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Abstract: This paper proposes a learning-based finite control set model predictive control (FCS-MPC)
to improve the performance of DC-DC buck converters interfaced with constant power loads in a
DC microgrid (DC-MG). An approach based on deep reinforcement learning (DRL) is presented
to address one of the ongoing challenges in FCS-MPC of the converters, i.e., optimal design of the
weighting coefficients appearing in the FCS-MPC objective function for each converter. A deep
deterministic policy gradient method is employed to learn the optimal weighting coefficient design
policy. A Markov decision method formulates the DRL problem. The DRL agent is trained for each
converter in the MG, and the weighting coefficients are obtained based on reward computation with
the interactions between the MG and agent. The proposed strategy is wholly distributed, wherein
agents exchange data with other agents, implying a multi-agent DRL problem. The proposed control
scheme offers several advantages, including preventing the dependency of the converter control
system on the operating point conditions, plug-and-play capability, and robustness against the MG
uncertainties and unknown load dynamics.

Keywords: DC microgrid; finite set model predictive control; dc-dc buck converter; deep reinforce-
ment learning; constant power load

1. Introduction

Microgrids (MGs) are a group of interconnected loads and distributed generations
(DGs), and they are usually interfaced to the grid through power converters to reduce
pollution and power transmission losses with the flexibility of different installation location.
This is an important concept for future distribution systems and will be more utilized
in renewable energy integration that is the fastest-growing energy source globally [1,2].
The MGs can be utilized in both islanded and grid-connected operation modes [3]. The use
of clean and sustainable energy resources such as photovoltaic systems, batteries, and
chargers, has created a lot of interest in DC-MGs [4]. DC-MGs also have several benefits
in comparison with their AC counterparts. For example, controlling reactive power or
unbalanced electrical signals is not a problem in a DC-MG, while protection is still a
challenging task [5]. The critical issue for AC islanded MGs is to ensure voltage and
frequency stability when inverters are connected to power sources with lines and loads [3,6].

The power converters’ role is like voltage sources interface between loads and differ-
ent types of sources that are responsible to share the power based on the availability and
capability of the energy sources [7]. The most typical interfaces employed in DC-MGs are
DC-DC buck and boost converters. Once the converters are tightly controlled, they act
as constant power loads (CPLs) [8]. CPLs hold negative impedance, which may induce
instability in the DC bus, and consequently, the whole MG may fail [9]. The CPL’s im-
pact becomes more critical once MG works in islanded mode due to decreased damping.
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Various solutions have been proposed in previous studies to deal with this problem. For ex-
ample, introducing virtual impedance loops to converter control systems offers promising
solutions for increasing the precision of power sharing and damping oscillatory currents in
DC-MGs [10]. There are diverse control strategies for current and voltage control of DC-DC
converters, including sliding mode control (SMC), fuzzy logic, proportional-integral (PI),
model predictive control (MPC), and state-dependent Riccati equations control [11]. Lin-
ear controllers are the most straightforward control methods to reach the voltage regulation
in DC-MGs [12]. These methods evaluate the network’s stability around only one equilib-
rium point [13,14] supply load power. An integrated CPL raises the degree of nonlinearity
in DC-MGs. Thus, traditional linear strategies are questioned and face stability restrictions.
A nonlinear PI stabilization controller has been developed in [15] to ensure stability in DC-
MGs. This method has the challenge of variable switching frequency as it affects converter
efficiency [16]. The authors in [9] have proposed a nonlinear SMC to develop a control rule
that guarantees an area larger than local stability while improving large-signal stability.
The main drawback of SMC is that it is challenging to impose restrictions or control abstract
quantities. To cover these drawbacks, FCS-MPC has been identified as one of the most
favorable controllers for power electronic applications due to its capability over real-time
solutions to multiple objectives and constraints [17,18]. The performance of FCS-MPC is
deeply influenced by the weighting coefficients, the tuning of which is still a challenge to
be undertaken. In this regard, Ref. [8] has employed an artificial neural network method
in off-line mode for weighting coefficient design in uninterrupted power supply (UPS)
system. This method, however, demands a high number of calculations for the adaptation
and training process, and also the conducted analyses for identifying the optimal values
of weighting coefficients are dependent on operating conditions, which may give rise to a
flawed performance of the control system.

