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Abstract: The continuous health monitoring of PV modules is mandatory to maintain their high
efficiency and minimize power losses due to faults or failures. In this work, a low-cost embedded
tracer is developed to measure the I–V curve of a PV module in less than 0.2 s. The data are used to
extract the five parameters of the single-diode model and its main characteristics (open-circuit voltage,
short-circuit current, and maximum power). Experimental data are used to validate the analytical
model and evaluate the two fault diagnosis methods, using as fault features the parameters of the
single-diode model or the main characteristics of the I–V curve. The results, based on field data under
different temperatures and irradiances, show that the degradation of series and shunt resistances
could be detected more accurately with the main characteristics rather than with the parameters.
However, the estimated parameters could still be used to monitor the long-term degradation effects.

Keywords: solar photovoltaic; I–V tracer; PV model; I–V curve; fault diagnosis

1. Introduction

According to the International Energy Agency (IEA), renewable energy will contribute
80% of the world’s electricity generation by 2030. This growth will be mainly driven by
solar photovoltaic energy [1]. At the end of 2020, the total installed photovoltaic (PV)
capacity reached 760 GW, with an increase of 139 GW since 2019 [2].

However, due to PV modules being located outdoors, they can be exposed to harsh
conditions (e.g., humidity, snow, sand, dirt, and moisture). They may also be damaged
during transportation or installation [3,4]. The faulty PV panels will exhibit lower perfor-
mances [5]. It is reported that annual energy losses due to various faults could reach up
to 18.9% during the first year of operation [6]. In other studies, the energy losses range
between 22 and 27% during fifteen months of operation for fifteen PV power plants in
Spain and Italy due to inefficiency (shading and soiling effects, PV module degradation,
temperature impact, etc.) [7].

In order to limit the drop in performance and improve the reliability of the PV panels,
it is necessary to set up condition-based maintenance based on continuous monitoring.
Fault detection and diagnosis (FDD) are the heart of health monitoring. There are several
FDD approaches reported in the literature [8–10]. They can broadly be classified as either
visual inspection or automatic analysis. Visual inspection is suitable for small-scale PV
systems, but may require an expert to analyze the information. Automatic analysis methods
are based on the analysis of fault features [11] obtained from measured or estimated
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information. The most usual information captured from PV systems is the coordinates and
the power at the maximum power point (MPP) or the I–V curves obtained with I–V tracers.

The fault diagnosis method, based on the power at the MPP, analyzes the power
actually produced using the maximum power point tracking (MPPT) algorithm [12,13].
In [14], three fault indicators are calculated from the comparison between the predicted
and the measured current, voltage, and power at the MPP. However, they are sensitive to a
limited number of faults.

The I–V curve can be partially or fully used for fault diagnosis. In the case of partial
usage, only several points are analyzed to make a decision. For example, open-circuit
voltage (Voc), short-circuit current (Isc), and the power at the MPP (Pmpp) [15] can be used.
The disadvantages of this approach are the limited number of diagnosable faults and its
high sensitivity to environmental conditions.

In the case of full usage (as in [16]), the full I–V curve is used as a fault feature for PV
fault diagnosis under eight different conditions (healthy and seven faults), with variable
temperatures and irradiances. Six machine learning techniques (artificial neural network,
support vector machine, decision tree, random forest, k-nearest neighbors, and naive
Bayesian classifier) were evaluated. The main issues are related to the number of sampling
points and the computational burden necessary to handle the data processing. The full I–V
curve can also be used to extract the PV model parameters (Iph, I0, Rs, Rsh and n) considered
as fault features. In [17], this approach was used with the double-diode model. Various
types of partial shading (PS) and degradation are diagnosed using threshold analysis. The
effectiveness of this method depends strongly upon the accuracy of the model used.

However, the I–V curve is a widely discussed topic [8] because the I–V curve contains
several pieces of information about the health of the PV module. However, to obtain this curve,
it is necessary to have a tracer and to interrupt production during the measurement. It is,
therefore, a challenge to offer an I–V tracer at a reasonable cost that limits production losses.

