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Abstract: There is much interest in alternative energy sources for greenhouse heating and cooling,
due to the impact of severe climatic conditions and increasing fossil fuel prices. The main objective of
this study was to experimentally evaluate the performance of an air-to-water heat pump (AWHP)
system to fulfil the cooling and heating energy requirements of a three-spanned greenhouse under
local weather conditions in Daegu, South Korea. For this purpose, a system comprising three air-to-
water heat pumps, a water storage tank, and fan coil units (FCU)s was designed. Experiments were
conducted extensively during the summer and winter seasons. The maximum heating and cooling
energy supply to the greenhouse was 210 kcal·h−1·m−2 and 230 kcal·h−1·m−2, respectively. Based on
the outcomes of this study, the AWHP system can provide heating during the winter season. During
the summer season, the FCU capacity was insufficient to provide the desired cooling to achieve
the setpoint air temperature inside the studied greenhouse. To achieve the desired microclimate
during the summer season, the capacity of the FCU or number of FCUs must be increased. Moreover,
one AWHP with a water storage tank, was sufficient to provide the required cooling and heating in
both seasons. Two additional AWHPs can be used to provide energy to more greenhouse areas in
the future. The results can be used as a case study to find a more resilient and reliable source for
greenhouse heating and cooling. The average COP of the AWHP in heating mode was 2.2, while on
cooling mode, it was 3.2.

Keywords: greenhouse energy; renewable energy; greenhouse microclimate; greenhouse heating
and cooling

1. Introduction

Over the last several decades, greenhouse farming has grown rapidly in many coun-
tries, including South Korea, where open farming is not possible due to harsh climatic
conditions in both winter and summer. Moreover, in recent years, other forms of controlled
environment agriculture (CEA) have emerged, including plant factory vertical farming,
rooftop greenhouses, and building integrated cropping facilities. The primary objective of
CEA is to achieve year-round crop production. In winter, the internal temperature of the
CEA decreases, especially during the night, and in summer, the temperature increases to
the optimum range for crop growth. To address this issue, different heating and cooling
systems are used inside CEA facilities. Fossil fuels are mostly used for this purpose. In
addition to this, globally, other sectors also use fossil fuels to satisfy the energy demand.
According to a recent report, the energy demand of the world food chain is 30% of the
global energy demand, which is currently met by fossil fuels [1]. Moreover, the global
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population is expected to reach 9.8 billion by 2050 [2]. There is a surge in energy and food
demand because of the growing population; therefore, these are areas that should be focused
on to help achieve global sustainability. Worldwide increases in oil prices are also a major
concern. Moreover, the utilization of fossil fuels not only raises production costs but
also causes CO2 emissions and environmental pollution [3,4]. One of the reports recently
showed that the greenhouse energy supplying costs have increased to 45% of the total
production costs in South Korea [5]. The increasing cost is due to the continually increas-
ing oil prices and high energy demands. To cope with these issues, like other countries,
the South Korean government is also promoting the use of renewable energy sources in
various sectors [6].

Many studies have reported that the use of heat pumps could be a good option for
greenhouse heating and cooling [7–9]. Ground source heat pumps (GSHP) are widely
used for greenhouse heating and cooling, and they are more efficient in terms of the
coefficient of performance (COP) than air source heat pumps [10–13]. There have been
several studies carried out relating to ground source heat pumps integrated with other
systems. Kim et al. [14] used a heat pump and exhausted heat from a power plant to
provide energy to a greenhouse and compared it with a conventional boiler and reported
the economic feasibility of the system. In one study, Yildirim et al. [15] evaluated a
GSHP system assisted with solar photovoltaic panels to fulfil the heating and cooling
energy demand of a greenhouse. Boughanmi et al. [16] analyzed the COP of a new
conic helicoidal geothermal heat exchanger with a GSHP to provide heat energy to a
greenhouse. Hassanien et al. [17] analyzed a ground source heat pump system with
a solar-assisted water heater. The focus of these studies was to provide year-round
efficient energy supply to the greenhouse.

