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Abstract: The Predicted Mean Vote (PMV) has discrepancies in relation to the thermal reality of the
environment; thus, adaptive models serve to improve this estimate. In this context, this research
aimed to verify the performance of PMV and adaptive models under different conditions in Brazil
from an analysis of variance and to further classify individuals into clusters according to their feelings
of thermal comfort. Through ASHRAE’s Global II Thermal Comfort Database, users of offices and
classrooms in Brasilia, Recife, Maceió, and Florianópolis were investigated. The results of ANOVA
showed that the PMV model did not represent the thermal reality of any of the cities investigated,
and the cluster analysis showed how most people felt thermally in relation to indoor environments.
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1. Introduction

Globally, buildings consume about 40% of all the energy produced worldwide and
a large part of it is used to promote comfort levels to indoor users [1]. To analyze indoor
environmental conditions of thermal comfort, numerous models have been developed, but
the most widely used is the PMV (Predicted Mean Vote), developed by Fanger in 1970. This
model is relatively efficient; thus, there is a need to develop new models [2].

Thermal Comfort is indispensable for any environment [3] and indicates how ther-
mally satisfied people are according to their state of mind [4]. Comfort studies can occur in
residential spaces when there is temperature change at various points, different clothing,
activities, or even when there are possibilities for adaptive actions in thermal environ-
ments [5]. Thermal environments directly influence the well-being [6], quality of life [7],
health [8], and productivity [5] of people. Moreover, the assessment of thermal comfort
in environments can contribute to the decrease in the use of ventilation, heating, and
air-conditioning systems, consequently reducing energy consumption [9].

In their research, Cheung et al. [10] confirmed that Fanger’s PMV model contains an
accuracy of only 34% in its results. With the possibility of improving the prediction of
thermal comfort sensations, many adaptive models have come to be developed, such as:
Nguyen, Singh, and Reiter [11]; Liping et al. [12]; Ruiz and Correa [13]; Gilani, Khan, and
Ali [14]; Zhang et al. [15]. Several adaptive thermal comfort studies have been conducted
in numerous environments and countries, such as in housing in Japan [16], educational
buildings in Mexico [17], and office buildings in Spain [18] and in Brazil [19]. The adaptive
thermal comfort model can more efficiently explain the existing discrepancies between
predicted and actual thermal responses [20].

Together with the alternative models, several statistical methods have been applied
to analyze thermal comfort, such as discriminant analysis [21], Bayesian statistics [22],
Griffiths analysis [23], logistic regression [24], and structural equations [25]. Another
relevant technique is the analysis of variance (ANOVA) that investigates the influences of
some experimental conditions, errors, and significance of factors [26] and cluster analysis
that classifies objects into homogeneous groups according to their level of similarity [27].
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Some examples can be found in the literature, such as in the research of Lau, Chung,
and Ren [28] who used analysis of variance (ANOVA) to determine whether weather
variables and corresponding subjective perception were significantly different between
Local Climate Zones (LCZs); Nduka et al. [29] who investigated the link between indoor
environmental quality (IEQ) and symptoms of sick building syndrome (SBS); Sun et al. [30]
who used cluster analysis in obtaining patterns of window opening duration in offices
through a monitoring carried out by users; Piekut [31] who identified the clusters of
households according to different energy consumption patterns.

In a recent study, Niza and Broday [32] verified through canonical discriminant
functions that the PMV model did not contribute significantly to express the thermal
sensation of people in the analyzed cities. Based on this context, this research aimed to
verify the performance of the PMV and adaptive models under different conditions in
Brazil from an analysis of variance and to classify individuals into clusters according to
their feelings of thermal comfort.

In this perspective, we sought to fill this gap in the literature that refers to a compar-
ative analysis between the PMV models based on data from Brazilian cities found in the
ASHRAE Global Thermal Comfort Database II, the largest reference database in the area.
Furthermore, the use of adaptive PMV models allows environment users to perform a
better thermal comfort adjustment through more suitable clothing, ventilation, opening
windows to save energy, among others [33]. Brazil was investigated for being a continental
country with very diverse climates and regions; thus, the cities of Brasilia, Recife [34],
Maceió [35], and Florianópolis [36] were analyzed.

2. Materials and Methods
2.1. Database

This research aimed to analyze the performance of alternative models to the PMV
under different conditions in Brazil and to verify how individuals classify themselves
into groups based on the highest level of similarity in relation to their thermal sensations.
Through the application of alternative models to the PMV, the thermal sensations of indi-
viduals in the cities of Brasília, Recife, Maceió, and Florianópolis were obtained. The data
applied in the formulas are available in the ASHRAE Global Thermal Comfort Database II,
so the sample size could not be modified.

According to Földváry et al. [37], the database is composed of numerous field surveys,
where these researchers have granted their data for any individual to make use of in new
work, further enriching research in the area. The data available are:

• Basic identifiers: publication (citation), data contributor, year, season, climate, city,
country, building type, and ventilation strategies used.

• Personal information of the individual: age, sex, weight, and height.
• Subjective information of thermal comfort: thermal sensation, thermal acceptability,

thermal preference, air movement acceptability, air movement preference, thermal
comfort, thermal insulation of clothing, metabolic rate, and humidity sensation.

• Instrumental measurements of thermal comfort: air temperature, operating tempera-
ture, radiant temperature, globe temperature, relative humidity, and air speed.

• Calculated indices: PMV, PPD, and standard effective temperature.
• Environmental control used: curtain, blinds, fan, window, door, heater, and monthly

outside air temperature.

These variables change from researcher to researcher, but it is extremely necessary for
the calculations of thermal comfort models: the presence of air temperature, mean radiant
temperature, air speed, relative humidity, metabolic rate, and thermal insulation of clothing,
with these being the most important variables to perform the analyses. Thus, it was possible
to verify the compatibility of the alternative models to the PMV with the database.

The thermal comfort of individuals may vary according to the local climate; thus,
studies of adaptive comfort become relevant to evaluate these differences related to ac-
climatization, culture, behavior, among other aspects [38].
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2.2. Characterization of the Studied Area

Through the availability of studies contained in the database, the cities of (1) Recife,
(2) Florianópolis, (3) Maceió, and (4) Brasília were chosen for the analyses (Figure 1).

Figure 1. Location of the studied cities on the map.

Among the countries available, Brazil was selected due to its continental dimension
and its diverse climatic types in the regions, causing the presence of distinct thermal
sensations experienced by the users. Through the Köppen–Geiger Classification, it was
possible to verify the climatic zones of each region, with A for tropical, B for dry, C for
temperate, D for continental, and E for polar [39]. Figure 2 shows the climate classifications,
their respective colors, and legends. Climate types are influenced by locations, temperature,
and local precipitation (Recife/Brasília-Aw, Florianópolis-Cfa, and Maceió-As).
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Figure 2. Köppen–Geiger Climate Classification [40].

