
Citation: Wu, K.; Peng, X.; Li, Z.;

Cui, W.; Yuan, H.; Lai, C.S.; Lai, L.L.

A Short-Term Photovoltaic Power

Forecasting Method Combining a

Deep Learning Model with Trend

Feature Extraction and Feature

Selection. Energies 2022, 15, 5410.

https://doi.org/10.3390/en15155410

Academic Editors: Tong Niu,

Mingjian Cui and Pei Du

Received: 13 June 2022

Accepted: 20 July 2022

Published: 27 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

A Short-Term Photovoltaic Power Forecasting Method
Combining a Deep Learning Model with Trend Feature
Extraction and Feature Selection
Kaitong Wu, Xiangang Peng *, Zilu Li, Wenbo Cui, Haoliang Yuan , Chun Sing Lai and Loi Lei Lai *

Department of Electrical Engineering, School of Automation, Guangdong University of Technology,
Guangzhou 510006, China; 2112004019@mail2.gdut.edu.cn (K.W.); 2112104436@mail2.gdut.edu.cn (Z.L.);
2112104432@mail2.gdut.edu.cn (W.C.); haoliangyuan@gdut.edu.cn (H.Y.); chunsing.lai@brunel.ac.uk (C.S.L.)
* Correspondence: epxg@gdut.edu.cn (X.P.); l.l.lai@gdut.edu.cn (L.L.L.)

Abstract: High precision short-term photovoltaic (PV) power prediction can reduce the damage
associated with large-scale photovoltaic grid-connection to the power system. In this paper, a
combination deep learning forecasting method based on variational mode decomposition (VMD), a
fast correlation-based filter (FCBF) and bidirectional long short-term memory (BiLSTM) network is
developed to minimize PV power forecasting error. In this model, VMD is used to extract the trend
feature of PV power, then FCBF is adopted to select the optimal input-set to reduce the forecasting
error caused by the redundant feature. Finally, the input-set is put into the BiLSTM network for
training and testing. The performance of this model is tested by a case study using the public data-set
provided by a PV station in Australia. Comparisons with common short-term PV power forecasting
models are also presented. The results show that under the processing of trend feature extraction and
feature selection, the proposed methodology provides a more stable and accurate forecasting effect
than other forecasting models.

Keywords: short-term PV power forecasting; trend feature extraction; fast correlation-based filter;
bidirectional long short-term memory network

1. Introduction

World energy demand has increased steadily over the years. Today’s principal re-
sources are oil and coal, but with finite supplies of fossil fuels and strong evidence of their
negative environmental impact [1]. In addition to being non-renewable, fossil fuels also
cause serious environmental pollution, which further leads to greenhouse gas emission,
acid rain, ozone depletion and fossil fuel combustion [2]. Therefore, there is an urgent need
to seek alternate sources of energy that are cleaner and more sustainable. Solar energy is
a clean and renewable energy source. With the growing global demand for clean energy,
photovoltaic (PV) power will play an important role. In past decades, PV power has
attracted more and more attention [3,4]. PV power brings notable environmental benefits
and economic results. However, PV power is indeterminate and intermittent, because the
output power of a PV system depends on many random factors including global horizontal
radiation, temperature, wind, and system components with their own non-linear factors,
among others [5]. As a result, large scale integration of PV into the power grid brings many
new risks to the operation of the existing power grid system. Increasing the precision of PV
power prediction is effective in addressing these challenges.

There are various methods to predict the output of PV power. According to different
prediction processes, short-term PV prediction is divided into direct-prediction and indirect-
prediction [6]. Ref. [7] describes the use of Feature Attention Deep Forecasting (FADF) in a
deep neural network to generate global horizontal irradiance forecasting. However, this
kind of FADF based on a neural network is very sensitive to the disturbance of training data,
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and may reduce the robustness of FADF. Therefore, indirect-prediction is adopted in this
paper. After long-term research at home and abroad, many short-term forecasting methods
and algorithms have been used to predict PV power in a short time indirectly. Short-term
PV power forecasting methods are divided into three types: (1) a conventional statistical
model [8]; (2) an artificial intelligence model [9,10], and (3) a combination forecasting model.
Much research has noted that no individual forecasting model is the best for all types of
load forecasting. Therefore, it is necessary to combine different models to reduce the risk of
making worse prediction.