On the other hand, because of the easy installation and comparatively low cost of air
source heat pumps, they could also be a viable option to provide the required energy to
greenhouses. Their use is also increasing worldwide in the building sector [18]. The air
source heat pump offers a 40% reduction in installation cost as compared with the ground
source heat pump [19]. Many other studies have mentioned that the use of an air source heat
pump could be of great interest due to its many other advantages, such as simple operation,
low maintenance, and no pollution [20–22]. The heat pumps use less energy to generate
thermal outputs that are several times higher than GSHPs [23]. In addition, to reduce
their impact on global warming and ozone depletion, they have now started to use natural
refrigerants [24]. Air source heat pumps draw and expel heat from the outside air during
the heating and cooling seasons, respectively. Air-source heat pumps are categorized into
two types: air-to-air heat pumps (AAHP) and air-to-water heat pumps (AWHP). In two
previous studies, [25,26] we proposed an AWHP model for greenhouse heating and cooling.
These studies were limited to model creation and validation using the TRNSYS program.
Aye et al. [27] studied the performance of an AWHP system in the heating mode. The study
used a modeling-based assessment of the system to provide heat energy to greenhouses
under weather conditions in Melbourne, Australia, and reported a 16% reduction in energy
consumption with a 6-year payback period. Moon et al. [28] investigated the heating
performance of an AWHP system with a storage tank for greenhouse heating by calculating
the COP of the system. In a recent study, Lim et al. [29] performed an economic analysis of
an AWHP system in the heating mode. The results forecast an average COP of 4.5 and 70%
reduction in energy cost when compared with a conventional air heating system.

From the above-presented review of the literature, we can conclude that the studies
that analyze a particular AWHP for the use of greenhouse heating and cooling under specific
weather conditions are lacking. Many AWHP with different configurations are available
in the market, and studies have shown that the COP depends on different parameters,
including the AWHP used, greenhouse design and area, control system, and local weather
conditions. Therefore, in this study, efforts have been made to study a specific AWHP
to provide cooling and heating energy to greenhouses under local weather conditions.
The main objective of this study was to conduct an investigation of the AWHP system
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equipped with a water storage tank, heat pump, and fan coil unit to fulfill the energy
requirement of the integrated greenhouse. The investigation was conducted in terms of
energy performance of the system, keeping in mind that to reduce the energy cost efficiently,
all the components should be designed properly. The AWHP system was tested in both
cooling and heating modes. A feasibility analysis of the studied systems was conducted
to fulfil the energy cooling and heating requirements of a three-spanned greenhouse
under local weather conditions in Daegu, South Korea. This study aimed to find a
more reliable and resilient source for heating and cooling of greenhouses. The COP of
the AWHP was computed separately from the measured data for both the heating and
cooling seasons.

2. Materials and Methods
2.1. Experimental Greenhouse

The field analyses were conducted with a greenhouse located at Kyungpook National
University, Daegu, South Korea (latitude 35.53◦ N, longitude 128.36◦ E, elevation 48 m).
The experimental greenhouse was a three-span, Venlo-roofed, north–south (N-S) oriented,
rectangular, greenhouse with a total floor area of 391.2 m2 (length × width × height of
24 m × 16.3 m × 7.6 m). In addition, three equal sections were created in the greenhouse
to create distinct climatic conditions for the different experiments. The created sections
do not have any effect on heat supplying systems. The dimensions of each section were
8 m × 16.3 m × 7.6 m, with a floor area of 130.4 m2 each. Figure 1a–c shows the field
picture of the (a) experimental greenhouse, (b) inside view greenhouse partition, and (c) in-
stalled energy screens. The sidewalls were covered with polycarbonate (PC, 16 mm), and
the middle wall and roof were covered with horticultural glass (HG, 4 mm). The weather
data, including air temperature, was measured using a Ridder MTV sensor unit, and
solar radiation was measured using Hukseflux SR05-D2A2-TMBL (Hukseflux, Delft, The
Netherlands) sensors, positioned inside and outside of the greenhouse. The data were
recorded from 1 June, 2021 to 31 March 2022 for the cooling and heating analysis. As a
passive energy-saving technique, a shading screen (commercial name, PH-66) was used
to reflect excessive solar radiation during the daytime in the summer season, and two
energy screens (commercial name, PH-66 and Luxous) were used in the winter season
during the nighttime, positioned under the roof of the greenhouse, to reduce heat loss to
outside weather. The shading and energy screen deployment and retraction were subject
to automatic control when the outside solar radiation intensity was >430 kcal·h−1·m−2

