitching moment is observed for all studied
pitch angles. For the case with a flat splitter, the moment coefficient starts low at zero
pitch angle and becomes negative at approx. 0.5-degree pitch angle. Introducing a flexible
splitter with a closed gap provides an effective solution to prevent further vehicle pitching
up to an angle of 1.5 degrees.
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The analyses presented here were an attempt to address the problem of vehicle pitching
stability. Static cases were studied, for stationary geometry. As the effectiveness of the
proposed solution was confirmed, transient analyses can be performed in future, where
vehicle motion will be resultant.

4. Conclusions

In the age of electric cars, one must consider the energy consumption of various
devices, such as air conditioning, battery cooling, lights, braking and steering systems, etc.
The proposed solution of an elastic splitter provides additional downforce, which allows
safe driving through corners at high speed. Reducing the travel time will reduce the time
of using all the additional components, and indirectly translates to energy savings.

In the case of passenger cars, the proposed solution was effective in providing signifi-
cant downforce for the front axle and the total downforce increased with a slight increase
in the drag force. The requirement for good performance of the splitter is low ground
clearance. By adjusting the pressure inside the splitter, the car’s directional characteristics
can be changed smoothly towards oversteer characteristics.

In the case of a sports car, an inflatable elastic splitter did not increase the total
downforce, due to the interaction of the splitter with the diffuser. However, downforce
distribution shifted towards the front axle. The solution was also effective in the case of
a nonzero pitch angle. In this scenario, the flexible splitter provided not only a pitching
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moment towards the front axle, but also increased overall downforce. Splitter performance
can be controlled by the pressure between deforming and rigid plates, as well as by the
flap which opens or closes the channel over the rigid splitter wall. For a sports car in
races with not-so-rigid regulations, such as Time Attack races, a more inflated splitter
can provide effective front axle downforce during acceleration and after depressurization
during braking.

For other classes of racing, it could provide an emergency system to save the vehicle
if the front end of the car is lifted, by explosive inflation of the space above the flexible
shell. Which, while excluding the vehicle from classification for that race, would protect
the vehicle from strong damage.

A movable flap closing the tunnel between the body and the splitter, due to its low
inertia, can be used as an element generating, together with the splitter, rapid changes in
the vertical force acting in this flow area on the car body. Proper control systems can be
used for damping high-frequency (10 Hz) vertical car body oscillations.

In this paper, only stationary solutions were presented in order to evaluate if this type
of solution has potential advantages. Further work is planned to develop a transient flow
model including both body motion and transient filling processes in the space between the
elastic surface of the splitter and its rigid part.
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Appendix A

Dominy et al.’s paper [14] presents the results of analysis of the accident at the Le
Mans track in 1999 and the results of experimental tests in the wind tunnel of the model
equivalent of the Mercedes CLR car involved in the accident, for a range of pitch angles.
The authors of [14] presented the results of the measurements in the form of changes in
aerodynamic forces for a speed of 320 km/h, explaining that this form of results is more
readable for potential users.

For comparison purposes, for the analyzed prototype of the Hussarya sports car with
an assumed maximum speed of 360 km/h, the values of the components of the downforce
for 320 km/h were calculated.

Figure A1 shows a comparison of the total, rear, and front axle downforce between the
Hussarya with a rigid flat splitter and LMP car [14]. Although the two car models represent
high-speed cars with different purposes, significant similarities in their aerodynamic char-
acteristics can be noted. It should also be noted here that, in general, cars of this era (1999)
generated low downforce, especially in the Le Mans configuration. The total downforce is
similar, that of the Hussarya car is slightly smaller, and with the increase in the pitch angle
they change in a similar manner. The downforce of the front axle of the Hussarya is slightly
higher and that of the rear axle slightly lower. The nature of their changes with a change in
pitch angle is identical.
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Figure A1. Comparison of changes in aerodynamic downforce and its distribution to the front and
rear axles as a function of body tilt angle, calculated for a Hussarya car with a flat rigid splitter and a
closed channel above it, against experimental results of a model of an LMP-class car presented in [14].

Subsequent figures will illustrate the influence of the inflatable splitter on the Hussarya
car in the context of comparison with the LMP-class car. Using an inflatable splitter with
an open channel above it raised the level of aerodynamic downforce to the level presented
in [14]. The splitter with a closed channel above it, for a body tilt angle of 0, generates a
significantly lower total downforce. With an increase in the body tilt angle, the downforce
increases, exceeding the values generated by the inflated splitter with an open channel.
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Figure A2. Changes in the total aerodynamic downforce of a Hussarya car equipped with an inflatable
splitter with an open channel above it and a closed channel, against experimental results of a model
of an LMP-class car presented in [14].