Conventional statistical models include a time series model [11], a regression analysis
model [12], grey theory [13] and fuzzy theory [14]. They mainly take historical data into
account to forecast future data. These models predict PV power in future days by mining the
relevance between input variables and output variables through historical data. However,
these statistical models assume that the time series data are linear correlated, which does
not reduce the error caused by the intermittence of PV, and lead to poor prediction results.

Artificial intelligence is developing rapidly, especially in deep learning. As deep
learning can capture the variation rule of PV power and the complicated relationship
between PV power and meteorological factors, numerous artificial intelligence models are
applied to PV power forecasting such as artificial neural networks (ANNs) [15] and long
short-term memory (LSTM) [16], among others. These models can improve the problem of
poor accuracy of conventional statistical models. Currently, most deep learning models are
used to predict short-term PV power combined with feature selection and data processing
algorithms. In Ref. [17], the authors used a technique combining a decomposition model
with a deep learning network to predict 1-h PV power output. In [18] a restricted Boltz-
mann machine (RBM) deep neural network was used with multi-layer perceptron (MLP)
and predator-prey brainstorm optimization of evolutionary computation to obtain better
predicted values. Ref. [19] proposes a new forecasting method based on a recurrent neural
network (RNN) to predict PV power generation. Ref. [20] proposes a hybrid approach
based on a convolutional neural network (CNN) and LSTM for PV power forecasting.

PV power and solar spectral irradiance are closely related, and solar spectral irradiance
is usually affected by other meteorological factors, so the characteristics of PV power are
different under different weather conditions. This means that the accuracy of PV power
prediction depends not only on the historical load data, but also on weather factors [21,22].
Ref. [23] proposes a method based on a feature matrix and LSTM. A short-term PV power
prediction model combined generative adversarial networks with convolutional neural
networks-based weather classification is proposed in [24]. In Ref. [25], it is mentioned that
the data quality of neural network training samples and the selection of numerical weather
prediction (NWP) factors also have a certain impact on short-term PV power prediction. In
addition, models used in Refs. [26–28] have a similar prediction pattern to the proposed
model, using meteorological data and historical PV power for short-term PV prediction.
The mean absolute percentage error (MAPE) of these models 1-day ahead of PV prediction
is about 20%, while the MAPE in this paper can reach 13.84% and 5.21%.

In addition to improving the performance of the forecasting model, measures to
reduce the error of short-term load forecasting may include trend feature extraction and
feature selection.

Trend feature can reflect the unique power characteristics of different stations, and it
is worth noting that the characteristics of PV power are mainly affected by local climate,
longitude and latitude, and terrain. It not only describes the relationship between the
growth and change of PV power with time, but also illustrates the short-term effects and
interactions among PV power. However, many researchers only use historical load data
and meteorological information to predict the PV power and cannot determine the dynamic
changing process of PV, which is not conducive to improvement of short-term PV power
forecasting. In Ref. [29], an improved CEEDMAN algorithm is used to extract a meaningful
sub-mode in the PV power to reduce prediction error caused by noise. In addition, the input
dimension of the prediction model also affects prediction accuracy. Before prediction, it is
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necessary to find the main factors affecting the change of PV power and remove redundant
variables. In Ref. [30], the authors use a random-forest approach to calculate and rank the
affecting factors and select the optimal feature-set to improve forecasting accuracy.

Based on the above analysis, a novel short-term PV power forecasting method com-
bined BiLSTM with trend feature extraction and feature selection is proposed in this paper.
According to the mathematical principle of VMD, the original PV power is decomposed
into multiple intrinsic mode functions (IMFs), and then the trend feature of PV power is
extracted from a series of IMFs. To further reduce the prediction error caused by high
feature dimensions, the FCBF algorithm was not applied to PV prediction to extract the
optimal feature-set from meteorological data, historical PV power and trend feature. In the
short-term the PV power forecasting model uses the BiLSTM model and takes the input
set filtered by FCBF as the input-variables to predict the PV power of a PV power station
from Alice Spring in Australia. The model can fully determine the change of PV power
and increase the efficiency of the prediction model. Finally, example analysis shows that
compared with other prediction methods, the model has advantages in prediction effect
and can significantly increase the accuracy of short-term PV power forecasting.