2.3. Characterization of the Study

Figure 3 shows the information contained in the database, such as the data collection,
year of collection, number of people that were studied by the authors, seasons of the year,
building type, cooling strategies, age, gender, height, and weight of the individuals.

Figure 3. Information from the database.

By joining the data, it was possible to obtain 6715 people participating in the field
research, to combine the measurement of personal and environmental variables, and to
report their thermal sensations and preferences.

2.4. Alternative Models Analyzed

Table 1 shows the alternative models used in this research. These models were
previously selected according to the study by Niza and Broday [32].
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Table 1. Alternative models of Thermal Comfort.

Ref. Nomenclature Adopted
in this Research Climate Type Models

[41] PMVnew Cfb
DPMV−ASHRAE = −4.03 + 0.00949top + 0.00584(RH%) + 1.201(M. clo) + 0.000838 t2

out
PMVnew = 0.8 (PMV − DPMV−ASHARE)

[42] aPMV Cfa aPMV = PMV
1+0.293 PMV aPMV = PMV

1 − 0.125 PMV
[43] PMVoo Csb PMVn = −5.151 + 0.202 t + 0.553 Pv

[11] PMVnsr Af, Am, Aw,
Cfa Tcomf = 0.341Tout + 18.83

[44] PMVbrv Csa, Cfa PMV = 0.2428top − 5.3562

[45] AdapPMV Dwa
Adaptative PMV model = PMV

1 + (−1.40)PMV
Adaptative PMV model = PMV

1 + (−5.74)PMV
[13] IZA Cfa IZA = −0.9796 + 0.0621ta − 0.3257v + 0.0079HR
[46] PMV* Cfb PMV∗ = [0.303exp.(−0.036M) + 0.028.Lnew

[47] PMV2 Cfb, Csb
PMV2 = 13.414 − 0.00003584(34 − ta) + 0.092.M.(5.87− pa)− 5.87(573− 0.007[M−W]− pa)−

0.53.10−8. fcl .
[(

tcl(Newton) + 273
)4 − (trm + 273)4

]
− 0.169 fcl .hc .

(
tcl(Newton) − ta

)
[48] PMVnew Cfa

PMVnew =
(
0.303e−0.036M + 0.28

)
{M−W − 0.0014M(34− ta)

−3.96.10−8 fcl

[
(tcl + 273)4 − (trm + 273)4

]
− fcl hc(tcl − ta)− 1.7.10−5 M(5867− Pv)

−0.00305[5733− 6.99(M−W)− Pv ]−Qsw}
[49] ePMV Cfa ePMVp = ep PMV
[15] PMVp,sv Cfa PMVp, SV = 0.0011Tr

2 + 0.4437vr
2 − 0.1956Trvr + 0.3073Tr + 4.3290vr − 8.6710

2.5. Software Applied in the Research

Through the NVivo software, a word cloud was developed to represent the bibliometric
network referring to the articles with the thermal comfort models used in this research; this
way, the program contributes to increase the scientific credibility of the work, to verify the
existing links between the studies, and to demonstrate the most frequent and important
keywords in relation to the data.

The statistical analysis was performed in IBM SPSS Statistics software version 28. The
analysis of variance (ANOVA) of the thermal sensations obtained between the traditional
and alternative models allowed us to verify the performance under different climatic
conditions in Brasília, Recife, Maceió, and Florianópolis. SPSS released a list with the
models in order and named numerically. Next, Mauchly’s test of sphericity was used to
validate the analysis of variance, where the p-value was analyzed under two hypotheses:

• H0: There is sphericity.
• H1: There is no sphericity.

For the between-subjects effects test, a further correction was required due to the
lack of sphericity, and Greenhouse–Geiser, a more conservative correction, was used. Two
hypotheses were considered:

• H3: Equality of group means.
• H4: At least one group mean is different.

Knowing that there is at least one different model is not enough, and it is necessary to
investigate which model differs. To this end, the Bonferroni/pairwise post hoc test was
used to compare model against model, verify the differences in means, and point out where
this difference lies. The p-value is analyzed under two conditions, if:

• p-Value < 0.05: difference between the models.
• p-Value > 0.05: no difference between the models.

Possibly, some of the models that have similarities are not indicated in the calculations,
so profile graphs were prepared.

In K-means Cluster analysis, the number of Clusters is determined by the researcher,
and averages are calculated for grouping subjects [50]. The subjects are classified with the
highest level of similarity between them. The results of the models were standardized
to contribute uniformly to the results. Thus, the standardized variables are accompanied
by Z. Next, the variations in the centers of the Clusters were obtained for each iteration
until there was no more variation in the centroids. Through ANOVA, the variables that
contributed most to the separation into clusters were identified, where they were classified
according to their performance from the averages of each of the variables. The classification
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of clusters was carried out according to their performance in separating individuals into
groups according to their thermal similarity:

• Positive average values for most variables: high performance/low risk.
• Negative average values for all or most variables: low performance/high senility risk.
• Average values close to zero: average performance/average senility risk.

Next, the distance matrix between the centroids and the number of individuals in each
cluster is presented, and finally, its graphical representation.

3. Results
3.1. Bibliographic Networks

At first, a word cloud was prepared with the NVIVO software, from the articles
presented in the research of Niza and Broday [32]; thus, the keywords of greatest occurrence
in these studies were identified, putting in evidence the issues of greatest importance as
presented in Figure 4.

Figure 4. Main keywords.

The top ten words were: thermal (1267), pmv (929), comfort (764), model (656),
temperature (643), air (427), buildings (356), average (342), adaptive (330), and data (326).

3.2. Analysis of Variance (ANOVA)

The results obtained by the models were submitted to SPSS to obtain the means
and standard deviations of the calculated thermal sensation responses and the Thermal
Sensation Voting (TSV) reported by the individuals in the database (Table 2).

Other models were also selected for testing, but many of them were incompati-
ble with the database. The model by Humphreys and Nicol [41] was not applied to
the cities of Brasília and Recife, due to incompatibility with the database, as it required
the external air temperature (tout). The SPSS software numerically ordered the models,
as shown in Figure 5.
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Table 2. Descriptive statistics.

Brasília and Recife Maceió Florianópolis

Models Mean Standard Deviation Mean Standard Deviation Mean Standard Deviation

TSV (available in database) 0.67 0.87 0.40 0.94 0.05 0.88
PMV −0.02 0.46 0.20 0.70 −0.51 0.57

PMVnew - - 0.11 0.38 −0.24 0.34
aPMV −0.04 0.40 0.13 0.55 1.02 0.18
PMVoo 0.57 0.39 1.13 0.45 0.60 0.41
PMVnsr −0.38 0.38 −0.19 0.57 −0.78 0.47
PMVbrv 0.55 0.47 1.23 0.55 0.60 0.50

AdapPMV −0.27 0.36 −0.19 0.58 −0.28 0.63
IZA 0.96 0.14 1.13 0.12 0.97 0.15

PMV* 0.99 0.45 0.85 0.48 0.67 0.45
PMV2 0.78 0.71 0.57 0.77 0.28 0.72

PMVpsv −0.22 0.60 0.20 0.69 −0.64 0.61
ePMV 0.41 0.82 0.24 0.60 −0.08 0.18

PMVnew2 −1.50 1.00 −0.004 0.07 −0.15 0.06

Figure 5. Order of the models.