Figure A3 shows the component of downforce acting on the front axle. An inflatable
splitter with a closed channel above it, for a body tilt angle of 0, generates almost identical
downforce on the front axle. With an increase in the angle of body tilt, the downforce
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increases, significantly exceeding the values generated by the inflatable splitter with an
open channel.
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Figure A3. Changes in the aerodynamic downforce acting on the rear axle of a Hussarya car equipped
with an inflatable splitter with an open channel above it and a closed channel, against the results of
measurements of the car model in [14].

As can be seen by comparing the data in Figure A4, using an inflatable splitter with
an open channel above it, the level of aerodynamic downforce was slightly reduced below
that generated by a rigid splitter with a closed channel. An inflatable splitter with a closed
channel above it, for a body tilt angle of 0, generates significantly lower downforce on the
rear axle. With an increase in the body tilt angle, the downforce increases to the values
generated by the inflatable splitter with an open channel. The downforce on the rear axle of
the Hussarya car with an inflatable splitter is similar to that obtained with a rigid splitter.

Energies 2022, 15, x FOR PEER REVIEW 28 of 29 
 

 

As can be seen by comparing the data in Figure A4, using an inflatable splitter with 

an open channel above it, the level of aerodynamic downforce was slightly reduced below 

that generated by a rigid splitter with a closed channel. An inflatable splitter with a closed 

channel above it, for a body tilt angle of 0, generates significantly lower downforce on the 

rear axle. With an increase in the body tilt angle, the downforce increases to the values 

generated by the inflatable splitter with an open channel. The downforce on the rear axle 

of the Hussarya car with an inflatable splitter is similar to that obtained with a rigid split-

ter. 

 

Figure A4. Changes in the aerodynamic downforce acting on the rear axle of a Hussarya car 

equipped with an inflatable splitter with an open channel above it and a closed channel, against the 

background of the results of measurements of the car model in [14]. 

The effect of opening or closing the channel over the inflatable splitter can be ex-

plained as follows: for a body pitch angle of 0, the outer surface of the splitter is very close 

to the ground, blocking air flow to the diffuser at the body rear when the channel over the 

splitter is closed. The rear axle downforce decreases. Opening the duct increases the air-

flow through the diffuser resulting in an increase in rear axle downforce. When the body 

angle increases, the clearance under the inflatable splitter increases and the airflow 

through the diffuser increases and the effect of opening the channel over the splitter dis-

appears. 

References 

1. Milliken, W.F.; Milliken, D.L. Race Car Vehicle Dynamics; SAE International: Warrendale, PA, USA, 1995. 

2. Katz, J. Race Car Aerodynamics: Designing for Speed, 2nd ed.; Bentley (Robert) Inc.: Cambridge, MA, USA, 1996. 

3. Katz, J. Aerodynamics in motorsports. Proc. IMechE Part P J. Sports Eng. Technol. 2019, 235, 1–15. 

https://doi.org/10.1177/1754337119893226. 

4. Dominy, R.G. Aerodynamics of Grand Prix Cars. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 1992, 206, 267–274. 

https://doi.org/10.1243/pime_proc_1992_206_187_02. 

5. Porcar, L.; Toet, W.; Gamez-Montero, P.J. Study of the Effect of Vertical Airfoil Endplates on Diffusers in Vehicle Aerodynamics. 

Designs 2021, 5, 45. https://doi.org/10.3390/designs5030045. 

6. Huminic, A.; Huminic, G. Aerodynamics of curved underbody diffusers using CFD. J. Wind Eng. Ind. Aerodyn. 2020, 205, 104300. 

7. Guerrero, A.; Castilla, R.; Eid, G. A Numerical Aerodynamic Analysis on the Effect of Rear Underbody Diffusers on Road Cars. 

Appl. Sci. 2022, 12, 3763. https://doi.org/10.3390/app12083763. 

8. Ehirim, O.H.; Knowles, K.; Saddington, A.J. A review of ground-effect diffuser aerodynamics. J. Fluids Eng. 2019, 141, 1–19. 

Figure A4. Changes in the aerodynamic downforce acting on the rear axle of a Hussarya car equipped
with an inflatable splitter with an open channel above it and a closed channel, against the background
of the results of measurements of the car model in [14].



Energies 2022, 15, 5543 27 of 28

The effect of opening or closing the channel over the inflatable splitter can be explained
as follows: for a body pitch angle of 0, the outer surface of the splitter is very close to
the ground, blocking air flow to the diffuser at the body rear when the channel over the
splitter is closed. The rear axle downforce decreases. Opening the duct increases the airflow
through the diffuser resulting in an increase in rear axle downforce. When the body angle
increases, the clearance under the inflatable splitter increases and the airflow through the
diffuser increases and the effect of opening the channel over the splitter disappears.
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