and >35 kcal·h−1·m−2 during the summer and winter seasons, respectively. Figure 2
provides a detailed view of the experimental greenhouse dimensions and the construc-
tion and location of the sensors. Furthermore, only roof vents were used for natural
ventilation in the greenhouse. The opening and closing of the ventilation windows were
controlled automatically with the internal air temperature of the greenhouse maintained
at 30 ◦C.
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Figure 2. Experimental greenhouse’s layout.

2.2. AWHP

The AWHP system consists of three PSET-C60W (MIDEA) AWHP units with water
storage tanks (STs), water circulation pumps, and six fan coil units (FCU). Two FCUs were
used in each section of the greenhouse to exchange energy inside the greenhouse. The
specifications of all equipment are detailed in Table 1. Figure 3a–e shows the field pictures
of: (a) AWHP; (b) ST; (c) FCU blower; (d) FCU; and (e) water circulation pump and gauges.
The ST stores cold and hot water and supplies it to the greenhouse when cooling or heating
is required, respectively. We calculated the ST capacity of 50 m3 by using surplus energy
demand per day compared with the AWHP capacity by using Equation (1). The peak
heating load was determined by calculating the heat loss through the external walls of
the greenhouse. We monitored the water temperature and flow rate at various locations,
namely the ST to AWHP and greenhouse (GH) supply and return water temperature and
flow rate. The automatic control program used in this study was Ridder Synopta (Ridder,
Harderwijk, The Netherlands), which controls all the heat pump and greenhouse operations
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automatically. A HortiMax Omni Transducer, Ridder sensors, and FS-WLH 40 FLSTRONIC
sensors were used to acquire the water temperature and flow rate, respectively. The details
of the sensor locations are shown in Figure 4 to calculate the cooling and heating energy
supply from the AWHP to the ST and from the ST to the GH using Equation (1).

Q = ṁ × cp × ∆T (1)

where Q is the amount of energy transfer or cooling/heating capacity of the AWHP (kcal),
ṁ is the mass flow rate (kg s−1), cp is the specific heat capacity of water (kcal kg−1 ◦C−1),
and ∆T is the change in water temperature (◦C).

Table 1. Specification of AWHPs.

Component Properties Specification

Heat pump

Model PSET-C60W (MIDEA)
Heating capacity 60,200 kcal·h−1

Cooling Capacity 55,900 kcal·h−1

Power consumption heating/cooling 18,843/18,326 kcal·h−1

Voltage 380–415 V, 3-phase, 60 Hz
Refrigerant R-410a

Fan coil unit

Model IN-FCG0016-L
Heating capacity 23,231 kcal·h−1

Cooling Capacity 15,488 kcal·h−1

Power consumption 383 kcal·h−1

Airflow rate 83 m3·m−1

Water circulation pump

Model Wilo TOP-S 40/7
Max. fluid temperature 130 ◦C
Min. fluid temperature −20 ◦C

Power consumption 335 kcal·h−1

Water storage tank Storage capacity 50 m3
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Further, the COP of the heat pump was calculated using Equation (2)

COP =
Q

PHP
(2)

where PHP is the power usage of AWHP in kcal.