Recently, model-free intelligent controllers such as fuzzy logic and neural network
have been developed to decrease the sensitivity to modeling inaccuracy. The main char-
acteristic of intelligent controllers is the model-free design that enables them to manage
model non-linearity, complexity, and uncertainty in power electronic applications. Nev-
ertheless, these methods are only suitable for a specific time interval as suffering from
the lack of the capability to learn online [19]. With the rapid development in machine
learning, reinforcement learning (RL)-based techniques have gained significant attention.
They have become a vital mechanism in developing intelligent networks. RL approaches
have successfully solved complicated problems by integrating them with a deep neural
network, called DRL [20]. As a DRL algorithm, Deep Q Network (DQN) is developed to
address the limitations of conventional Q networks [21]. The DQN has been utilized in
different applications such as Automatic Underwater Vehicles [22], Aerial Robots [23], and
quadrotor control [24]. Nevertheless, DQN utilizes discrete steps for estimating the value
function, limiting its use for problems with continuous steps. Hence, a deep deterministic
policy gradient (DDPG) algorithm is formulated to address this challenge [24,25]. In [26],
the DRL is employed as a voltage controller for a DC-DC buck converter. In [27], the
application of the DRL method is investigated for optimizing the weighting coefficient
for an FCS-MPC controlled inverter in a UPS system. However, those studies address a
single-agent RL problem, which may not suit multiple-inverter systems like DC-MGs.

Motivated by the previous discussion, this paper uses the FCS-MPC to improve the
voltage regulation of DC-DC buck converters used in a DC-MG. To avoid the dependency
of the converter control system on the operating conditions, the weighting coefficients
appearing in the FCS-MPC objective function for each converter are regulated in an online
fashion via distributed DRL algorithm. The DRL problem is solved by a DDPG algorithm
in a critic-actor framework. The DRL agent is trained for each buck converter in the MG,
and the weighting coefficients in the FCS-MPC are obtained based on reward computation
with the interactions between the MG and agent. Under the proposed strategy, each
agent is established at the local converter to reach the optimal purpose simultaneously.
The simulation validations under different operational conditions are provided to illustrate
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the effectiveness of the proposed control scheme. Table 1 summarizes a taxonomy of
existing publications in the area and compares previous studies in this field to highlight
the main contributions of this paper.

Table 1. Comparison of the contributions of this paper with the previous studies.

Refs. Controller PnP Capability Robust Adaptive Multi DG
Units CPL

[7] ANN-
Backstepping – X X – X

[12] FCS-MPC – – – – –
[16] FCS-MPC – – – – –
[18] FCS-MPC – X – – X
[20] ANN-MPC – X X – –
[26] DDPGiPI – X X – X
[27] RL-MPC – X X – –

This paper DDPG-MPC X X X X X

ANN: Artificial Neural Network, DDPGiPI: Deep Deterministic Policy Gradient Intelligent Proportional-Integer.

The contribution of this paper can be summarized as follows:

• A learning-based FCS-MPC is proposed to regulate the output voltage of DG units
in a DC-MG. A multi-agent DRL-based approach is used to provide an online and
adaptive tuning of weighting coefficients of the FCS-MPC.

• Unlike the FCS-MPC with constant coefficients, which are typically designed for a
specified operating condition, the proposed approach avoids the dependency of the
converter control system on the operating conditions.

• Usually, the control design of the converters follows this presumption that the CPLs
are ideal, while in practice, the CPLs are of unknown and/or time-varying character.
Hence, the performance of the proposed controller is investigated against the power
changes in the non-ideal CPLs.

• One of the critical issues in MGs is DGs’ plug-and-play (PnP) operation due to the
inherently discontinuous nature of renewable energy sources. To address this issue,
the dynamic performance of the proposed controller is examined under the PnP
operation of DG units.