Mauchly’s sphericity was used to validate the analysis of variance, where equalities
were put to treatment (Table 3). If sphericity is violated, the variance calculations may be
distorted, causing an invalid result [51]. The p-values found in the results were less than
the significance of 0.05, showing evidence that there was no sphericity [52], so H1 was
accepted. The degree of freedom was used to estimate the variance [53].

Table 3. Mauchly’s test of sphericity.

W de Mauchly df p-Values

Brasília and Recife 0.001 77 <0.001
Maceió 0.001 77 <0.001

Florianópolis 0.001 90 <0.001
df = degree of freedom.

In the between-subjects effects test (Table 4), there was no presence of sphericity, so
the Greenhouse–Geiser correction was performed [54]. The p-value was less than 0.05; thus,
the alternative hypothesis (H1) was accepted, where there was at least one different thermal
comfort model.
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Table 4. Between-subjects effects test.

Origin Type III Sum of
Squares df Mean Square F p-Value

Brasília and Recife
Epsilon

(Greenhouse–Geiser)

298.16 2.38 125.05 121.73 <0.001
Maceió 5077.80 2.92 1736.42 2328.04 <0.001

Florianópolis 22,728.43 3.22 7056.96 10,428.31 <0.001

Brasília and Recife
Error (models)

122.47 119.22 1.027
Maceió 3553.09 4763.67 0.75

Florianópolis 10,969.39 16,209.83 0.68

F = F-statistic; df = degree of freedom.

One-way repeated measures ANOVA was performed to show the presence of a signifi-
cant effect on the factor with p-value < 0.05 [55], that is, showing the effect of the models on
the TSV (thermal sensation vote): (F (2.38; 119.22) = 121.73, p-value < 0.001) for Brasília and
Recife; (F (2.92; 4763.67) = 2328.04, p-value < 0.001) for Maceió; (F (3.22; 16,209.83) = 10,428.31,
p-value < 0.001) for Florianópolis.

By Bonferroni’s post hoc test, Brasília and Recife had the PMVoo, PMVbrv, and ePMV
models closest to TSV; for Maceió and Florianópolis, no model was resembled. Through
this analysis, it was possible to perform pairwise comparisons between the models [56].
However, some similarities between the models may not be indicated in the calculations.
Figure 6 shows the profile graphs for better visualization of the closeness of the models
to the TSV, where each number on the horizontal axis represents the models used in
this research, as presented in Figure 5. All points on the graphs in the same direction
horizontally represent the models that most closely resemble the TSV.

Through the Bonferroni post hoc test, only model 13 (PMVnew2) was unlike any
other model for Brasília and Recife; for the other models, there was at least one similarity.
However, the profile graph and the averages of the thermal sensations were combined for
the continuity of the analysis because the Bonferroni post hoc test did not show similar
models to the TSV for the cities of Maceió and Florianópolis.

Thus, for Brasília and Recife, the model that best represented these cities was the
PMVoo (4) of Orosa and Oliveira [43], with an average difference closer to the thermal
sensation votes (TSV), with only a 0.10 difference from reality. In the Köppen–Geiger
Classification, both are in tropical climate regions (A). This model was developed under
temperate climates (C); even with climatic incompatibility, it adapted very well to data
from cities as the authors developed it precisely for office environments.

In Maceió, through the profile graph, it was seen that the model that most closely
matched the TSV was the PMV2 (11) developed by Broday et al. [47], with an average
difference of only 0.16 with the thermal sensation votes. Its location is in a temperate (C)
climate region, and this model was developed for sites with that same climate group, thus
strongly influencing model performance.

Through the profile plot, the model that best represented Florianópolis was the ePMV
(13) by Zhang and Lin [49], with an average difference of only 0.03 from the thermal
sensation votes. Florianópolis is in a region of tropical climates (A), and the model was
developed under temperate climates (C); thus, even with the presence of climatic incom-
patibility, the model behaved very well with the data; moreover, the authors validated
their model in buildings with air-conditioning and natural ventilation, as is the case of
classrooms/mixed-mode, office/mixed-mode, and office/air-conditioning in Florianópolis.
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Figure 6. Profile Graph.
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3.3. Cluster Analysis

The variation of the center of the clusters in each iteration is presented in Table 5, where
Brasília and Recife have a minimum distance of 7.30 between the initial centers, Maceió
with 13.98, and Florianópolis with 18.40. When there is no more significant variation in the
centroids of each cluster, the algorithm will terminate.

Table 5. Variation in the center of the clusters in each iteration.

Iteration (Brasília
and Recife) 1 2 3 Iteration

(Maceió) 1 2 3 Iteration
(Florianópolis) 1 2 3

1 2.72 3.78 4.60 1 5.35 6.42 9.37 1 9.31 8.91 7.10
2 1.14 0.26 0.49 2 1.52 0.55 0.25 2 0.30 0.42 1.48
3 0.29 0.13 0.31 3 4.05 0.25 0.14 3 0.17 0.27 2.28
4 0.31 0.12 0.26 4 0.00 0.11 0.06 4 0.23 0.12 0.95
5 0.00 0.00 0.00 5 0.00 0.04 0.02 5 0.24 0.03 0.55

6 0.00 0.01 0.01 6 0.19 0.08 0.26
7 0.00 0.00 0.00 7 0.14 0.09 0.15

8 0.12 0.08 0.11
9 0.08 0.07 0.07

10 0.08 0.06 0.06

The ANOVA is presented in Table 6, where the variables highlighted in green are
those with the best discrimination between the Brasília and Recife clusters (PMVp,sv—96.61,
PMVbrv—92.40, and PMVoo—92.40); Maceió (PMVp,sv—2160.84, PMVbrv—2049.47, and
PMVoo—2049.47); Florianópolis (PMVnew2—3786.81, PMVp,sv—3231.82, PMVnsr—3045.02,
and PMV—3045.02). Highlighted in red are the variables that present the least discrimina-
tion between the clusters of Brasília and Recife (Adap PMV—0.12); Maceió (TSV—380.53,
PMV*—380.53, and PMV2—380.53); Florianópolis (Adap PMV—75.37). Through these
F values, it is possible to verify how significant the variables are for the realization of
the separation into groups [57]; that is, the variables with better discrimination have a
higher level of similarity for the completion of the clusters and the variables with lower
discrimination are the ones that contribute less.

Table 6. ANOVA.