3. Results and Discussion

The microclimate of the greenhouse and the efficiency of the heat pump system depend
on the greenhouse structural design, including shape, cladding, and energy screen material.
Ambient climate, especially solar radiation and temperature, are the key parameters that
affect the cooling and heating energy demand of the greenhouse. From a passive energy
saving point of view, in our previous studies, we detailed the optimum structural design
and materials used [30–33]. The current greenhouse design (discussed in the Experimental
Greenhouse section) was built as per our previous results. Moreover, air temperature
and solar radiation are key parameters for evaluating the sustainability of a region for
protected cropping [34]. Figure 5 shows the local weather conditions, including outside air
temperature and solar radiation from 1 June 2021 to 31 March 2022 in Daegu, South Korea
(latitude 35.53◦ N, longitude 128.36◦ E, elevation 48 m), where greenhouse and AWHP
systems are installed. During the analysis period, the maximum air temperature and solar
radiation were 38 ◦C and 836 kcal h−1 m−2, respectively, and the minimum air temperature
was −10 ◦C.
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The AWHP system was designed to fulfil the heating and cooling energy demands
of a field greenhouse. To calculate the required heating and cooling energy supply to
the greenhouse, we measured the water temperature and flow rate at different locations
for the complete winter and summer periods. First, we measured the water temperature
from the ST and GH supply and the return temperatures. Figure 6a shows the water ST
temperature controlled in the tank at 50 ◦C during the complete winter period from 1
November 2021 to 31 March 2022. Only one sensor was installed on the top of the ST;
therefore, the average water temperature was not acquired. Moreover, 48 ◦C, which is the
average water temperature inside the ST, was supplied to the FCUs inside the greenhouse
to provide heating. The results also showed that the supply water temperature was 48 ◦C
and we can also see that the water temperature returning to the ST after heating the
greenhouse was 38–40 ◦C, which is 10 ◦C less than the supply temperature. Moreover, it
can also be seen in the Figure 6a that there was a return temperature lower than 40 ◦C,
which was the temperature when the circulation pump was off and there was no water
supply to the greenhouse as no heating was required, it only the sensor’s given reading
which should be ignored. Figure 6b shows the results of the ST, greenhouse supply, and
return water temperature for the summer period from 1 June to 30 September 2021. The ST
water temperature was maintained at 10 ◦C. The results also revealed that during June and
July, the supply and return water temperatures were 14 ◦C and 16 ◦C, respectively, with a
difference of 2 ◦C. During June and July, only daytime cooling was required, as we can see
from the results. Moreover, the supply water temperature was higher than 10 ◦C, and the
return temperature was more than 16 ◦C, which is the temperature that was not supplied
to the FCU; it is the sensor’s given water temperature reading when the circulation pump
is off and there is no supply to the greenhouse. Furthermore, during the months of August
and September, 24 h cooling was required because both day and nighttime temperatures
were higher, as can be seen in Figure 6. The results also revealed that the supply and return
water temperatures during August and September were 12 ◦C and 18 ◦C, respectively, with
a difference of 6 ◦C during daylight and 8 ◦C and 14 ◦C with a difference of 6 ◦C during the
night. Overall, the results during both the winter and summer show that ST temperatures
were successfully maintained to provide energy to the greenhouse.

Figure 7a presents the water flow rate from ST to GH during the winter period. The
water flow rate was regulated from the ST to the FCU using a proportional–integral (PI)
controller depending on the internal air temperature of the GH. The PI controller adjusts
the rate of the incoming water from the ST to the FCU depending on the need to maintain
the air temperature of the greenhouse at the desired level. Because of the PI controller, we
can see the daily and monthly varying water flow rate. The circulation pump increased
and decreased the flow rate according to the heating required, with the maximum flow rate
of 12,000 L·h−1.
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Figure 7b shows the water flow rate from the ST to the GH during the summer period.
We can see from the results that the maximum flow of water was delivered whenever
cooling was needed. This is due to the fact that greenhouse cooling demand was higher
than the maximum supply energy during the whole summer period. The results also depict
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that from the end of July to the middle of September, water was supplied constantly for 24 h
as both the day and the nighttime temperature was higher than the setpoint and cooling
was needed. The water circulation pump provided the water from the ST to the FCU at its
full capacity of 12,000 L·h−1.