2. Model of Microgrid

The diagram of a single-bus DC-MG with multiple DG units and loads is depicted in
Figure 1. The buck converter used for each DG is regulated by the duty ratio of an IGBT
switching to maintain the output voltage stable. The DGs are connected to a common DC
bus through LC filters. The DC-MG is assumed to operate in an islanding model. For DGi
unit, the following differential equations can represent the output voltage and current of
the converter:

DGi =

{ dVoi
dt

= 1
Cti

Iti − 1
Cti

ILi
dIti
dt

= − Rti
Lti

Iti − 1
Lti

Voi +
1

Lti
Vti

(1)

where ILi and Iti are the currents of load and converter, respectively; Vti is the converter’s
output voltage; Voi represents the capacitor voltage; and Lti and Cti are the filter parameters.
There is an assumption that buck converter dynamics, inherently switching, have been
averaged over time. Nevertheless, this is a soft approximation for converters operating at
high frequencies. The output voltage and current for DGi can be described in the state-space
form as follows:

DGi :

{
ẋ[i](t) = Aiix[i](t) + Biu[i](t) + Mid[i](t)
y[i](t) = Cix[i](t)

(2)
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where x[i] = [Voi, Iti]
T is the state variable; u[i] = Vti is the control input; and d[i] = ILi is

the exogenous input. The corresponding vectors and matrices are as follows:

Aii =

[
0 1

Cti

− 1
Lti
− Rti

Lti

]
Bi =

[
0
1

Lti

]
Mi =

[
− 1

Cti
0

]
Ci =

[
1 0
0 1

]
(3)

Converter

Converter

Converter

Converter

Load1

Converter

Loadn

DGi

DGj

DGn

Rti Lti

Ctj

Vo

Cti
Vti

Vtj

Vtn

Rtj

Rtn

Ltj

Ltn

Ct2

Iti

Itj

Itn

ILi

ILj

ILn

Voj

Voi

Von

Vsj

Vsi

Vsn

 
Figure 1. A diagram of a typical DC-MG.

Continuation of (3), the overall model of the MG consisting of three DGs (i.e., DGi,
DGj and, DGk) is expressed by:

 ẋ[i]
ẋ[j]
ẋ[k]

 =A

x[i]
x[j]
x[k]

+

Bi 0 0
0 Bj 0
0 0 Bk


u[i]

u[j]
u[k]

+

Mi 0 0
0 Mj 0
0 0 Mk


d[i]

d[j]
d[k]


y[i]

y[j]
y[k]

 =

c[i] 0 0
0 c[j] 0
0 0 c[k]


x[i]

x[j]
x[k]


(4)

where

A =

Aii Aij Aik
Aji Ajj Ajk
Aik Akj Akk

 (5)

It should be mentioned that due to the neglect of line dynamics, the matrices Aik, Ajk,
Aji, Aki, Aij and Akj are equal to zero.

3. Proposed Controller Design

Figure 2 illustrates the DRL-based FCS-MPC-operated converter. In this approach, a
proper control command is obtained based on the prediction from the converter model and
a objective function (OF). The Equations (2) and (3) describe the continuous state-space
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model of a dc-dc buck converter. To get a discrete representation appropriate for a digital
control system, this paper uses the zero-order hold (ZOH) discretization technique to
discrete the continuous-time model. The discrete state-space model with a sampling time
Ts can be described as follows [19]:

x(k + 1) = Adx(k) + Bdu(k) + Mdd(k) (6)

where
Ad = eAiiTs (7)

Bd =
∫ Ts

0
eAiiτ Bidτ (8)

Md =
∫ Ts

0
eAiiτ Midτ (9)

Measurements

Si tk 

Vref

Cost function 

minimization

Predictive model

FS-MPC

Vref

Xi tk 

Voi

Xi(tk+1)

λiv , λider , λisw

Si tk 

Reinforcement 

Learning

CPLRti Lti

Cti

DC bus

VoiCi

Li

ei

Output voltage of 

other DGs  

Figure 2. Proposed control scheme for a dc-dc buck converter.

These equations are used in the FCS-MPC prediction step.
System model and OF design are the two main stages of FCS-MPC controller design.