The main contributions of this study are as follows:

1. An effective trend feature extraction method is developed to extract the trend feature
of PV power;

2. Trend feature, meteorological data and historical PV power data are used to select the
optimal input feature by a FCBF algorithm;

3. A BiLSTM model is adopted to predict PV power with high accuracy;
4. The proposed model is compared with different PV forecasting models.

The rest of this paper is organized as follows. Section 2 presents the framework of the
proposed method. Section 3 describes the methodology. A case study and comparative
analysis are provided and discussed in Section 4. The conclusion is given in Section 5.

2. Framework of the Proposed Methodology

The hybrid model combined trend feature extraction and feature selection with BiL-
STM for day-ahead PV power forecasting, and the proposed methodology was employed
to predict PV power in Australia.

Figure 1 illustrates the general framework of the proposed methodology, and the
procedures are as follows:

1. Standard normalization and data procession of the original load data are required
before performing trend feature extraction.

2. The processed data are decomposed into multiple IMFs by VMD to extract the trend
feature that can reflect the short-term effect of PV power.

3. The optimal feature-sets of trend feature and the original data are selected by FCBF,
and are then integrated as a new input-matrix.

4. Finally, the optimal input-set is used in the standard BiLSTM model with a 1-D CNN
layer to forecast the PV power.
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3. Methodology
3.1. Variational Mode Decomposition (VMD)

The VMD algorithm considers that successive data are composed of sub-series with
different frequencies. The essence of the VMD algorithm is to decompose the successive
data into sub-modes that have different center frequencies [31]. PV power may be composed
of a trend feature and noise, so the trend feature can be extracted from the PV power by
using the VMD algorithm. The flow of the VMD algorithm consisted of the following steps.

Step 1: the number of modes (K) to be decomposed need to be preset, and then the
original PV power x(t) is decomposed into k modes uk, (k = 1, 2, ..., K). The original data
of each mode is obtained by Hilbert transform. By adding an exponential term to adjust
the estimated central spectrum, the spectrum of each intrinsic mode function (IMF) is
modulated to the corresponding fundamental-frequency-band. The estimated bandwidth
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corresponding to each IMF is obtained by calculating the norm of the gradient square (L2)
of the demodulated signal. The expression is as follows:

min
{uk},{ωk}

{
∑k ‖∂t[δ(t) +

j
πt ∗ uk(t)]e−jωkt‖

2
2

}
s.t.∑

k
uk = x(t)

(1)

where K is the number of modes to be decomposed, uk is the k-th decomposed IMF
of the original data, ωk is the k-th center frequency, ∂t is the partial derivative of the
function to time t, δ(t) is the Dirac distribution function, j represents an imaginary unit, and
“*” represents convolution. In the constraint condition of the above Equation (1), X(t)
represents the original data to be decomposed. In addition, {uk} = {u1, u2, ..., uK} is a
collection of all modes, {ωk} = {ω1, ω2, ..., ωK} is a set of center frequencies of each mode,

and ∑
k
∗ =

K
∑

k=1
∗ is the sum of modes.

Step 2: Using a quadratic penalty term and Lagrange multiplication operator, the
constrained problem is transformed into an unconstrained problem. The quadratic penalty
item is used to ensure that the key information of the PV data is not lost in the decomposition
process. The purpose of the Lagrange multiplication operator is to force the constraints to
have a certain degree of strictness.