In our study, two FDD methodologies are evaluated. The first one uses the parameters
of the electrical equivalent circuit as fault features. It is based on the single-diode model
(SDM). The second one uses the PV module current and voltage vectors Ipv, Vpv and the
extracted characteristics Pmpp, Isc, and Voc as fault features. The first contribution of this
paper is the proposal of a low-cost embedded I–V tracer with a logarithmic distribution of
the points (LDP) on the I–V curve to reduce the measurement time. The second contribution
is the experimental validation of the analytical equations used to calculate the parameters of
the SDM. Finally, the paper proposes an evaluation of series resistance, shunt resistance, and
partial shading fault detection, using either SDM parameters or I–V curves characteristic
points as fault features under a wide variety of environmental conditions.

This paper is organized as follows: in Section 2, the experimental test bench is pre-
sented. Section 3 describes the four steps to identify and validate the single diode PV
model. Section 4 presents the hybrid PV model of the PV model. Section 5 introduces the
methodologies of PV panel fault detection and diagnosis and presents the diagnosis results.
Conclusions are drawn in the last section.

2. Experimental Test Bench

The schematic diagram of the experimental test is shown in Figure 1.
The central part of the experimental setup was the I–V tracer developed during this

research project. This I–V tracer was calibrated and validated via a high-efficiency E4360A
modular solar array simulator (MSAS) keysight, with an accuracy of 1.33% in the healthy
case. Furthermore, several measurement devices were included:

• A TC 74 temperature sensor glued on the backside of the PV module was used to
measure the temperature

(
Tpv
)
. The operating range of the sensor was −40 ◦C to

125 ◦C, with ±3 ◦C accuracy from +25 ◦C to +85 ◦C.
• The plane of array irradiance

(
Gpoa

)
was measured using a reference cell (model

Si-RS485TC-T-MB monocrystalline silicon irradiance sensors) with a tilt angle of 25◦,
identical to the PV panel’s support structure.
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Figure 1. Schema diagram of the test bed.

The data (I–V curve, Gpoa, and Tpv) were collected and stored. Several other parameters
were computed and could be displayed: Impp, Vmpp, Pmpp, Isc, and Voc. It also allowed the I–V
and P–V curves of the module to be displayed under actual environmental conditions. In
addition, the emulations of different faults were developed to study the degradation of PV
modules, by connecting additional resistances in series and parallel, as shown in Figure 2. The
parameters of the PV module under test (installed in 2010) are displayed in Table 1.
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Table 1. Parameters under standard test conditions (STC), Gpoa = 1000 W/m2 and Tpv = 25 ◦C.

Electrical Performance under Standard Test Conditions (STC)

Maximum Power (Pmpp) 87 W (+10%/−5%)
Maximum Power Voltage (Vmpp) 17.4 V
Maximum Power Current (Impp) 5.02 A

Open Circuit Voltage (Voc_re f ) 21.7 V
Short Circuit Voltage (Isc_re f ) 5.34 A

Temperature Coefficient of Voc (kv_re f ) −0.37%/◦C
Temperature Coefficient of Isc (ki_re f ) 0.038%/◦C
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2.1. Low-Cost I–V Tracer

Many research works have proposed different I–V tracers for PV cell/module/string
and array with a high resolution and fast computation [18–20]. The number of points is
a compromise between the duration of the measurement, which should be as short as
possible to minimize the loss of power due to the interruption, and the required accuracy
for post-processing. In healthy conditions, the I–V curve can be split into three parts:

• The constant current zone, in which few points could be sufficient;
• The almost constant voltage zone, for which a low resolution could be acceptable;
• The area around the maximum power point, where a high resolution is necessary.

In the literature, there are several proposals on how to distribute the points on the I–V
curve. In the following, the logarithmic distribution of points (LDP) was used, as displayed
in Figure 3. NbPtV is the number of points distributed from 0 to Vmpp, and NbPtI is the
number of points distributed from Impp to 0. In the following, they were set to 12 and 15,
respectively. These values depended on the equivalent resistance of the I–V tracer.
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Figure 3. Logarithmic distribution of points on the I–V curve.