The switching signal determines the voltage vector and has two initial states of zero and
one. FCS-MPC method is mainly used in digital controls and works based on synchronized
switching and sampling instants [28]. The main goal of the control system is to properly
adjust the voltage Vti so that the voltage Voi can follow the reference voltage precisely.
The fundamental function of FCS-MPC is to predict values of Voi and Iti and apply op-
timal Vti based on a OF. The OF with minimum value is then executed to the converter.
Therefore, determining an appropriate OF is a prominent part of the FSC-MPC approach.

OFs with multi-step prediction horizons have been offered to enhance the steady-state
performance of the control system, which are typical for high-power multilevel converters.
In contrast, a single-step prediction is typically a better choice in a converter with high
switching frequencies. This implies more performance areas by using longer prediction
horizons [29]. It should be noted that the implementation of a single-stage horizon requires
less computation and is flexible in integrating linear and non-linear control objectives and
constraints. This study uses a OF with a single-step prediction horizon. For dc voltage
regulation on the converter, the OF of the single-step horizon is expressed as follows:

gcon = (Vre f −Voi(k + 1))2 (10)

where Vre f is the voltage reference.
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Additional current reference term is added to improve the steady state performance:

gc = (IL − Iti(k + 1) + CtωrVoi(k + 1))2 (11)

where IL is the load current; Voi(k + 1) and Iti(k + 1) are the predicted voltage and current;
and ωr = 2π fr is the angular frequency.

The gcon and gc terms are multiplied with weighting coefficients λv and λder. In addi-
tion, the current limiting term hlim, and switching penalization term sw, are also defined:

hlim =

{
0, i f |īt(k)| ≤ imax

∞, i f |īt(k)| > imax
(12)

sw = |∆S(i)|2 (13)

where |∆S(i)| is 1 if switch change happens at instant i and 0 otherwise. The terms
expressed in (11)–(13) are added to (10), which eventually produces the modified OF as:

gp = λvgcon + λdergc + λswsw + hlim (14)

As can be seen, the system performance is highly influenced by the weighting co-
efficients λv,λder, and λsw, which should be adjusted optimally. In [19], these weighting
coefficients were tuned offline. However, once the operating point varies significantly,
securing a good response is a challenging task. In this paper, the DRL approach is used to
adjust the weighting coefficients in a online manner and quick way and thereby improve
the performance of the converter control system. The design process of the multi-agent
DRL-based regulation scheme will be discussed in the following section.

4. Multi-Agent DRL-Based Regulation Scheme

In this paper, the problem of the design of weighting coefficients, i.e., λv,λder and
λsw, is formulated in a multi-agent DRL framework. Each DG has its controller, whose
weighting coefficients are determined by the DRL agent in a distributed manner. In the
distributed procedure, the DRL agent associated with each DG exchanges data with others.
Thus, each DG uses a local reward function. The multi-agent DRL environment is a net-
work model of a DC-MG including three DGs. DRL agents operate together to regulate the
output voltage. A schematic of the proposed strategy is shown in Figure 3. This method
includes two phases of offline and online learning. In the offline phase, the DRL agents
follow a centralized learning process to explore the environment. A reward function is
then generated to assess the actions generated by the agents. By updating critic and actor
networks, each agent generates the optimal control command (updates the weighting coef-
ficients) to improve the system performance. In the online phase, agents will take action in
a distributed framework to determine weighting coefficients. Distributed control is one of
the most desired communication-based control techniques that does not need a central con-
troller. Each agent adjusts the FCS-MPC coefficients of its DG based on its observations ei.
The observation ei for each DG, considering the communication network (communication
links transfer measured data of each DG unit), is an error between the average of voltages
broadcasted from each DG and the reference voltage, which is expressed by

e = VMG −Vre f =
∑N

j=1 Voj

N
−Vre f (15)

where N is the number of DGs in the MG.
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Figure 3. The schematic diagram of the proposed multi-agent DRL-based regulation scheme.