The extended Lagrange expression is as follows:

L({uk}, {ωk}, λ) = α∑
k
‖∂t[δ(t) +

j
πt
∗ uk(t)]e−jωk t‖

2

2
+ ‖x(t)−∑

k
uk(t)‖

2

2

+

〈
λ(t), x(t)−∑

k
uk(t)

〉
(2)

where α is the secondary penalty factor and λ(t) is the Lagrangian multiplication operator.
An alternating direction method of multipliers (ADMM) is used to update un+1

k , ωn+1
k

and λn+1
k alternately, so that the minimization problem in Equation (1) is transformed into

finding the Saddle point of extended Equation (2) in the iterative sub-optimization series.
The calculation equation for updating un+1

k can be expressed as follows:

un+1
k = argmin

uk∈X

{
α∑

k
‖∂t[δ(t) +

j
πt
∗ uk(t)]e−jωkt‖

2

2
+ ‖x(t)−∑

i
ui(t) +

λ(t)
2
‖

2

2

}
(3)

where ωk is equivalent to ωn+1
k , and ∑

i
un

i is equivalent to ∑
i

un+1
i .

Step 3: By using the Parseval Fourier equidistant transform, Equation (3) is trans-
formed from a time domain to a frequency domain, and the expression of each mode in the
frequency domain is as follows:

ũn+1
k =

x̂(ω)− ∑
i 6=k

ûi(ω) + λ̂(ω)
2

1 + 2 · α · (ω−ωk)
2 (4)

To obtain the updated center frequency λ̃n+1
k of each mode ωn+1

k , it is also necessary
to transform the problem of solving the center frequency to the frequency domain to obtain
the expression of update ωn+1

k . The expression is as follows:

ωn+1
k =

∫ ∞
0 ω

∣∣∣ûn+1
i (ω)

∣∣∣2dω∫ ∞
0

∣∣∣ûn+1
i (ω)

∣∣∣2dω

(5)

λ̂n+1(ω) = λ̂n(ω) + γ((x̂(ω)−∑
k

ûn+1
k (ω)) (6)
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In Equation (5), ωn+1
k is the center frequency of the k-th IMF, and un+1

i (ω) is equivalent
to the Wiener filter of current remaining amount x̂(ω)− ∑

i 6=k
ûn+1

i (ω). Equation (6) is used

for updating the Lagrange factor λ̂n+1(ω). It has the characteristics of a Wiener filter
structure, which directly updates the mode in the frequency domain.

Figure 2 shows the flowchart of the VMD algorithm where ∀ε > 0.
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3.2. Fast Correlation-Based Filter (FCBF)

The FCBF algorithm takes symmetrical uncertainty (SU) as the measurement index
to define whether a feature is related to the target data or whether it is a redundant
feature. Assuming that the target quantity is, Y = [y1, y2, ..., yj] the historical PV power and
meteorological data are X = [x1, x2, ..., xi]

H(X) = −∑
i

P(xi) log2 P(xi) (7)

I(X; Y) = H(X)− H(X|Y) (8)

where H(X) is the information entropy of variable X, H(X|Y) represents the conditional
entropy of variables X under the condition of variables Y, I(X; Y) represents the mutual
information that the information entropy of variables X decreases after random variables Y
are observed.

P(xi) and P(yj) are the probabilities of variables X = xi and Y = yj respectively.
P( xi|yj) is the rate of variable X = xi under the condition of random variable Y = yj.
However, the size of I(X; Y) is affected by the variables, values and units. In order to elimi-
nate this influence, normalized mutual information SU is used to represent the correlation
between variables X and Y. SU is defined by Equation (9):

SU(X, Y) = 2[I(X; Y)/(H(X) + H(Y))] (9)

It can be seen from (9) that the value of SU(X, Y) is between [0, 1]. The greater the
value, the greater the correlation between the two random variables. When SU(X, Y) = 0,
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this means that the two random variables X and Y are not related. On the contrary, when
SU(X, Y) = 1, this means that the random variables X and Y are completely correlated.

The steps of feature selection of original data using the FCBF algorithm are as follows.

1. Delete the feature that is less relevant to the target variable. Take the i-th feature (vi) in the
original data as variable X and the target variable Y as category C. Calculate the SU(vi, Y)
of each input feature and Y. If SU(vi, Y) < ξ (ξ is threshold), delete the variable vi, and
put the retained feature variables into the set G with an empty initial state.