The voltage and current of the PV module were measured with a resistive voltage
divider and a shunt resistor. The measurement for one point was obtained from the average
over 100 periods to reduce the negative effects of switching, followed by a relaxation time.
Therefore, the acquisition time for one point was 7 ms, and the measurement time for the
26 points (there was a common measurement point for both areas) of the full I–V curve was
approximately 182 ms. The process is described in Figure 4.

The developed I–V tracer circuit is shown in Figure 5. The components of the instru-
ment were sized according to the PV modules studied: 10 A, 30 V, and 100 W, for current,
voltage, and power, respectively. It consisted of voltage and current sensors, relays, a
variable resistor, and a microcontroller, whose functions were the following:

• To control the relays that allowed for the disconnecting of the PV module from the
string during the I–V curve measurement;

• To generate the duty cycle of the PWM that allowed for having a variable load resis-
tance. The switching frequency was 50 kHz;

• To send the data to the computer through a serial link (see Figure 2).

Finally, the cost of the prototype was 35 €/unit. Of course, the final cost would be greatly
reduced for mass production. Eventually, the I–V tracer is expected to be installed in a box on
the back of the PV module. A comparison with market I–V tracers is shown in Table 2.
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Table 2. Comparison with market I–V tracers.

Type Duration of
Measurement Cost Resolution Acquisition Method Application

Proposed I–V tracer 182 ms 35 € 26 points Auto and Cont Module

Chauvin–Arnoux FTV 2000
IV tracer [21] - 3650 € 500 points Manual Module

HT-Instruments I–V 500 W
tracer [22] - 4300 € 128 points Manual and Auto Module/String/Array

CHROMA Electronic load
Model 63600 series [23] 2 µs to 40 ms >4000 € 1–4096 points Manual and Auto Module/String/Array

EKO MP 11 IV checker [24] 5 s - 400 points Manuel and Auto Module

HUAWEI Smart I–V tracer
Diagnosis [25] 1 s - 128 points Manual and Auto Module/String/Array

SOLMETRIC PV analyzer
I–V tracer [26] 0.05–2 s 5468–11,038 € 100 to 500 points Manuel and Auto Module/String
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2.2. Preprocessing of I–V Curves

After the acquisition on a sunny day of 205 I–V curves from 9:30 a.m. to 4:20 p.m.,
it was observed that some of them exhibited an abnormal shape due to the activation of
a bypass diode (see the red circled area in Figure 6). A visual inspection revealed that
an air conditioning aluminum tube was responsible for the inhomogeneous irradiation
received by the PV panel (Figure 7). To avoid any misinterpretation or wrong parameter
identification, the abnormal curves were withdrawn using an interpolation technique. The
remaining 128 curves are displayed in Figure 8. In the following, all of the measured curves
were preprocessed before being used.

Energies 2022, 15, x FOR PEER REVIEW 7 of 33 
 

 

 
Figure 6. The 205 I–V characteristics in the healthy case measured on 2 September 2019. 

 
Figure 7. Over-illumination effect (circled in red) on the PV panel. 

 
Figure 8. 128 I–V curves after withdrawing the abnormal ones. 

3. Identification of the Single-Diode Model Parameters 
3.1. Five Parameters of the Single-Diode Model 

The Single-Diode Model (SDM) displayed in Figure 9, with its five parameters, is an 
equivalent electrical circuit widely adopted for silicon PV cells [27,28]. It includes the pho-
tocurrent, the diode saturation current, and ideality factor, the series resistance, and the 
shunt resistance. 

Figure 6. The 205 I–V characteristics in the healthy case measured on 2 September 2019.

Energies 2022, 15, x FOR PEER REVIEW 7 of 33 
 

 

 
Figure 6. The 205 I–V characteristics in the healthy case measured on 2 September 2019. 

 
Figure 7. Over-illumination effect (circled in red) on the PV panel. 

 
Figure 8. 128 I–V curves after withdrawing the abnormal ones. 