The DRL concept is to find the best policy together with the states and actions while
getting maximum rewards through the interaction between the agent and the environment.
The DRL problem is described as a Markov decision-making process (MDP). An MDP
is defined with 5 parameters (s, A, P, R, γ) so that the s is the state, A is action, P =
s× A× s⇒ [0, 1] is a state transition probability, where P = p(st+1 | st, at), R : s× A⇒ R
is reward and γ ∈ [0, 1] is the discount factor. At any time step, the DRL agent monitors
the state st and selects the appropriate action at according to the policy π(at | st). Then, the
agent observes the reward value rt appropriate to this action and determines the next state
(st) accordingly. The definition of discount reward with γ discount factor is as follows [26]:

Gt =
∞

∑
k=0

γkrt+k (16)

The goal is to maximize the discount return, that is:

J = Eri ,si∼En,ai∼π [G1] (17)

where En denotes the environment. Actions ai are determined based on the policy π. In
most DRL problems, the action-value function (AVF) expresses the anticipated return Gt
after the action at is applied to the state st, and the AVF in DRL is illustrated as:

Qπ(st, at) = Eri≥t ,si≥t∼En,ai>t∼π [Gt | st, at] (18)

Therefore, the main purpose of DRL is to calculate the AVF Qπ(st, at) and find the
appropriate policy value π accordingly.

Many RL methods use the Bellman equation to estimate the AVF, which is given by:

Qπ(st, at) = Ert ,st+1∼E
[
rt(st, at) + γEat+1∼π [Qπ(st+1, at+1)]

]
(19)

In the following, the DDPG algorithm is used to design the DRL agents. Figure 4
shows the execution process of the DDPG, consisting of two networks, the actor and the
critic. The actor-network adjusts the weight of θµ of policy µ(s | θµ) based on observation
or state to the corresponding action, and the critic network modifies the weights of action
function Q(s, a | θQ). Critic coefficients are updated through minimization of the following
loss function:

L(θQ) = E(s, a)[(Q(st, at | θQ)− yt)
2] (20)

where
yt = rt(st, at) + γQ(st+1, µ(st | θµ) | θQ) (21)
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Figure 4. Illustration of the (a) actor-network (b) critic-network.

Furthermore, the actor coefficients θµ are updated as:

∇θµ Jθµ ≈ Est∼ρβ [∇θµ Q(s, a | θQ) |a=µ(s|θµ) ∇θµ µ(s | θµ)]

= Est∼ρβ [∇aQ(s, a | θQ) |a=µθ(s) ∇θµ µ(s | θµ)]
(22)

where ρ is a discounted distribution; and β is a specific policy to the current policy π.
Also, an exploration noise W has been added to the actor actions (i.e., at = µ(st | θµ) + W)
to improve the training process [30]. The design of actor and critic networks in this paper
consists of an input layer, an output layer, and three hidden layers, including 80, 80, and
30 neurons between the input and output layers, shown in Figure 4. The input signal to the
actor network is a vector state of the e, and its outputs are λv, λder and λsw. The developed
control system aims to minimize the output voltage error in the shortest possible time to
stabilize the MG-DC. Hence, the reward function is considered as:

rt =
1
| e | =

1
VMG −Vre f

(23)

Based on the reward signal, the weight coefficients of the actor and critic networks
are trained in such a way that the error between the reference voltage Vre f and the average
value of the output voltage of the DGs is minimized. Flowchart of the proposed multi-
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agent DRL based design of the weighting coefficients in the FCS-MPC is shown in Figure 5.
The DDPG design process for each agent is available in Algorithm 1.

Start

Calculation of MPC parameters 

(λv , λder , λsw) by Multiagent DDPG

The voltage and current prediction 

(Vo(k+1), Iti (k+1)) 

Calculation of cost function by:

 gpj = λv* gcon+ λder * gc +λsw * gsw+ hlim 

For

J=1,2

Selection new switching Sj(tk)   

Measurements and inputs: Vo, 

Vti,  IL, Iti & Vref 

EndEnd

For K=1,  N

S
te

p
1

S
te

p
2

S
te

p
3

 
Figure 5. Flowchart of the proposed multi-agent DRL based design of the weighting coefficients in
the FCS-MPC.