2. Analyze redundancy between feature variables. The feature variables in set G are
arranged according to the correlation degree of SU(vi, Y) from large to small. Take the
feature variable vi with the largest correlation and put it into set Q with empty initial
state, and then calculate the SU(vi, vj) between the remaining characteristic variables
vj in set G and vi. If SU(vi, vj) > SU(vi, Y), remove the variable vj from set G.

3. Return to step 2 and repeat the operation to finally obtain the optimized input feature
set Q.

3.3. Improved BiLSTM Short-Term PV Power Forecasting Model

Long short-term memory (LSTM) greatly improves the model’s ability to store histor-
ical load data by adding storage units and gate mechanisms. The LSTM model consists
of a series of identical modules [32]. LSTM is mainly composed of three gate structures,
including the input gate, memory gate and output gate. The input gate is used to input the
historical PV power, the memory gate is used to retain the useful information of historical
data, irrelevant information is filtered, and the output gate is used to control the predicted
PV power [33].

The bidirectional long short-term memory model (BiLSTM) is actually a deformation
of LSTM. It is a two-direction LSTM neural network combined with an LSTM neural
network that moves from the beginning, and a LSTM neural network that moves from the
end of the load data to the beginning. The biggest difference between BiLSTM and LSTM is

that the hidden state Ht of BiLSTM at time t includes the forward hidden state
→
h t and the

backward hidden state
←
h t. The relationships of

→
h t and

←
h t are as follows:

→
h t =

→
LSTM(ht−1, xt, ct−1), t ∈ [1, T] (10)

←
h t =

←
LSTM(ht+1, xt, ct+1), t ∈ [T, 1] (11)

Ht = [
→
h t,
←
h t] (12)

where xt is the input of time t, ct−1 is the memory component of time t − 1, and ct+1 is the
memory component of time t + 1.

The structure of BiLSTM and LSTM are presented in Figure 3. The improved BiLSTM
is added to a convolution (CNN) layer in the standard BiLSTM. The newly added CNN
layer can select the characteristics of the input data, reduce the redundancy of the input
feature to a certain extent, and improve the accuracy of short-term PV forecasting.
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4. Results and Discussion
4.1. Data-Set

The DKASC Alice Springs PV system data were selected for experiments in this
study [34]. There were 288 observation values every day (time interval is 5 min). The data
included active power (kW), wind speed (m/s), weather temperature (

◦
C), weather relative

humidity (%), global horizontal radiation (w/m2 × sr), and diffuse horizontal radiation
(w/m2 × sr), among others, with 10 dimensions of data in total. The cases used in this
paper can comprehensively and systematically evaluate the validity and usefulness of the
proposed methodology.

PV power has a certain regularity, and the prediction model needs to learn from the
historical PV power data to find its trend feature. The datasets included the real PV power
from December 2021 to February 2022 and from June 2021 to August 2021. The data-set
was continuous but there were some vacancy values. Before conducting experiments, the
Lagrange interpolation method was used to process the original data and fill the vacancy
values. The original data and processed data in February are shown in Figures 4 and 5.
Because of the large amount of data, the processed result only uses the data in February as
an example.
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Two sets of experiments were carried out to show the performance of the proposed
model both in summer and winter, representing 1-day ahead and 3-day ahead short-term
PV power forecasting. In 1-day ahead PV power forecasting, the training data accounted
for 80% of the data-set, of which the training-set accounted for 80%, the verification-set
accounted for 20%, and the rest of the data-set was the testing data; In 3-day ahead PV
power forecasting, the training data accounted for 80% of the data-set, of which the training
set accounted for 80%, the verification set accounted for 20%, and the rest of the data set
was the testing data.

Before carrying out the experiments, original data were standardized and normalized.
The equation for normalization is as follows:

xg =
x− xmin

xmax − xmin
(13)

where x is the original PV power data, xmax and xmin are the maximum and minimum
of the data, and xg is the normalized data. From Equation (13), xg can be obtained in the
interval [0, 1].