3. Identification of the Single-Diode Model Parameters 
3.1. Five Parameters of the Single-Diode Model 

The Single-Diode Model (SDM) displayed in Figure 9, with its five parameters, is an 
equivalent electrical circuit widely adopted for silicon PV cells [27,28]. It includes the pho-
tocurrent, the diode saturation current, and ideality factor, the series resistance, and the 
shunt resistance. 

Figure 7. Over-illumination effect (circled in red) on the PV panel.

Energies 2022, 15, x FOR PEER REVIEW 7 of 33 
 

 

 
Figure 6. The 205 I–V characteristics in the healthy case measured on 2 September 2019. 

 
Figure 7. Over-illumination effect (circled in red) on the PV panel. 

 
Figure 8. 128 I–V curves after withdrawing the abnormal ones. 

3. Identification of the Single-Diode Model Parameters 
3.1. Five Parameters of the Single-Diode Model 

The Single-Diode Model (SDM) displayed in Figure 9, with its five parameters, is an 
equivalent electrical circuit widely adopted for silicon PV cells [27,28]. It includes the pho-
tocurrent, the diode saturation current, and ideality factor, the series resistance, and the 
shunt resistance. 

Figure 8. 128 I–V curves after withdrawing the abnormal ones.



Energies 2022, 15, 5350 7 of 31

3. Identification of the Single-Diode Model Parameters
3.1. Five Parameters of the Single-Diode Model

The Single-Diode Model (SDM) displayed in Figure 9, with its five parameters, is
an equivalent electrical circuit widely adopted for silicon PV cells [27,28]. It includes the
photocurrent, the diode saturation current, and ideality factor, the series resistance, and the
shunt resistance.
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A PV module is composed of Ns cells in series, as shown in Figure 10. The correspond-
ing I–V relationship is written as:

Ipv = Iph − I0

exp

 q
(

Vpv
Ns

+ IpvRs

)
nKTK

− 1

−
 Vpv

Ns
+ IpvRs

Rsh

 (1)

where Ipv refers to the PV current, Iph defines the photo-generated current, I0 denotes the
diode saturation current, q represents the electron’s charge (q = 1.602× 10−19C), Vpv is the
voltage, Rs and Rsh are the series and shunt resistances, n is the diode ideality factor, and K
is Boltzmann’s constant (K = 1.3806× 10−23 J/K). TK refers to the PV module temperature
in kelvin.
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The five parameters strongly depend on the irradiance and the temperature. Several
research works have proposed analytical models for each of them. In the following, only
the most accurate models for our installation were retained and presented.

3.1.1. Photocurrent (Iph)

The photocurrent
(

Iph

)
can be determined by using the following equation [29,30]:

Iph = Isc_re f

[
1 + ki_re f

(
Tpv − TSTC

)] Gpoa

GSTC
(2)

where Tpv and TSTC represent the PV module’s actual and STC temperatures, respectively,
in ◦C, and Gpoa and GSTC are the actual and STC irradiances, respectively. The coefficients
Isc_re f and ki_re f will be recalculated according to the actual environmental conditions. Their
initial values were obtained from the datasheet (Table 1).

3.1.2. Diode Saturation Current (I0)

The diode saturation current (I0) can be obtained from Equation (3) [31,32]:

I0 =
Isc_re f [1 + ki_re f

(
Tpv − TSTC

)
]

exp
(

qVoc_re f [1+Kv_re f (Tpv−TSTC)]
nKNsTK

)
− 1

(3)

The coefficients Voc_re f and kv_re f will be recalculated according to the actual environ-
mental conditions. Their initial values were obtained from the datasheet (Table 1).

3.1.3. Series Resistance (Rs)

The series resistance (Rs) was representative of the I–V curve in the almost constant
voltage area. The following relation was adopted [33,34]:

Rs= Rs_re f

[
TK
Tn
×
(

1− βre f ln
(

Gpoa

GSTC

))]
(4)

The coefficients Rs_re f and βre f will be recalculated according to the actual environ-
mental conditions. The initial value of Rs_re f was estimated from a one-shot I–V curve
measurement, while the initial value of βre f was taken from the literature. Tn was the
temperature at STC in kelvin.