Algorithm 1 The pseudo-code for the standard DDPG

1: Randomly initialize critic Q(s, a | θQ) and actor µ(s | θµ) networks with weights θQ

and θµ, respectively.
2: Initialize Q′ and µ′ networks based on new weights θQ′ ← θQ, θµ′ ← θµ

3: for episode = 1 to M do
4: Start with Ornstein-Uhlenbeck Noise (OU) for exploration and get the initial obser-

vation state s1
5: for t = 1 to T do
6: Select the control actions (λv, λder and λsw) according to at = µ(st | θµ) + W.
7: Apply action at to the environment and observe the e as the next state st+1.
8: Calculate the reward rt according to Equation (23) by difference between the values

of the simulated and observed behavior.
9: Save (st, at, rt, st+1) into the replay buffer F.

10: Sample random minibatch of m transition from F.
11: Set yi = ri + γQ′(si+1, µ′(si+1 | θµ′) | θQ′)
12: Update critic with the loss: L = 1

m Σi(yi −Q(si, ai | θQ))2

13: Update the actor policy based on the sampled policy gradient: ∇θµ Jθµ ≈
1
m Σi∇aQ(s, a | θQ) |a=µθ(s)∇θµ µ (s | θµ)

14: Update the target network:
θQ′ ← τθQ + (1− τ)θQ′ , θQ′ ← τθµ + (1− τ)θµ′

15: end for
16: end for
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5. Simulation Results

Various case studies are conducted to assess the performance of the proposed control
scheme. The DC-MG shown in Figure 1, including three DGs interfaced with dc-dc buck
converters, is simulated in MATLAB/Simulink software environment. The specifications
of the studied network are available in Table 2, and the design parameters of the DDPG
algorithm can be found in Table 3. The proposed scheme is tested in the following scenarios:

• Unknown load dynamics
• Variation of input voltage
• PnP operation
• Variation of reference voltage

Table 2. Parameters of the test system.

Parameters Values

DG1 parameters R1 = 0, L1 = 2.5 mH, C1 = 83.3 µF
DG2 parameters R2 = 0, L2 = 0.14 mH, C2 = 18.75 µF
DG3 parameters R3 = 0, L3 = 0.21 mH, C3 = 12.5 µF

LC filter on the DG1 Rt1 = 0.2, Lt1 = 450 µH, Ct1 = 220 µF
LC filter on the DG2 Rt2 = 0.2, Lt2 = 450 µH, Ct2 = 220 µF
LC filter on the DG1 Rt3 = 0.2, Lt3 = 450 µH, Ct3 = 220 µF

Input voltage Vs = 300 V
Sampling time Ts = 20 µs

Switching frequency fr = 10 kHz
CPL PCPL = 120 W

Reference voltage Vre f = 200 V

Table 3. Parameters settings of the DDPG.

Parameters Values

Discount factor, γ 0.9995
Learning rate, λ 0.0001
Mini-batch size 128

Reply buffer size 1,000,000

5.1. Study 1: Unknown Load Dynamics

This study demonstrates the robust performance of the proposed control scheme
against sudden load changes. For this purpose, the load power declines to half of its initial
value at t = 0.2 s, returning to the previous value at t = 0.3 s. The deviations in voltage and
current of the load are shown in Figures 6 and 7, respectively. As shown in Figure 6, the load
voltage remains constant once the load power changes, indicating the proper performance
of the proposed scheme. The output voltage of each DG is illustrated in Figure 8. As the
figure presents, the overshoot occurrences are minor, denoting the effectiveness of the
proposed control scheme. The generated weighting coefficients for each DG by the DRL-
based approach under the applied load changes are presented in Figures 9–11. The figures
reveal that the DRL-based method regulates the weighting coefficients such that a stable
operation of the DC-MG is achieved.
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Figure 6. Study 1: load voltage.

 

Figure 7. Study 1: load current.

Vt1

Vt2

Vt3

 

Figure 8. Study 1: output voltage of each DG.
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Figure 9. Study 1: generated weighting coefficients for FCS-MPC in DG1.
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Figure 10. Study 1: generated weighting coefficients for FCS-MPC in DG2.
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Figure 11. Study 1: generated weighting coefficients for FCS-MPC in DG3.