The greenhouse supply and return water temperature and water flow rate were
further used to calculate the heating and cooling energy supply to the greenhouse using
Equation (1) for both the winter and summer seasons. Figure 8a–e displays the heating
energy supply to the GH as well as the outside air temperature from November 2021 to
March 2022. The heating load per unit area of the greenhouse was calculated. The results
depict that the maximum heat energy supply to the greenhouse was 210 kcal·h−1·m−2 on
26 December 2021 when the outside air temperature was at −10 ◦C, the lowest of the entire
time. The overall trend of the heating energy demand was correlated with the results of
previous studies conducted for the heating load calculation [25].
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Among the three sections of the greenhouse, experiments were carried out in two
sections; the third section was not considered as there was no energy supply from the heat
pump system because no crop was grown at that time. Figure 9a,b presents the internal
greenhouse temperature along with the ambient temperature and heating load for two
different greenhouse sections, GH 1 and GH 2, respectively. The results showed that in
each section, an air temperature setpoint of 20 ◦C was achieved throughout the winter
season. The results also revealed that the maximum heat energy supply to the greenhouse
section 1 (GH 1) and section 2 (GH 2) was 33 and 24 Mcal·h−1, respectively. In addition,
the total heat energy supply during the complete winter season to the greenhouse section 1
(GH 1) and section 2 (GH 2) was 46,225 and 17,438 Mcal·h−1, respectively. GH 2 needed
less heating compared to GH 1 for the same heating setpoint because GH 2 is a section
between two other GH sections, and therefore heat loss from the external walls was less due
to the smaller area exposed to ambient weather. In GH 2, only one side wall was exposed
to ambient weather, causing very low heat loss.
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Figure 10a–d shows the cool energy supply per unit area of the greenhouse along
with the outside solar radiation for the months of June–September 2021, respectively. The
maximum cool energy supply to the greenhouse was 230 kcal·h−1·m−2 on 6 August 2021
when ambient solar radiation was the highest (850 kcal·h−1·m−2) of the whole experimental
period analysis during summer. The overall trend of the cooling energy demand core-
lated with results from previous studies conducted using the cooling load calculation [26].
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Figure 11a,b presents the greenhouse internal temperature along with the ambient air
temperature and cooling load for the two different greenhouse sections GH 1 and GH 2,
respectively during the summer period. The maximum cool energy supply to the GH 1 and
GH 2 was 30 and 25 Mcal·h−1. Moreover, the total cool energy supply during the summer
season to GH 1 and GH 2 was 29,916 and 20,239 Mcal·h−1. During the summer period
only one HP was working with a cooling capacity of 55 Mcal·h−1 to store cold water in
the ST with the capacity of 50 m3. This was sufficient to achieve the desired controlled
environment inside all the greenhouse sections. In contrast, the maximum cooling capacity
of the two FCUs was 30 Mcal·h−1. The temperature setpoint inside the greenhouse was
22 ◦C. It can be seen in Figure 11a,b that we were unable to achieve the desired temperature
inside the greenhouse. This is because FCU capacity was much lower. The AWHP system
was designed to achieve the heating load for the greenhouse but not the cooling load. It
can be concluded that to achieve the desired setpoint temperature inside the greenhouse,
the FCU capacity or the number of FCUs should be increased.
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Further analyses were performed by comparing the calculated heating and cooling
loads with the ambient air temperature and solar radiation. Linear regression (R2) anal-
ysis for the comparison was performed to determine the relationship between heating
and cooling load with ambient weather parameters following the approach proposed by
Safa et al. [35]. Figure 12a,b shows the results of the linear regression analysis of the heating
load with ambient temperature and solar radiation, respectively. The results of the analysis
show R2 values of 0.70 and 0.35, respectively, indicating that the heating load is more
dependent on the ambient air temperature. Moreover, as shown in Figure 13a,b, the R2

values for cooling load compared with outside temperature and solar radiation were found
to be 0.79 and 0.35, respectively, indicating that the solar radiation has more influence on
cooling load of the greenhouse.
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After analyzing the energy supply from the ST to the GH, further analyses were carried
out with AWHP and ST thermal energy exchange. As the daily and seasonal operation of
the heat pump was the same, some sample days of analysis from 20–30 December 2021
from winter period are presented here. Figure 14a shows the water flow rate of 4200 L·h−1