3.1.4. Shunt Resistance (Rsh)

The shunt resistance (Rsh) was representative of the I–V curve in the constant current
area. The authors in [35–37] have proposed an analytical model of Rsh as described below:

Rsh = Rsh_re f ×
GSTC
Gpoa

(5)

The coefficient Rsh_re f will be recalculated according to the actual environmental
conditions. Its initial value was estimated from a one-shot I–V curve.

3.1.5. Diode Ideality Factor (n)

The diode ideality factor (n) depends linearly only on the temperature, and it can be
expressed as below [38,39]:

n
(
Tpv
)
= nre f ×

TK
Tn

(6)

where nre f is the diode ideality factor. Its initial value was set to 1 as usual.
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3.2. Identification of the SDM Parameters

The identification method of the vector of parameters θ =
[

Iph, Rs, Rsh, I0, n
]

was
based on the Levenberg–Marquardt (LM) optimization algorithm. The LM algorithm [40,41]
provides a numerical solution to the problem of minimizing the quadratic error:

Minθ((I−V)meas − (I−V)es)
2 (7)

where (I−V)es represents the relation between the voltage and the current of the PV
module. It was calculated from Equation (1). Furthermore. (I−V)meas was the measured
I–V curve.

3.3. Model Validation

PV cell manufacturers provided the characteristics and parameters at STC (cf. Table 1),
which were insufficient to determine the overall PV performance. Indeed, an accurate
model of the PV system under any environmental conditions was required, because PV
cells operate under variable weather conditions.

In the following, a 4-step methodology, described in Figure 11, was developed to
extract the parameters of the SDM. The first two were devoted to the training, while the
last two were for the validation.

• Step 1: for the training data
(
Tpv, Gpoa

)
training, measure the I–V curves, and identify

θ̂(I−V) =
[

Iph, Rs, Rsh, I0, n
]
;

• Step 2: Identify the eight reference values δre f =
[

Rsh_re f , Rs_re f , βre f , Voc_re f , kv_re f ,

ki_re f , Isc_re f , nre f

]
of the analytical models. Consider the cross-effect between Gpoa

and Tpv;
• Step 3: Estimate θ̂analy =

[
Îpv, R̂s, R̂sh, Î0, n̂

]
with the analytical models, using the

reference values and the validation data
(
Tpv, Gpoa

)
validation;

• Step 4: Analyze for each of the (I–V) curves (M curves are measured) the mean absolute
percentage error (MAPEθ) between θ̂(I−V) and θ̂analy to validate the analytical model.

Energies 2022, 15, x FOR PEER REVIEW 10 of 33 
 

 

3.3. Model Validation 
PV cell manufacturers provided the characteristics and parameters at STC (cf. Table 

1), which were insufficient to determine the overall PV performance. Indeed, an accurate 
model of the PV system under any environmental conditions was required, because PV 
cells operate under variable weather conditions.  

In the following, a 4-step methodology, described in Figure 11, was developed to 
extract the parameters of the SDM. The first two were devoted to the training, while the 
last two were for the validation. 
• Step 1: for the training data (𝑇 , 𝐺 ) , measure the I–V curves, and identify 𝜃( ) = [𝐼 ,𝑅 , 𝑅 , 𝐼 , 𝑛]; 
• Step 2: Identify the eight reference values 

 𝛿 = 𝑅 _ , 𝑅 _ , 𝛽 , 𝑉 _ , 𝑘 _ , 𝑘 _ , 𝐼 _ , 𝑛  of the analytical models. 
Consider the cross-effect between 𝐺  and 𝑇 ; 

• Step 3: Estimate 𝜃 = [𝐼 𝑅 , 𝑅 , 𝐼 , 𝑛] with the analytical models, using the ref-
erence values and the validation data (𝑇 , 𝐺 ) ; 

• Step 4: Analyze for each of the (I–V) curves (M curves are measured) the mean abso-
lute percentage error (𝑀𝐴𝑃𝐸 ) between 𝜃( ) and 𝜃  to validate the analytical 
model. 