5.2. Study 2: Input Voltage Variations

This study examines the robustness of the proposed control scheme under the input
voltage changes. A step increase of 10 v at t = 1 s is assumed in the input dc voltage of the
buck converters. The load voltage and current are shown in Figures 12 and 13, respectively.
As the figure indicates, the proposed scheme could withdraw the offset induced by input
voltage deviation in a short time. The deviations in output voltages of DGs are shown in
Figure 14. As shown, by use of the proposed scheme, the voltage fluctuation of DG1 is
less than 1%, which is quite satisfactory. Similar argument is correct about the rest of DGs.
From the figures it can be concluded that the current has more changes in the return of
voltage to the reference value. The generated weighting coefficients by the DRL method
are presented in Figures 15–17 in response to the input voltage variation.

 

Figure 12. Study 2: load voltage.
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Figure 13. Study 2: Load current.
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Figure 14. Study 2: output voltage of each DG.
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Figure 15. Study 2: generated weighting coefficients for FCS-MPC in DG1.
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Figure 16. Study 2: generated weighting coefficients for FCS-MPC in DG2.
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Figure 17. Study 2: generated weighting coefficients for FCS-MPC in DG3.

5.3. Study 3: PnP Operation

Here, the PnP capability of the proposed scheme is examined. For this goal, it is
assumed that DG3 is disconnected from the MG at t = 0.3 s, and then, is connected at
t = 0.4 s. The load voltage and current are displayed in Figures 18 and 19. As it can be
seen, the voltage variations in stable time are less than 0.02 volt and has achieved the
control goals with the quick reaction time. Also, the variation of load current is almost
equal to the nominal value of the system. Figure 20 shows the output voltage of each DGU.
As seen at t = 0.3, the voltage of DG3 when it is plugged out drops about 0.05 volt, and
the voltage of DG1 and DG2 increase by 0.01 volt, which is almost equal to the reference
voltage. The advantage is that each unit is controlled separately, which is not possible in
centralized controls. As well, the generated weighting coefficients by DRL are illustrated
in Figures 21–23. The DRL generates the weighting coefficients online and dynamically
during transient state and after disconnection of DG3 from the DC-MG.

 

Figure 18. Study 3: load voltage.

 

Figure 19. Study 3: load current.
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Figure 20. Study 3: output voltage of each DG.
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Figure 21. Study 3: generated weighting coefficients for FCS-MPC in DG1.
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Figure 22. Study 3: generated weighting coefficients for FCS-MPC in DG2.
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Figure 23. Study 3: generated weighting coefficients for FCS-MPC in DG3.
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5.4. Study 4: Variation of Reference Voltage

The voltage reference changes may be required to adjust the current between the
DG units or to control the state of charge of batteries embedded in the islanded MG.
In this study, the performance of the proposed strategy is evaluated under the variation
of reference voltage. For this end, at t = 0.3 s the reference voltage is reduced to 180 volts
and at t = 0.6 it returns to the initial value of 200 volts. It means, the reference voltage has
changed by 10%. A comparison is also made to examine the effect of weighting coefficients
tuned by the multi-agent DRL approach and with those tuned by a trial and error method.
Figures 24 and 25 illustrate the voltage and current of the load. As shown, the voltage
reaches the reference value in a proper time without any ripple, overshoot, or undershoot.
Similar view is correct about the current, where it changes in such a way that it can
produce a constant power. Figure 26 shows the output voltage of each DG. The weighting
coefficients variation of FCS-MPC in DG1, DG3 and DG3 are available in Figures 27–29.
The figures indicate that the DRL-regulation scheme regulates the weighting coefficients
in such a way that the least fluctuations are achieved in the dynamic responses. Another
study is conducted under reference voltage changes, wherein the weighting coefficients are
fixed. The coefficients λv,λder and λsw are considered equal to 4.9, 4.65, and 5, respectively.
The load voltage and current in this case when the reference voltage changes is shown in
Figures 30 and 31, respectively. As it can be observed, although the control system with
fixed coefficients can keep the voltage constant at 200 volts, when the reference voltage
changes, it can not follow the new value correctly, and there is an error of 2.8 volts.