from the ST to the AWHP during winter. Moreover, water flowed through the heat pump
and ST continuously, even when the AWHP was not in operating mode. A temperature
difference of 1.5 ◦C was found between the water supply and return supply from the
AWHP when it was operating in full heating mode. The ST temperature was controlled
using the on/off setting of the AWHP. Figure 14b shows the electric power consumption
of the AWHP. During the operating mode, the AWHP was working at full capacity by
utilizing a power consumption of approximately 18,000 kcal·h−1. It can be observed from
the results that when the ambient temperature decreases, the AWHP remains switched on.
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Figure 15a shows the supply and return temperature results presented for 1–10 August
2021 during the extreme summer period when 24-h cooling was required. The maximum
supplied water temperature was 12.5 ◦C, and the return temperature after cooling was
14 ◦C. A temperature difference of 0.75–1.5 ◦C was found between the water supply and
return from AWHP when it was operated on full cooling mode. In Figure 11b, the results
showed that during daytime when maximum cooling was required, the AWHP consumed
the maximum power of 18,000 kcal·h−1 and approximately half the maximum power
(8600 kcal·h−1) during nighttime when less cooling was required. Moreover, it can be seen
from the results that AWHP operation was well synchronized with the ambient temperature.
When the ambient temperature goes up and more cooling is required, the AWHP works
at its full capacity and at half capacity during the lower temperature condition when
significantly less cooling is required.

The heat-pump performance was evaluated by calculating the COP during the maxi-
mum heating and cooling periods over 24 h. The COP of the HP was calculated based on
the cooling/heating capacity and electricity consumption, using Equation (2). The results
presented in Figure 16 show that the average COP of the AWHP during the extreme winter
period in the heating mode was 2.2 when operating at full capacity, and the calculated
values were the same as those recommended by the manufacturer. The average amount of
heating energy produced by the heat pump was 84,088 kcal·h−1, and the consumed electric
power was 38,718 kcal·h−1. Moreover, the average amount of cooling energy produced by
the heat pump was 29,030 kcal·h−1, and the consumed electric power was 9286 kcal·h−1,
while the average COP was found to be 3.1 when operating at full capacity during the day
featuring the highest temperature during summer. A previous study conducted by Jeon
et al. also confirmed this trend of low COP in winter and high COP in summer in South
Korea [36]. The COP of the heat pump was sensitive to the ST temperature. In Figure 6, we
can see that, during winter, the water supply and return temperature difference between
the ST and greenhouse is higher than that in the summer season, which affects the average
temperature of the ST. This is because during winter, the FCU utilized more energy and
during the summer season less because the FCU capacity was insufficient to provide the
required energy to the greenhouse. Another factor that also caused the higher COP during
summer and lower COP in winter was the air temperature difference between ambient
and greenhouse microclimates at 30 ◦C (Figure 9) during winter, which also confirms that
the air source heat pump decreases due to the much colder outside temperature [23,37].
During summer, it was difficult to cool the greenhouse to below the ambient temperature
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of 35 ◦C (Figure 10) because of the low FCU capacity, and the temperature difference was
less, so the COP was higher than in winter.
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4. Conclusions

In this study, the configuration and performance of an air-to-water heat pump system
were evaluated to fulfil the heating and cooling energy requirements of a three-spanned
greenhouse located in Daegu, South Korea. The system consisted of three air-to-water
heat pumps (AWHP), a water storage tank (ST), and two fan coil units in each part of the
greenhouse. The analyses were carried out during the summer season (1 June 2021 to 30
September 2021) and winter season (1 November 2021 to 31 March 2022). The results of
this study are presented as a case study of the system under local weather conditions at the
studied location. The results of this study are detailed below:

• The maximum cool energy supply to the greenhouse was 230 kcal·h−1·m−2 on 6
August 2021 when the ambient solar radiation was the highest at 850 kcal·h−1·m−2.
Moreover, the maximum cooling energy supply to greenhouse section 1 (GH 1) and
section 2 (GH 2) was 30 and 25 Mcal·h−1, and the total cool energy supply during the
summer period to greenhouse section 1 (GH 1) and section 2 (GH 2) was 29,916 and
20,239 Mcal·h−1.