 
Figure 11. Methodology for parameters extraction. 

𝑀𝐴𝑃𝐸 = 100𝑀 𝜃( )( ) − 𝜃 ( )𝜃( )( )  (8)

3.3.1. Training Step 
For the training data (𝐺 , 𝑇 ) , 488 I–V curves were measured for 𝐺 ≥600 W/m , as shown in Table 3. 

Table 3. Data used for the training stage. 

No Data Acquisition Weather Number of I–V Curves 𝑮𝒑𝒐𝒂 ≥ 𝟔𝟎𝟎 𝐖/𝐦𝟐 
1 2 September 2021 Sunny 94 

Figure 11. Methodology for parameters extraction.

MAPEθ =
100
M ∑M

i=1

∣∣∣∣∣∣
θ̂(I −V)(i) − θ̂analy(i)

θ̂(I −V)(i)

∣∣∣∣∣∣ (8)
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3.3.1. Training Step

For the training data
(
Gpoa, Tpv

)
training, 488 I–V curves were measured for

Gpoa ≥ 600 W/m2, as shown in Table 3.

Table 3. Data used for the training stage.

No Data Acquisition Weather Number of I–V Curves
Gpoa≥600 W/m2

1 2 September 2021 Sunny 94
2 8 September 2021 Sunny 86
3 10 September 2021 Partly cloudy 29
4 14 September 2021 Partly cloudy 45
5 15 September 2021 Partly cloudy 42
6 19 September 2021 Partly cloudy 44
7 20 September 2021 Partly cloudy 27
8 23 September 2021 Partly cloudy 58
9 24 September 2021 Sunny 63

Analytical Model of the Photocurrent (Iph)

According to Equation (2), the photocurrent depends on the reference coefficients
ki_re f , and Isc_re f . Their initial values were determined from the datasheet. The pho-
tocurrent depends not only on the irradiance but also on the temperature. To avoid the
cross-effect between Gpoa and Tpv, the extraction of the PV model parameters was evaluated
with constant Gpoa or Tpv. Under different irradiances for Tpv = 56 ◦C corresponding to 73
(I–V) curves, the reference parameters were estimated. The results are shown in Figure 12.
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The evolution of Iph with Gpoa is shown in Figure 12. The analytical model converged
toward the measured values. The MAPEIph was 6.01%.

Once the reference coefficient temperature
(

ki_re f

)
was estimated for constant Tpv,

(see in Table 4), its value was set in Equation (2). Then Isc_re f was estimated for constant
Gpoa. We assumed that 750 W/m2 ≤ Gpoa ≤ 780 W/m2, which corresponded to 103 (I–V)
curves. The results are displayed in Table 5. The initial value for Isc_re f was the optimal
value determined in the previous section (Table 4).
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Table 4. Extracted reference values for constant Tpv for the photocurrent model.

Isc_ref [A] ki_ref [%/◦C]

Initial value (STC) 5.34 0.038
Optimized value 5.817 0.061

MAPEIph 6.01%

Table 5. Extracted reference values for constant Gpoa for the photocurrent model.

Isc_ref [A] ki_ref [%/◦C]

Initial value (STC) 5.817 0.061
Optimized value 5.799 0.061

MAPEIph 1.49 %

The evolution of Iph as the function of Tpv is shown in Figure 13. It can be observed
the temperature Tpv has a slight influence on Iph. The MAPEIph was equal to 1.49%.
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Analytical Model of the Diode Saturation Current (I0)

As can be noticed in Equation (3), I0 only depended on the temperature and the reference
values Voc_re f , kv_re f , Isc_re f , and ki_re f . The last two were determined in the previous section.

Figure 14 and Table 6 show the results. I0 slightly increased with Tpv. The MAPEI0,
was equal to 7.34%.
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Table 6. Extracted reference values.