4.2. Evaluation Criteria

In order to evaluate the prediction effect of the fusion model for PV power predic-
tion, the mean absolute error (MAE), root mean square error (RMSE) and mean absolute
percentage error (MAPE) were applied as evaluation indexes, which can be described as:

MAE =
1
n

n

∑
i=1
|ŷi − yi| (14)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (15)

MAPE =
1
n

n

∑
t=1

|ŷi − yi|
ŷi

× 100% (16)
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where, ŷi is the actual value of PV data, yi is the predicted value, and n is the number of
testing points.

4.3. Simulation Analysis
4.3.1. Comparison of Different Trend Feature Extraction Models

Different trend feature extraction models were compared taking the data-set in summer as
an example for verifying the effectiveness and excellence of the variational mode decomposition
(VMD). After many experiments, it was found that if the number of modes decomposed by
VMD was too large, the essential information of intrinsic mode functions (IMFs) was lost, which
was manifested in the trend feature that did not fit the change of the original load data. When
the number of decomposition modes was 2, the trend feature extraction performance of VMD
model was best. It can be concluded that VMD can accurately separate noise and trend variables
without losing significant information of photovoltaic (PV) power. The original data with a wide
time range included three months of PV power. In order to more intuitively reveal the extraction
effect of the trend feature, Figures 6–8 shows the original data in three groups. The actual
extraction process was carried out with continuous original data. Since the research direction of
this paper was short-term PV power forecasting (time interval of 5 min), the trend feature should
be extracted from recent PV power. After many experiments, the trend feature selected from
the PV power in the same season was found to be most suitable. All IMFs of original data were
decomposed by VMD and their comparison with original data are shown in Figures 6 and 7.
From Figure 6, in addition to the IMF, which reflects the trend of PV power, there is also certain
high-frequency IMF in the original data. IMF1 may be generated by the equipment measuring
PV power during the collection process, which affects the performance of the prediction model.
From the comparison between each IMF and the original data in Figure 7, it can be seen that
IMF1 has almost no relationship with the change of the original data. Only IMF2 is closest to the
pattern of the original data. Therefore, IMF2 was selected as the trend feature.
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Figure 6. IMFs of original data decomposed by VMD.
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Figure 8. Comparison between the trend feature of different models and the original data.

The VMD model was compared with more common trend extraction algorithms (such
as empirical mode decomposition (EMD), and ensemble empirical mode decomposition
(EEMD)). These models took the real PV power of a PV power station in Australia as the
input, and checked the trend feature extraction effect of each model by observing the fit
between the trend feature and true data. Symmetrical uncertainty (SU) was also used
to measure the correlation between the trend feature and true values. The comparison
results between trend variables extracted by each model and the original data are shown in
Figure 8. The operation time and SU of each model are given in Table 1.

Table 1. SU and operation time of different trend feature extraction algorithms.

Algorithm SU Operation Time(s)

EMD 0.71 180 s
EEMD 0.72 30 s
VMD 0.73 6 s

From Figure 8 and Table 1, the trend feature extracted by VMD better fit the PV power,
the operation speed of VMD was the fastest, and it had the best correlation between the
extracted trend feature and the original data. The trend extraction effect of EEMD was
good, and almost consistent with the change of PV power. However, the fitting degree of
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the trend feature extracted by EEMD in amplitude was not as good as that of VMD. The
VMD model used in this paper fitted the load change of the original data both in amplitude
and tendency.

4.3.2. Selection of the Models’ Input-Set

During the experiments, this study took 17 dimensions of features which included
various meteorological information, historical photovoltaic (PV) power, and trend features.
The target value was the PV power on the prediction day, and the fast correlation-based
filter (FCBF) algorithm was used to find the most appropriate input-set for all short-term
PV power forecasting models. Based on experience summary and driven by prediction
error, the optimal input-set selected by the FCBF algorithm is shown in Table 2.

Table 2. Feature selection results.

Number Input Variable

0 d-1 PV Power
1 Weather Relative Humidity
2 Global Horizontal Radiation
3 Weather Daily Rainfall
4 Radiation Global Tilted
5 Trend feature

d-1 is the day before the target day d.