ANOVA

Brasília and Recife
Cluster

df
Error

df F. p-Value
Mean Square Mean Square

Zscore (TSV) 14.27 2 0.45 48 31.90 <0.001
Zscore (PMV) 17.08 2 0.33 48 51.73 <0.001

Zscore (aPMV) 17.26 2 0.32 48 53.56 <0.001

Zscore (PMVoo) 19.85 2 0.22 48
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Recife) 
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Iteration 

(Maceió) 
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Iteration  

(Florianópolis) 
1 2 3 

1 2.72 3.78 4.60 1 5.35 6.42 9.37 1 9.31 8.91 7.10 

2 1.14 0.26 0.49 2 1.52 0.55 0.25 2 0.30 0.42 1.48 
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        8 0.12 0.08 0.11 

        9 0.08 0.07 0.07 

        10 0.08 0.06 0.06 

The ANOVA is presented in Table 6, where the variables highlighted in green are 

those with the best discrimination between the Brasília and Recife clusters (PMVp,sv—

96.61, PMVbrv—92.40, and PMVoo—92.40); Maceió (PMVp,sv—2160.84, PMVbrv—

2049.47, and PMVoo—2049.47); Florianópolis (PMVnew2—3786.81, PMVp,sv—3231.82, 

PMVnsr—3045.02, and PMV—3045.02). Highlighted in red are the variables that present 

the least discrimination between the clusters of Brasília and Recife (Adap PMV—0.12); 

Maceió (TSV—380.53, PMV*—380.53, and PMV2—380.53); Florianópolis (Adap PMV—

75.37). Through these F values, it is possible to verify how significant the variables are for 

the realization of the separation into groups [57]; that is, the variables with better discrim-

ination have a higher level of similarity for the completion of the clusters and the variables 

with lower discrimination are the ones that contribute less. 

Table 6. ANOVA. 

ANOVA 

Brasília and Recife 
Cluster 

df 
Error 

df F. p-Value 
Mean Square Mean Square 

Zscore (TSV) 14.27 2 0.45 48 31.90 <0.001 

Zscore (PMV) 17.08 2 0.33 48 51.73 <0.001 

Zscore (aPMV) 17.26 2 0.32 48 53.56 <0.001 

Zscore (PMVoo) 19.85 2 0.22 48 92.40 <0.001 

Zscore (PMVnsr) 17.08 2 0.33 48 51.73 <0.001 

Zscore (PMVbrv) 19.85 2 0.22 48 92.40 <0.001 

Zscore: Adap PMV 0.13 2 1.04 48 0.12 0.884 

<0.001

Zscore: Adap PMV 0.13 2 1.04 48
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96.61, PMVbrv—92.40, and PMVoo—92.40); Maceió (PMVp,sv—2160.84, PMVbrv—

2049.47, and PMVoo—2049.47); Florianópolis (PMVnew2—3786.81, PMVp,sv—3231.82, 

PMVnsr—3045.02, and PMV—3045.02). Highlighted in red are the variables that present 

the least discrimination between the clusters of Brasília and Recife (Adap PMV—0.12); 

Maceió (TSV—380.53, PMV*—380.53, and PMV2—380.53); Florianópolis (Adap PMV—

75.37). Through these F values, it is possible to verify how significant the variables are for 

the realization of the separation into groups [57]; that is, the variables with better discrim-

ination have a higher level of similarity for the completion of the clusters and the variables 

with lower discrimination are the ones that contribute less. 

Table 6. ANOVA. 

ANOVA 

Brasília and Recife 
Cluster 

df 
Error 

df F. p-Value 
Mean Square Mean Square 

Zscore (TSV) 14.27 2 0.45 48 31.90 <0.001 

Zscore (PMV) 17.08 2 0.33 48 51.73 <0.001 

Zscore (aPMV) 17.26 2 0.32 48 53.56 <0.001 

Zscore (PMVoo) 19.85 2 0.22 48 92.40 <0.001 

Zscore (PMVnsr) 17.08 2 0.33 48 51.73 <0.001 

Zscore (PMVbrv) 19.85 2 0.22 48 92.40 <0.001 

Zscore: Adap PMV 0.13 2 1.04 48 0.12 0.884 0.884

Zscore (IZA) 15.47 2 0.40 48 38.97 <0.001
Zscore: PMV* 14.27 2 0,447 48 31.89 <0.001
Zscore (PMV2) 14.27 2 0,447 48 31.89 <0.001

Zscore: PMVp,sv 20.03 2 0,207 48
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Maceió 
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df 
Error 

df F. p-Value 
Mean Square Mean Square 

Zscore (TSV) 259.58 2 0.68 1627 380.53 <0.001 

Zscore (PMV) 509.96 2 0.37 1627 1362.25 <0.001 

Zscore (PMVnew) 429.58 2 0.47 1627 907.89 <0.001 
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Zscore (PMVnew2) 533.00 2 0.35 1627 1540.28 <0.001 

Florianópolis 
Cluster 

df 
Error 

df F. p-Value 
Mean Square Mean Square 

Zscore (TSV) 746.19 2 0.70 5031 1059.98 <0.001 

Zscore (PMV) 1378.34 2 0.45 5031 3045.02 <0.001 

Zscore (PMVnew) 1252.25 2 0.50 5031 2490.78 <0.001 

Zscore (aPMV) 496.72 2 0.80 5031 618.53 <0.001 

Zscore (PMVoo) 1334.14 2 0.47 5031 2837.52 <0.001 

Zscore (PMVnsr) 1378.34 2 0.45 5031 3045.02 <0.001 

Zscore (PMVbrv) 1334.14 2 0.47 5031 2837.52 <0.001 

Zscore: Adap PMV 73.22 2 0.97 5031 75.37 <0.001 

Zscore (IZA) 1274.67 2 0.49 5031 2580.97 <0.001 

Zscore: PMV* 746.19 2 0.70 5031 1059.98 <0.001 

Zscore (PMV2) 746.19 2 0.70 5031 1059.98 <0.001 

Zscore: PMVp,sv 1415.30 2 0.44 5031 3231.82 <0.001 

Zscore (ePMV) 483.05 2 0.81 5031 597.57 <0.001 

Zscore (PMVnew2) 1512.35 2 0.40 5031 3786.81 <0.001 

F = F-statistic; df = degree of freedom. 

F-Tests are only used for descriptive purposes, as the clusters are chosen to verify the 

existing variability between and within groups, that is, the higher the value of F is, the 

greater the contribution of the variable to the definition of the groups. In Table 7, it is 

possible to identify the averages for the variables in each of the clusters created. 

  

<0.001

Zscore (ePMV) 12.18 2 0,534 48 22.81 <0.001
Zscore (PMVnew2) 14.93 2 0.42 48 35.59 <0.001
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Table 6. Cont.