Voc_ref [V] kv_ref [%/◦C]

Initial value (STC) 21.7 −0.37
Optimized value 20.68 −0.519

MAPEI0 7.34%

Analytical Model of the Series Resistance (Rs)

According to Equation (4), the analytical model of Rs depended on the irradiance and
the temperature, with two reference values of Rs_re f and βre f . Firstly, the reference values
were determined for constant Tpv = 56 ◦C. The results are presented in Table 7 and Figure 15.

Table 7. Extracted reference values for constant Tpv for the series resistance model.

Rs_ref [Ω] βref

Initial value (STC) 0.8 0.217
Optimized value 0.708 0.0359

MAPERs_re f 0.88%
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The value of βre f was set in Equation (4) to analyze the influence of the temperature.
The results of the extraction for constant irradiation are shown in Figure 16 and

Table 8, respectively.

Energies 2022, 15, x FOR PEER REVIEW 14 of 33 
 

 

 
Figure 16. Evolution of 𝑅  for constant 𝐺 . 

Table 8. Extracted reference values for constant 𝐺 . 

 𝑹𝒔_𝒓𝒆𝒇 [Ω] 𝜷𝒓𝒆𝒇 
Initial value  0.708 0.0359 

Optimized value 0.709 0.0359 𝑀𝐴𝑃𝐸 _  0.92% 

We can observe that 𝑅  increased linearly with 𝑇 . The 𝑀𝐴𝑃𝐸  is 0.92%.  

Analytical Model of the Shunt Resistance (𝑅 )  
In this section, the analytical model in Equation (5) was investigated to estimate the 

reference value 𝑅 _ . The evolution of 𝑅  as a function of 𝐺  is shown in Figure 
17. The result demonstrated that shunt resistance (𝑅 ) was inversely proportional to the 
irradiance (𝐺 ). 

 
Figure 17. Evolution of 𝑅  for constant 𝑇 . 

The coefficient 𝑅 _  that is the reference value in Equation (5) was extracted, and 
is displayed in Table 9. The optimized value was 49.85 Ω, and the 𝑀𝐴𝑃𝐸  was 7.4%. 

  

Figure 16. Evolution of Rs for constant Gpoa.



Energies 2022, 15, 5350 13 of 31

Table 8. Extracted reference values for constant Gpoa.

Rs_ref [Ω] βref

Initial value 0.708 0.0359
Optimized value 0.709 0.0359

MAPERs_re f 0.92%

We can observe that Rs increased linearly with Tpv. The MAPERs is 0.92%.

Analytical Model of the Shunt Resistance (Rsh)

In this section, the analytical model in Equation (5) was investigated to estimate the
reference value Rsh_re f . The evolution of Rsh as a function of Gpoa is shown in Figure 17.
The result demonstrated that shunt resistance (Rsh) was inversely proportional to the
irradiance (Gpoa).

Energies 2022, 15, x FOR PEER REVIEW 14 of 33 
 

 

 
Figure 16. Evolution of 𝑅  for constant 𝐺 . 

Table 8. Extracted reference values for constant 𝐺 . 

 𝑹𝒔_𝒓𝒆𝒇 [Ω] 𝜷𝒓𝒆𝒇 
Initial value  0.708 0.0359 

Optimized value 0.709 0.0359 𝑀𝐴𝑃𝐸 _  0.92% 

We can observe that 𝑅  increased linearly with 𝑇 . The 𝑀𝐴𝑃𝐸  is 0.92%.  

Analytical Model of the Shunt Resistance (𝑅 )  
In this section, the analytical model in Equation (5) was investigated to estimate the 

reference value 𝑅 _ . The evolution of 𝑅  as a function of 𝐺  is shown in Figure 
17. The result demonstrated that shunt resistance (𝑅 ) was inversely proportional to the 
irradiance (𝐺 ). 

 
Figure 17. Evolution of 𝑅  for constant 𝑇 . 

The coefficient 𝑅 _  that is the reference value in Equation (5) was extracted, and 
is displayed in Table 9. The optimized value was 49.85 Ω, and the 𝑀𝐴𝑃𝐸  was 7.4%. 