4.3.3. Comparison and Analysis of Prediction Results

Different short-term photovoltaic (PV) power forecasting models were introduced
to predict PV power in different horizons. The results of the improved bidirectional long
short-term memory (BiLSTM) model and extreme learning machine (ELM), BiLSTM, long
short-term memory (LSTM) and gate recurrent unit (GRU) models were compared with
1-day ahead and 3-day ahead horizon for short-term PV power prediction. All experiments
were repeated more than 10 times, and results averaged in multiple repeated runs.

The historical data of PV power between June 2021 and August 2021 (Winter), and
between December 2021 and February 2022 (Summer), were used to predict PV daily power
1-day ahead (288 points in total) and 3-days ahead (288 × 3 points in total), respectively.
Short-term PV power prediction results of different models are shown in Figure 9. Ac-
cording to the evaluation measures of mean absolute error (MAE), root mean square error
(RMSE) and mean absolute percentage error (MAPE), short-term PV power prediction
results of different forecasting models are reported in Tables 3 and 4 and in Figure 10.
From the experimental results, the 1-day ahead and 3-day ahead prediction results both
in summer and winter of the proposed methodology were the closest to the true values,
and the prediction performance of this model was the best of the five models. The com-
prehensive error index analysis results in Tables 3 and 4 and in Figure 10 show that the
MAE, RMSE and MAPE of the improved BiLSTM model are the lowest, indicating that the
prediction performance of this model was the best among the five load forecasting models.
In summer, if the trend feature extraction was added to the forecasting model, for 1-day
ahead forecasting, MAE, RMSE and MAPE of the model was reduced 7.69, 13.0 and 19.0%
respectively. For 3-day ahead PV power forecasting, the MAE, RMSE and MAPE of the
model were reduced 11.1, 24.2 and 22.23%, respectively. If feature selection was added to
the model, for 1-day ahead forecasting, the MAE, RMSE and MAPE of the model were
decreased by 13.3, 28.6 and 1.63%, respectively, while for 3-day ahead forecasting, the MAE,
RMSE and MAPE of the model were reduced by 15.8, 28.6 and 25.95%, respectively. In
winter, the prediction effect of this model was more effective, and the MAPE of 1-day ahead
prediction could reach 5.21%. The prediction precision in winter was better than that in
summer, which may be because the change of weather in winter is less intense than that in
summer, and the feature of PV power is more stable, which lead to higher accuracy.
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Figure 9. Comparison of short-term PV power forecasting results in summer and winter.

Table 3. The MAE and RMSE of different forecasting models in Summer.

Model MAE (kW) RMSE (kW) MAPE (%)

1-Day Ahead 3-Day Ahead 1-Day Ahead 3-Day Ahead 1-Day Ahead 3-Day Ahead

Improved BiLSTM 0.13 0.16 0.21 0.25 13.84 16.33
Improved BiLSTM ’ 0.14 0.18 0.23 0.33 17.08 21.00
Improved BiLSTM * 0.15 0.19 0.28 0.35 14.07 18.69

BiLSTM 0.19 0.21 0.30 0.31 21.17 27.82
LSTM 0.21 0.28 0.30 0.38 33.84 37.71
GRU 0.20 0.26 0.33 0.36 27.82 42.8
ELM 0.26 0.26 0.38 0.36 59.9 39.24

Table 4. MAE and RMSE of different forecasting models in Winter.

Model MAE (kW) RMSE (kW) MAPE (%)

1-Day Ahead 3-Day Ahead 1-Day Ahead 3-Day Ahead 1-Day Ahead 3-Day Ahead

Improved BiLSTM 0.08 0.07 0.13 0.12 5.21 13.28
Improved BiLSTM ’ 0.22 0.22 0.34 0.33 28.9 20.26
Improved BiLSTM * 0.25 0.19 0.43 0.34 27.26 23.89

BiLSTM 0.13 0.16 0.23 0.26 24.00 45.48
LSTM 0.16 0.20 0.28 0.30 30.36 103.55
GRU 0.15 0.17 0.23 0.27 29.10 87.73

In Figures 9 and 10 and Tables 3 and 4, the PV power forecasting model with ’ indicates that there is no trend
feature added to the input-set of the model. The model with * indicates that this PV forecasting model does not
undergo feature selection.
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From the Figure 9, the error between the predicted value and the true value is large in
the high radiation situations. It may be affected by the feature of radiation-diffusion-limited,
which tends to be stable at the peak of PV power, resulting in the predicted values being
lower than the true values.