ANOVA

Zscore (TSV) 259.58 2 0.68 1627

1 
 

ANOVA 
Brasília and Recife Cluster df Error df F. p-Value 

Mean Square Mean Square 
Zscore (TSV) 14.27 2 0.45 48 31.90 <0.001 
Zscore (PMV) 17.08 2 0.33 48 51.73 <0.001 

Zscore (aPMV) 17.26 2 0.32 48 53.56 <0.001 
Zscore (PMVoo) 19.85 2 0.22 48 92.40 <0.001 
Zscore (PMVnsr) 17.08 2 0.33 48 51.73 <0.001 
Zscore (PMVbrv) 19.85 2 0.22 48 92.40 <0.001 

Zscore: Adap PMV 0.13 2 1.04 48 0.12 0.884 
Zscore (IZA) 15.47 2 0.40 48 38.97 <0.001 
Zscore: PMV* 14.27 2 0,447 48 31.89 <0.001 

Zscore (PMV2) 14.27 2 0,447 48 31.89 <0.001 
Zscore: PMVp,sv 20.03 2 0,207 48 96.61 <0.001 
Zscore (ePMV) 12.18 2 0,534 48 22.81 <0.001 

Zscore (PMVnew2) 14.93 2 0.42 48 35.59 <0.001 
Maceió Cluster df Error df F. p-Value 

Mean Square Mean Square 
Zscore (TSV) 259.58 2 0.68 1627 380.53 <0.001 
Zscore (PMV) 509.96 2 0.37 1627 1362.25 <0.001 

Zscore (PMVnew) 429.58 2 0.47 1627 907.89 <0.001 
Zscore (aPMV) 500.46 2 0.39 1627 1296.41 <0.001 

Zscore (PMVoo) 583.06 2 0.28 1627 2049.47 <0.001 
Zscore (PMVnsr) 509.96 2 0.37 1627 1362.25 <0.001 
Zscore (PMVbrv) 583.06 2 0.28 1627 2049.47 <0.001 

Zscore: Adap PMV 472.92 2 0.42 1627 1126.32 <0.001 
Zscore (IZA) 561.03 2 0.31 1627 1800.59 <0.001 
Zscore: PMV* 259.58 2 0.68 1627 380.53 <0.001 

Zscore (PMV2) 259.58 2 0.68 1627 380.53 <0.001 
Zscore: PMVp,sv 591.73 2 0.27 1627 2160.84 <0.001 
Zscore (ePMV) 396.55 2 0.51 1627 771.83 <0.001 

Zscore (PMVnew2) 533.00 2 0.35 1627 1540.28 <0.001 
Florianópolis Cluster df Error df F. p-Value 

Mean Square Mean Square 
Zscore (TSV) 746.19 2 0.70 5031 1059.98 <0.001 
Zscore (PMV) 1378.34 2 0.45 5031 3045.02 <0.001 

Zscore (PMVnew) 1252.25 2 0.50 5031 2490.78 <0.001 
Zscore (aPMV) 496.72 2 0.80 5031 618.53 <0.001 

Zscore (PMVoo) 1334.14 2 0.47 5031 2837.52 <0.001 
Zscore (PMVnsr) 1378.34 2 0.45 5031 3045.02 <0.001 
Zscore (PMVbrv) 1334.14 2 0.47 5031 2837.52 <0.001 

Zscore: Adap PMV 73.22 2 0.97 5031 75.37 <0.001 
Zscore (IZA) 1274.67 2 0.49 5031 2580.97 <0.001 
Zscore: PMV* 746.19 2 0.70 5031 1059.98 <0.001 

Zscore (PMV2) 746.19 2 0.70 5031 1059.98 <0.001 
Zscore: PMVp,sv 1415.30 2 0.44 5031 3231.82 <0.001 
Zscore (ePMV) 483.05 2 0.81 5031 597.57 <0.001 

Zscore (PMVnew2) 1512.35 2 0.40 5031 3786.81 <0.001 
 

<0.001

Zscore (PMV) 509.96 2 0.37 1627 1362.25 <0.001
Zscore (PMVnew) 429.58 2 0.47 1627 907.89 <0.001

Zscore (aPMV) 500.46 2 0.39 1627 1296.41 <0.001

Zscore (PMVoo) 583.06 2 0.28 1627
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Zscore (IZA) 15.47 2 0.40 48 38.97 <0.001 

Zscore: PMV* 14.27 2 0,447 48 31.89 <0.001 

Zscore (PMV2) 14.27 2 0,447 48 31.89 <0.001 

Zscore: PMVp,sv 20.03 2 0,207 48 96.61 <0.001 

Zscore (ePMV) 12.18 2 0,534 48 22.81 <0.001 

Zscore (PMVnew2) 14.93 2 0.42 48 35.59 <0.001 

Maceió 
Cluster 

df 
Error 

df F. p-Value 
Mean Square Mean Square 

Zscore (TSV) 259.58 2 0.68 1627 380.53 <0.001 

Zscore (PMV) 509.96 2 0.37 1627 1362.25 <0.001 

Zscore (PMVnew) 429.58 2 0.47 1627 907.89 <0.001 

Zscore (aPMV) 500.46 2 0.39 1627 1296.41 <0.001 

Zscore (PMVoo) 583.06 2 0.28 1627 2049.47 <0.001 

Zscore (PMVnsr) 509.96 2 0.37 1627 1362.25 <0.001 

Zscore (PMVbrv) 583.06 2 0.28 1627 2049.47 <0.001 

Zscore: Adap PMV 472.92 2 0.42 1627 1126.32 <0.001 

Zscore (IZA) 561.03 2 0.31 1627 1800.59 <0.001 

Zscore: PMV* 259.58 2 0.68 1627 380.53 <0.001 

Zscore (PMV2) 259.58 2 0.68 1627 380.53 <0.001 

Zscore: PMVp,sv 591.73 2 0.27 1627 2160.84 <0.001 

Zscore (ePMV) 396.55 2 0.51 1627 771.83 <0.001 

Zscore (PMVnew2) 533.00 2 0.35 1627 1540.28 <0.001 

Florianópolis 
Cluster 

df 
Error 

df F. p-Value 
Mean Square Mean Square 

Zscore (TSV) 746.19 2 0.70 5031 1059.98 <0.001 

Zscore (PMV) 1378.34 2 0.45 5031 3045.02 <0.001 

Zscore (PMVnew) 1252.25 2 0.50 5031 2490.78 <0.001 

Zscore (aPMV) 496.72 2 0.80 5031 618.53 <0.001 

Zscore (PMVoo) 1334.14 2 0.47 5031 2837.52 <0.001 

Zscore (PMVnsr) 1378.34 2 0.45 5031 3045.02 <0.001 

Zscore (PMVbrv) 1334.14 2 0.47 5031 2837.52 <0.001 

Zscore: Adap PMV 73.22 2 0.97 5031 75.37 <0.001 

Zscore (IZA) 1274.67 2 0.49 5031 2580.97 <0.001 

Zscore: PMV* 746.19 2 0.70 5031 1059.98 <0.001 

Zscore (PMV2) 746.19 2 0.70 5031 1059.98 <0.001 

Zscore: PMVp,sv 1415.30 2 0.44 5031 3231.82 <0.001 

Zscore (ePMV) 483.05 2 0.81 5031 597.57 <0.001 

Zscore (PMVnew2) 1512.35 2 0.40 5031 3786.81 <0.001 

F = F-statistic; df = degree of freedom. 