 

Figure 24. Study 4: load voltage.

  

Figure 25. Study 4: load current.
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Figure 26. Study 4: output voltage of each DG.
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Figure 27. Study 4: generated weighting coefficients for FCS-MPC in DG1.
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Figure 28. Study 4: generated weighting coefficients for FCS-MPC in DG2.
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Figure 29. Study 4: generated weighting coefficients for FCS-MPC in DG3.
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Figure 30. Study 4: load voltage (fixed weighting coefficients).

 

Figure 31. Study 4: load current (fixed weighting coefficients).

6. Conclusions

This study proposed a real-time solution employing the multi-agent DRL algorithm
to design the weighting coefficients appearing in the FCS-MPC used for buck converters
interfaced with CPLs in a DC-MG. A DDPG method is employed to learn the optimal
weighting coefficient design policy. Minimizing the voltage and current divisions of each
DG were the main objectives behind the DRL-based FCS-MPC method. The proposed
method’s key features are the online learning capacity, minimal computational complexity,
and no need for prior knowledge of MG dynamics. Finally, the simulation results obtained
from a benchmark DC-MG with three DGs demonstrated the effectiveness of the proposed
solution with different operational conditions. For example, it was shown that, by use
of the proposed scheme, the voltage fluctuation of DG1 under input voltage variations is
less than 1%, which is quite satisfactory. The results confirmed that the proposed control
scheme: (1) has superior performance in comparison with FCS-MPC with fixed weighting
coefficients; (2) indicates a robust performance against the uncertainties such as input and
reference voltage variation; (3) deals with the power changes in the non-ideal CPLs; (4)
presents the PnP capability; and (5) avoids the dependency of the converter control system
on the operating point conditions, thereby supporting a wide range of operating conditions.
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Acronyms

FCS-MPC Finit Control Set-Model Predictive Control
DC-MG DC Microgrid
MG Microgrid
DG Distributed Generation
CPL Constant Power Load
SMC Sliding Mode Control
PI Proportional-integer
MPC Model Predictive Control
UPS Uninterrupted Power Supply
RL Reinforcement Learning
DRL Deep Reinforcemnt Learning
DQN Deep Q Network
DDPG Deep Deterministic Policy Gradient
PnP Pluy and Play
OF Objective Function
ZOH Zero-Order Hold
MDP Decision-making process
AVF Active-Value Function
Variables and Parameters
ILi Load current
Iti Converter current
Vti Converter’s output voltage
Voi Capacitor voltage
Cti, Lti Filter parameter
xi State variable
ui Control input
di Exogenous input
Vre f Reference voltage
ωr Angular frequency
Voi(k + 1) Predicted voltage
Iti(k + 1) Predicted current
λv Voltage weighting coefficient
λsw Switching weighting coefficient
λder Current weighting coefficient
hlim Current limiting term
sw Switching penalization

e
Error between the average of voltages broadcasted
from each DG and the reference voltage

N Number of DGs
s State
A Action
P State transition probility
R Reward
F Replay buffer
m Total number of transitions in the replay buffer F
γ Discount factor
λ Learning rate
Gt Anticipated return
J Discount return
En Environment
ρ Discounted distribution
β Specific policy to the current policy π
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30. Dragičević, T. Dynamic Stabilization of DC Microgrids with Predictive Control of Point-of-Load Converters. IEEE Trans. Power
Electron. 2018, 33, 10872–10884. [CrossRef]

http://dx.doi.org/10.1109/TNNLS.2018.2844466
http://dx.doi.org/10.1109/TSMC.2018.2884725
http://dx.doi.org/10.1109/TIE.2020.3005071
http://dx.doi.org/10.1109/TPEL.2016.2558523
http://dx.doi.org/10.1109/TPEL.2018.2801886

	Introduction
	Model of Microgrid
	Proposed Controller Design
	Multi-Agent DRL-Based Regulation Scheme
	Simulation Results
	Study 1: Unknown Load Dynamics
	Study 2: Input Voltage Variations
	Study 3: PnP Operation
	Study 4: Variation of Reference Voltage

	Conclusions
	References