The experiments were conducted using a personal computer with a Python 3.9, 64-bit
operating system, 16.00 GB of RAM, and Intel(R) Core(TM) i7-10510U CPU @ 1.80 GHz
2.30 GHz. The performance of the improved BiLSTM model based on trend feature
extraction and FCBF feature selection was improved, mainly as reflected in the MAE,
RMSE and MAPE of forecasting results of the model in summer and winter. Even if the
improved BiLSTM model did not carry out feature selection and trend feature extraction, its
prediction error was still the lowest among all models in summer, indicating that the model
was superior and has prospects in short-term PV power prediction. When feature selection
was added to the model, the accuracy of both 1-day ahead prediction and 3-day ahead
prediction was further improved which shows that feature selection cannot be ignored
before prediction. In the experiment concerning the model’s trend feature input, the
addition of the trend feature had a great effect on improvement of 3-day ahead prediction
results. The trend feature provides the current effects of PV power change in the region,
reducing the influence of outliers on the prediction model, improving the performance of
the prediction model and improving the accuracy of load forecasting effectively. In general,
the trend feature can account for the timing characteristics among PV power, and plays a
great role in multi-day ahead PV power forecasting.

5. Conclusions

This article proposes an improved bidirectional long short-term memory (BiLSTM)
model combined with trend feature extraction and feature selection for accurate short-term
photovoltaic (PV) power forecasting. First, the original PV data is disintegrated to extract
the trend feature of the PV power according to the principle of variable mode decomposition
(VMD). Second, the optimal feature set is selected from trend feature, historical PV data
and meteorological factors by a fast correlation-based filter (FCBF) algorithm, to lay a
foundation for accurate short-term PV power prediction. Finally, the optimal feature set is
applied to the improved BiLSTM model for training and testing. The proposed method
was compared with the commonly used short-term forecasting models, such as BiLSTM,
LSTM, GRU and ELM.
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As illustrated in the simulation results in Tables 1–4 and Figures 6–10, the main
conclusions are as:

1. The collection process of PV power is complex, and the problem of outliers cannot be
avoided. Therefore, the extraction of the trend feature with the VMD algorithm can
reduce the prediction error caused by outliers and help the prediction model to fully
learn the long-term time characteristics and short-term effects on PV power in this region.

2. Reducing the error caused by high dimension of input variables using the FCBF
algorithm to extract the optimal input feature set of the prediction model is conducive
to improving the performance and efficiency of the prediction model.

3. Compared with the commonly used short-term PV power forecasting model, the
improved BiLSTM forecasting model can selectively combine historical information
and trend information for PV power forecasting because of its unique structure.

In summary, this study starts from the time characteristics of PV data and considers the
influence of relevant characteristics on the prediction results. Trend feature extraction and
feature selection can provide high-quality load data for follow-up training of the prediction
model, preventing the prediction model from learning from outliers and improving the
prediction accuracy. With its special structure, the BiLSTM model can better extract long-
term information in PV power. The performance of the proposed forecasting methodology
is relatively stable and can provide an important reference for power grid planning, and
power grid stable operation, and can assist technicians to reasonably arrange a dispatching
plan of the power grid.

There are still many aspects that require further research.

(1) Symmetrical loss function is used in this model, and the influence of asymmetric loss
function on the prediction effect of the model is not considered. Next, we will conduct
in-depth research in this direction.

(2) An FCBF algorithm is used to extract the best feature set of PV prediction. In the
FCBF algorithm, it is necessary to set the threshold of symmetrical uncertainty (SU) to
extract features. A trial-and-error method was used to select the appropriate threshold
in this paper. Next, we will try to use an optimization algorithm combined with the
FCBF algorithm to select the optimal feature-set effectively.
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