F-Tests are only used for descriptive purposes, as the clusters are chosen to verify the 

existing variability between and within groups, that is, the higher the value of F is, the 

greater the contribution of the variable to the definition of the groups. In Table 7, it is 

possible to identify the averages for the variables in each of the clusters created. 

  

<0.001

Zscore (PMVnsr) 509.96 2 0.37 1627 1362.25 <0.001

Zscore (PMVbrv) 583.06 2 0.28 1627
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Zscore (IZA) 15.47 2 0.40 48 38.97 <0.001 

Zscore: PMV* 14.27 2 0,447 48 31.89 <0.001 

Zscore (PMV2) 14.27 2 0,447 48 31.89 <0.001 

Zscore: PMVp,sv 20.03 2 0,207 48 96.61 <0.001 

Zscore (ePMV) 12.18 2 0,534 48 22.81 <0.001 

Zscore (PMVnew2) 14.93 2 0.42 48 35.59 <0.001 

Maceió 
Cluster 

df 
Error 

df F. p-Value 
Mean Square Mean Square 

Zscore (TSV) 259.58 2 0.68 1627 380.53 <0.001 

Zscore (PMV) 509.96 2 0.37 1627 1362.25 <0.001 

Zscore (PMVnew) 429.58 2 0.47 1627 907.89 <0.001 

Zscore (aPMV) 500.46 2 0.39 1627 1296.41 <0.001 

Zscore (PMVoo) 583.06 2 0.28 1627 2049.47 <0.001 

Zscore (PMVnsr) 509.96 2 0.37 1627 1362.25 <0.001 

Zscore (PMVbrv) 583.06 2 0.28 1627 2049.47 <0.001 

Zscore: Adap PMV 472.92 2 0.42 1627 1126.32 <0.001 

Zscore (IZA) 561.03 2 0.31 1627 1800.59 <0.001 

Zscore: PMV* 259.58 2 0.68 1627 380.53 <0.001 

Zscore (PMV2) 259.58 2 0.68 1627 380.53 <0.001 

Zscore: PMVp,sv 591.73 2 0.27 1627 2160.84 <0.001 

Zscore (ePMV) 396.55 2 0.51 1627 771.83 <0.001 

Zscore (PMVnew2) 533.00 2 0.35 1627 1540.28 <0.001 

Florianópolis 
Cluster 

df 
Error 

df F. p-Value 
Mean Square Mean Square 

Zscore (TSV) 746.19 2 0.70 5031 1059.98 <0.001 

Zscore (PMV) 1378.34 2 0.45 5031 3045.02 <0.001 

Zscore (PMVnew) 1252.25 2 0.50 5031 2490.78 <0.001 

Zscore (aPMV) 496.72 2 0.80 5031 618.53 <0.001 

Zscore (PMVoo) 1334.14 2 0.47 5031 2837.52 <0.001 

Zscore (PMVnsr) 1378.34 2 0.45 5031 3045.02 <0.001 

Zscore (PMVbrv) 1334.14 2 0.47 5031 2837.52 <0.001 

Zscore: Adap PMV 73.22 2 0.97 5031 75.37 <0.001 

Zscore (IZA) 1274.67 2 0.49 5031 2580.97 <0.001 

Zscore: PMV* 746.19 2 0.70 5031 1059.98 <0.001 

Zscore (PMV2) 746.19 2 0.70 5031 1059.98 <0.001 

Zscore: PMVp,sv 1415.30 2 0.44 5031 3231.82 <0.001 

Zscore (ePMV) 483.05 2 0.81 5031 597.57 <0.001 

Zscore (PMVnew2) 1512.35 2 0.40 5031 3786.81 <0.001 

F = F-statistic; df = degree of freedom. 

F-Tests are only used for descriptive purposes, as the clusters are chosen to verify the 

existing variability between and within groups, that is, the higher the value of F is, the 

greater the contribution of the variable to the definition of the groups. In Table 7, it is 

possible to identify the averages for the variables in each of the clusters created. 

  

<0.001

Zscore: Adap PMV 472.92 2 0.42 1627 1126.32 <0.001
Zscore (IZA) 561.03 2 0.31 1627 1800.59 <0.001

Zscore: PMV* 259.58 2 0.68 1627
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Zscore (IZA) 15.47 2 0.40 48 38.97 <0.001 

Zscore: PMV* 14.27 2 0,447 48 31.89 <0.001 

Zscore (PMV2) 14.27 2 0,447 48 31.89 <0.001 

Zscore: PMVp,sv 20.03 2 0,207 48 96.61 <0.001 

Zscore (ePMV) 12.18 2 0,534 48 22.81 <0.001 

Zscore (PMVnew2) 14.93 2 0.42 48 35.59 <0.001 

Maceió 
Cluster 

df 
Error 

df F. p-Value 
Mean Square Mean Square 

Zscore (TSV) 259.58 2 0.68 1627 380.53 <0.001 

Zscore (PMV) 509.96 2 0.37 1627 1362.25 <0.001 

Zscore (PMVnew) 429.58 2 0.47 1627 907.89 <0.001 

Zscore (aPMV) 500.46 2 0.39 1627 1296.41 <0.001 

Zscore (PMVoo) 583.06 2 0.28 1627 2049.47 <0.001 

Zscore (PMVnsr) 509.96 2 0.37 1627 1362.25 <0.001 

Zscore (PMVbrv) 583.06 2 0.28 1627 2049.47 <0.001 

Zscore: Adap PMV 472.92 2 0.42 1627 1126.32 <0.001 

Zscore (IZA) 561.03 2 0.31 1627 1800.59 <0.001 

Zscore: PMV* 259.58 2 0.68 1627 380.53 <0.001 

Zscore (PMV2) 259.58 2 0.68 1627 380.53 <0.001 

Zscore: PMVp,sv 591.73 2 0.27 1627 2160.84 <0.001 

Zscore (ePMV) 396.55 2 0.51 1627 771.83 <0.001 

Zscore (PMVnew2) 533.00 2 0.35 1627 1540.28 <0.001 

Florianópolis 
Cluster 

df 
Error 

df F. p-Value 
Mean Square Mean Square 

Zscore (TSV) 746.19 2 0.70 5031 1059.98 <0.001 

Zscore (PMV) 1378.34 2 0.45 5031 3045.02 <0.001 

Zscore (PMVnew) 1252.25 2 0.50 5031 2490.78 <0.001 

Zscore (aPMV) 496.72 2 0.80 5031 618.53 <0.001 

Zscore (PMVoo) 1334.14 2 0.47 5031 2837.52 <0.001 

Zscore (PMVnsr) 1378.34 2 0.45 5031 3045.02 <0.001 

Zscore (PMVbrv) 1334.14 2 0.47 5031 2837.52 <0.001 

Zscore: Adap PMV 73.22 2 0.97 5031 75.37 <0.001 

Zscore (IZA) 1274.67 2 0.49 5031 2580.97 <0.001 

Zscore: PMV* 746.19 2 0.70 5031 1059.98 <0.001 

Zscore (PMV2) 746.19 2 0.70 5031 1059.98 <0.001 

Zscore: PMVp,sv 1415.30 2 0.44 5031 3231.82 <0.001 

Zscore (ePMV) 483.05 2 0.81 5031 597.57 <0.001 

Zscore (PMVnew2) 1512.35 2 0.40 5031 3786.81 <0.001 

F = F-statistic; df = degree of freedom. 