• The maximum heat energy supply to the greenhouse was 210 kcal·h−1·m−2 on 26
December 2021 when the ambient temperature was the lowest (−10 ◦C). In addition,
the maximum heat energy supplied to greenhouse sections 1 (GH 1) and 2 (GH 2) was
33 and 24 Mcal·h−1 and the total heat energy supplied during the winter season to the
greenhouse section 1 (GH 1) and section 2 (GH 2) was 46,225 and 17,438 Mcal·h−1.

• The desired air temperature of 20 ◦C was achieved during the winter season, while
during the summer season, a setpoint temperature of 22 ◦C was achieved during the
night. However, during the daytime, the air temperature was 30 ◦C, which was higher
than the desired air temperature.

• The linear regression R2 analysis of the heating load with ambient temperature and
solar radiation was 0.70 and 0.35, respectively, showing that the heating load is more
dependent on the outside air temperature. Moreover, the R2 values for cooling load
compared with outside air temperature and ambient solar radiation were found to be
0.35 and 0.79, respectively, indicating the fact that the cooling load is more dependent
on the outside solar radiation.

• The average COP of the AWHP in heating mode was 2.2 when operating at full
capacity. The average amount of heating energy produced by the heat pump was
84,088 kcal·h−1, and the consumed electric power was 38,718 kcal·h−1. The average
COP of the AWHP in cooling mode was 3.1 when operating at full capacity; the
average amount of cooling energy produced by the heat pump was 29,030 kcal·h−1,
and the consumed electric power was 9286 kcal·h−1.

In summary, a step toward making greenhouse farming fossil-free to achieve the
zero-emission goal has been made. The results discussed above show that the studied
AWHP system can provide heating during winter. During summer, the FCU capacity
was not sufficient to provide the desired cooling to achieve the setpoint air temperature
inside the greenhouse. To achieve the desired microclimate during the summer season,
the capacity of the FCU or number of FCUs must be increased. Moreover, one AWHP
capacity of 55,900 and 60,200 kcal·h−1 along with an ST capacity of 50 m3 were sufficient
to provide cooling and heating, respectively, in both seasons. Two additional AWHPs can
be used to provide energy to more greenhouse areas in the future. Furthermore, these
results could be useful when utilizing renewable energy in greenhouses to reduce energy
costs. The results of the study and analysis of the system’s operation can be used as a
competitive method to provide heating and cooling of greenhouses when compared to the
other energy providing sources and other locations. The study will increase reliance on
sustainability and renewable energy to ensure more stable, reliable, and resilient energy
sources of greenhouse heating and cooling. Moreover, the work will promote and advance
the development work toward use of renewable energy sources in greenhouse farming and
maximize the economic benefit by increasing the profitability of the greenhouse farming.
Future studies will focus on economic assessment along with the payback period and
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environmental feasibility of the studied AWHP system. Moreover, a comparison study
could be conducted with other renewable energy systems, such as solar, geothermal, hybrid,
and integrated renewable energy systems
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Nomenclature

Symbols
Q Cooling capacity of the AWHP (kcal·h−1)
ṁ Mass flow rate of air (kg·h−1)
cp Specific heat capacity of water (kcal·kg−1·◦C−1),
∆T Convective heat transfer (kcal·h−1·m−2·k−1)
PHP Power usage of AWHP (kcal)
Abbreviations
HP Heat pump
GH Greenhouse
AWHP Air-to-water heat pump
GSHP Ground source heat pump
AAHP Air-to-air heat pump
CEA Controlled environment agriculture
FCU Fan coil unit
COP Coefficient of performance
ST Water storage tank
PI Proportional–integral
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