F-Tests are only used for descriptive purposes, as the clusters are chosen to verify the 

existing variability between and within groups, that is, the higher the value of F is, the 

greater the contribution of the variable to the definition of the groups. In Table 7, it is 

possible to identify the averages for the variables in each of the clusters created. 

  

<0.001
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<0.001

F = F-statistic; df = degree of freedom.

F-Tests are only used for descriptive purposes, as the clusters are chosen to verify
the existing variability between and within groups, that is, the higher the value of F is,
the greater the contribution of the variable to the definition of the groups. In Table 7, it is
possible to identify the averages for the variables in each of the clusters created.

With the values found in the centers of the final groups, it is possible to classify the
clusters according to their performance, as follows:

• Brasília and Recife: cluster 1—high performance/low risk, cluster 2—low perfor-
mance/high senility risk, and cluster 3—medium performance/medium senility risk;

• Maceió: cluster 1—medium performance/medium senility risk, cluster 2—high per-
formance/low risk, and cluster 3—low performance/high senility risk;

• Florianópolis: cluster 1—medium performance/medium senility risk, cluster 2—low
performance/high senility risk, and cluster 3—high performance/low senility risk.
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Table 7. Final group centers.

Clusters

Models
Brasília and Recife Maceió Florianópolis

1 2 3 1 2 3 1 2 3

Zscore (TSV) 1.34 −0.66 −0.08 0.28 0.76 −0.42 −0.05 −0.50 1.02
Zscore (PMV) 1.30 −0.87 0.15 −0.05 1.07 −0.59 0.19 −0.87 1.15

Zscore (PMVnew) - - - −0.17 0.98 −0.54 0.18 −0.83 1.10
Zscore (aPMV) 1.27 −0.89 0.19 0.06 1.06 0.58 0.49 −0.47 −0.27
Zscore (PMVoo) 1.48 −0.88 0.07 0.34 1.14 −0.63 0.12 −0.82 1.20
Zscore (PMVnsr) 1.30 −0.87 0.15 −0.05 1.07 −0.59 0.19 −0.88 1.15
Zscore (PMVbrv) 1.48 −0.88 0.07 0.34 1.14 −0.63 0.12 −0.82 1.20

Zscore: Adap PMV −0.03 0.09 −0.07 12.53 −0.04 −0.05 0.01 −0.18 0.30
Zscore (IZA) 1.36 −0.73 −0.02 0.31 1.12 −0.61 0.22 −0.86 1.06

Zscore: PMV* 1.34 −0.66 −0.08 0.28 0.76 −0.42 −0.05 −0.50 1.02
Zscore (PMV2) 1.34 −0.66 −0.08 0.28 0.76 −0.42 −0.05 −0.50 1.02

Zscore: PMVp,sv 1.11 −1.06 0.45 0.25 1.15 −0.63 0.12 −0.84 1.24
Zscore (ePMV) 1.27 −0.55 −0.15 −0.31 0.94 −0.52 0.16 −0.55 0.62

Zscore (PMVnew2) 0.15 0.82 −0.90 0.03 1.09 −0.60 0.15 −0.88 1.26

Table 8 contains the distance matrix between the centroids of the clusters.

Table 8. Matrix of distances between cluster centers.

Distance Matrix

Cluster (Brasília
and Recife) 1 2 3 Cluster

(Maceió) 1 2 3 Cluster
(Florianópolis) 1 2 3

1 7.08 4.39 1 13.00 12.84 1 3.21 3.54
2 7.08 3.47 2 13.00 5.67 2 3.21 6.43
3 4.39 3.47 3 12.84 5.67 3 3.54 6.43

The number of cases (individuals) in each cluster is shown in Table 9.

Table 9. Number of cases in each cluster.

Cluster Brasília and Recife Maceió Florianópolis

1 11 6 2258
2 20 575 1787
3 20 1049 989

Total 51 1630 5034

Next, Figure 7 represents the centers of the final clusters contained in Table 7 with the
averages for the variables in each cluster created.

For Brasília and Recife, clusters 2 and 3 had the same number of people feeling slightly
cool and slightly warm, respectively. In Maceió, cluster 3 had the highest number of people
who felt slightly cool and, for this same city, there was an outlier in the variable AdapPMV
present in cluster 1. In Florianópolis, the number of people was predominant in cluster 1,
where the majority voted for thermal neutrality.
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Figure 7. Representation of the Cluster Centers.
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4. Discussion

One-way repeated measures ANOVA exposes differences that are statistically signifi-
cant between groups (p-value < 0.05) [58]. Therefore, this statistical method contributed
to verifying statistical differences between the PMV and its alternative models when ap-
plied under different climatic and environmental conditions. However, Mauchly’s test of
sphericity was performed to confirm whether there was no equality between the models.
However, it only proves a difference between the models but does not indicate exactly
where this difference lies. This difference was investigated by the Bonferroni post hoc test,
where a model-to-model comparison was made for comparative purposes [59] so that it is
possible to find out which model best represented the thermal conditions of each city. Even
after performing the test, it is possible that some models that resemble the thermal reality
are not among the results found in the calculations, so with the profile graph, it became
more visual to identify these similarities through the proximities between the TSV and the
performance of the models themselves.

By performing the analysis of variance, the fact highlighted in the research of Cheung
et al. [10] was confirmed, where it was found that the Fanger model presented only a 34%
accuracy in its performance. Thus, the PMV had results that did not match the thermal
realities found for the four Brazilian cities. Thus, for Brasília and Recife, the ‘PMVoo’ model
of Orosa and Oliveira [43] presented the lowest mean difference between model results and
thermal sensation votes at 0.10; for Maceió, it was the ‘PMV2’ model of Broday et al. [47]
with 0.16; for Florianópolis, it was the ‘ePMV’ model of Zhang and Lin [49] with 0.03. In the
profile graphs, all the points above the TSV represent the models that were overestimated,
and the points below represent the models that underestimated the thermal sensation.
In agreement with these results, Niza and Broday [32] developed canonical discriminant
functions that proved that the adaptive models were more relevant than the PMV.

Knowing the model that best suits a particular condition makes it possible to under-
stand how the users of the environment feel. Thus, it becomes easier to propose better
thermal requirements for buildings, offer ventilation strategies, and even contribute to the
execution of future construction projects. Another circumstance to be highlighted is the
great usability of the analysis of variance in thermal comfort.

Lam, Loughnan, and Tapper [60] studied outdoor thermal comfort in Australia’s Royal
Botanic Garden (RBG) during the summer, evaluating residents’ and tourists’ perceptions.
Through the analysis, they investigated the differences in thermal perception between these
two audiences to bring improvements to the garden’s design, making the site increasingly
attractive for tours, and attracting several potential foreign visitors. Another application
of this analysis was found in Kwong et al. [61]. They tested the statistical differences in
average temperatures between local climate zones in the Metropolitan Region of Toulouse
(France) under hot and dry summer conditions. Thus, this analysis’ broad applicability for
indoor and outdoor environments is noted, in addition to health benefits and the ability to
make tourist spots increasingly attractive.

Following this research, Kiki et al. [62] sought adaptive models capable of representing
the thermal conditions of buildings in Benin, a country in West Africa, which, as with Brazil,
has a tropical climate. In the same way that using thermal comfort studies to reduce energy
losses is highlighted, it also emphasizes the search for comfort standards for users. In
these air-conditioned buildings located in hot and humid regions, the adaptive models
with the best performances were by López-Pérez, Flores-Prieto, and Ríos-Rojas [17] and
Indraganti et al. [63]; thus, as mentioned before, the models’ performances may vary from
environment to environment. Therefore, the model considered optimal for Benin may not
perform well when applied to Brazil and vice versa.

Next, through cluster analysis, it was possible to divide the data of thermal sensations
obtained by the models into k clusters, where everyone was assigned to a group [64], i.e.,
each person should be assigned to only one cluster according to their thermal sensation, so
all those who have thermal similarities will be in the same group. Nam et al. [65] cited that
if, by chance, an object belongs to a cluster, it becomes impossible to transfer it to another;
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thus, if there are outliers, they cannot be removed, as was the case of the outlier found
in cluster 1 of Maceió that contained well-dispersed thermal sensations that benefited for
the variable ‘AdapPMV’ to present a higher thermal sensation than the one present in the
7-point scale of ASHRAE.

Throughout the iterations, the centroids are modified until there is no significant
variation between the averages, and thus, each element is allocated to only one cluster.
Through the clusters and the similarities, it is possible to investigate how most people felt
to analyze these environments more pointedly according to these aspects and consequently
meet the needs of most users by improving them thermally.

Among the studies found, Asumadu-Sakyi et al. [66] identified the patterns in indoor
temperature for weekdays and weekends in homes in mid-season periods and homes with
air conditioning in hot and cold seasons. The author also mentioned that for future works,
several pieces of data can be incremented, such as socioeconomic data of the users, types of
walls of the buildings, and floor insulation, that can contribute to the understanding of the
results both for Brisbane in Australia and Florianópolis in Brazil that are under the same
climate for being located at the same latitude. For the application of adaptive strategies,
Bienvenido-Huertas et al. [9] considered temperature records from the 20th century until
2019 in buildings in southern Spain. Hence, cluster analysis has a versatile application in
numerous areas, enabling the union of elements with common characteristics in clusters.

According to Wu et al. [67], much research in thermal comfort focused on building
energy savings ends up neglecting human adaptation, and this factor is one of the main
factors for maintaining thermal comfort. Therefore, investigating of how individuals feel,
adaptive behavior, and strategies used in the environment become increasingly necessary to
consider in developing adaptive models. Furthermore, Altan and Ozarisoy [68] emphasized
that information about the thermal comfort requirements under different climate types can
contribute to the suggestion of appropriate environmental and design solutions, providing
a comfortable and satisfactory thermal environment. In summary, both statistical analyses
were highly relevant to thermal comfort, presenting new perspectives, possibilities, and
directions for the progress of studies and scientific research.

5. Conclusions

In the analysis of variance, it was possible to test the PMV and alternative models to see
which would perform best under different conditions in Brazil using the ASHRAE Global
Thermal Comfort Database II. Thus, for Brasília and Recife, the PMVoo model by Orosa
and Oliveira [43] showed the lowest mean difference between model results and thermal
sensation votes at 0.10; for Maceió, it was the PMV2 model by Broday et al. [47] with 0.16;
for Florianópolis, it was the ePMV model by Zhang and Lin [49] with 0.03. With the results,
it was confirmed that alternative models could have greater accuracy than the traditional
PMV model, and the development of these new models could become increasingly more
usual and effective in the search for greater precision about the thermal reality found in
environments, in addition to their contribution to energy efficiency, productivity, health,
and well-being. In addition, it highlights that their particularities mean that the models can
present different performances under numerous regions.

Through cluster analysis, individuals were classified based on their similarities in the
thermal sensation votes, identifying homogeneity in the data. Thus, in Brasília and Recife,
the second and third clusters were responsible for grouping most people, with 20 people in
each cluster who felt slightly warm and slightly cool, respectively. For Maceió, most people
were allocated to the last cluster, with 1049 people who felt slightly cool; for Florianópolis,
2258 people were in the largest cluster where they felt slightly warm. Through the creation
of the clusters, it became understandable how most people felt thermally through their level
of thermal similarity. These aspects can contribute to identifying the needs of indoor users.

The size of the samples was one of the limitations found, where they presented very
distinct sizes between cities that may have influenced the results. If there were more
individual thermal responses, the approximation to reality would be better. It is suggested
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for future works the development of an analysis of thermal comfort for the southeast region,
the most economically developed area in Brazil, and the north of the country, a region with
high rainfall rates and a large amount of relative humidity, both of which directly influence
the thermal sensation. In ASHRAE’s database, only these two Brazilian regions have not yet
been included in the analyses. Thus, all the proposed objectives were achieved, presenting
the thermal comfort models with greater adequacy to the cities and the distribution of
individuals in groups according to the level of thermal similarity.
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Nomenclature

aPMV Adaptive Predicted mean vote (−)
df Degrees of freedom (−)
ep Extension factor (−)
F F-statistic (−)
f cl Clothing area factor (−)
hc Convective heat transfer coefficient (W m−2 K−1)
Icl Clothing insulation (m2 K W−1)
IZA Thermal comfort Index for cities of Arid Zones (−)
Lnew New heat load (W m−2)
M Metabolic rate (W m−2).
PMV Predicted mean vote (−)
pa Water vapor partial pressure (Pa)
Pv Vapor partial pressure (Pa)
Qsw Heat loss due to sweat evaporation (W m−2)
RH Relative humidity (%)
t Dry bulb temperature (◦C)
ta Air temperature (◦C)
tcl Clothing surface temperature (◦C)
tcl(newton) Clothing surface temperature obtained by Newton’s method (◦C)
tcomf Comfort temperature (◦C)
tin Temperature of surrounding air temperature or of inhaled air (◦C)
top Operative temperature (◦C)
tout Outdoor air temperature (◦C)
trm Mean radiant temperature (◦C)
Tr Room air temperature (◦C)
TSV Thermal sensation vote (−)
v Wind speed (m s−)
vr Room air velocity (m s−)
W Effective mechanical power per unit of body surface area (W m−2)
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