  

Figure 17. Evolution of Rsh for constant Tpv.

The coefficient Rsh_re f that is the reference value in Equation (5) was extracted, and is
displayed in Table 9. The optimized value was 49.85 Ω, and the MAPERsh was 7.4%.

Table 9. Extracted reference value Rsh_ref.

Rsh_ref [Ω]

Initial value 80
Optimized value 49.85

MAPERsh 7.4%

Analytical Model of the Diode Ideality Factor (n)

The analytical model of the diode ideality factor n in Equation (6) depended on the
temperature and the reference value nre f . The estimation result is displayed in Table 10.
Figure 18 shows that n was almost constantly over the temperature variation range.

Table 10. Extracted reference value nref.

nref

Initial value 1
Optimized value 1.01

MAPEn 0.58%
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3.3.2. Validation Step

Table 11 summarizes the eight reference values extracted from the training data of the
488 I–V curves. These values were used to estimate with the analytical models the five
parameters of the PV model θ̂, with the environmental validation data

(
Gpoa, Tpv

)
validation

distinct from those used for training. The information of the validation data are displayed
in Table 12.

Table 11. Summary of the eight reference values extracted from the analytical models.

The Single Diode of PV Model with Five Electrical Parameters and Eight Reference Values

Ipv = Iph−I0[exp( q(Vpv+IpvRsNs)
nNsKTK

)−1]−( Vpv+IpvRsNs
RshNs

)

Parameters of
the SDM Analytical Models

The Eight Reference Values

Iscref

[A]
ki_ref

[%/◦C]
Vocref

[V]
kv_ref

[%/◦C]
Rsref

[Ω]
βref

Rshref

[Ω]
nref

Iph Iph = Isc_re f

[
1 + kire f

(
Tpv − TSTC

)] Gpoa
GSTC

5.79 0.061 - - - - - -

I0 I0 =
Isc_re f +kire f (Tpv−TSTC)

exp

 qVoc_re f

[
1+kvre f (Tpv−TSTC)

]
nKNs TK

−1

- - 20.68 −0.519 - - - -

Rs Rs = Rs_re f [
TK
Tn
(1− βre f ln (

Gpoa
GSTC

))] - - - - 0.709 0.0359 - -

Rsh Rsh = Rsh_re f
GSTC
Gpoa

- - - - - - 49.85 -

n n = nre f
Tk
Tn

- - - - - - - 1

Table 12. Data used for the validation step.

No Data Acquisition Weather Number of I–V Curves
Gpoa ≥ 600 W/m2

1 3 September 2021 Partly cloudy 100
2 9 September 2021 Partly cloudy 21
3 12 September 2021 Partly cloudy 9
4 13 September 2021 Partly cloudy 42
5 22 September 2021 Partly cloudy 12
6 8 October 2021 Partly cloudy 44
7 9 October 2021 Partly cloudy 71
8 10 October 2021 Partly cloudy 56
9 11 October 2021 Partly cloudy 47
10 15 October 2021 Partly cloudy 27
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The uncertainties in the estimation errors of the different parameters are displayed
in Figure 19. The results showed significant dispersion for all the parameters, mainly
because of the variable environmental conditions. Despite the scattered uncertainties in the
estimation errors of the five parameters, the analytical models remain valid. In reality, only
four parameters could be determined from measurements. There was, therefore, a degree of
freedom to obtain the correct I–V characteristic for several parameter combinations. Finally,
the vector of parameters estimated from the analytical models can be used to evaluate the
performance of the PV array under different irradiances and temperatures.
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4. Hybrid Model of the PV Module

A hybrid model was developed to evaluate the performance of the PV array. It was
comprised of the analytical model determined in the previous section combined with the
numerical PV model in MATLAB/Simulink®. To evaluate its accuracy, the data obtained
from the hybrid model were compared to the ones measured with the I–V tracer.

The methodology is described in Figure 20. The information on the testing data are
displayed in Table 13.

Table 13. Data for the validation of the hybrid PV model.

No Data Acquisition Weather Number of I–V Curves
Gpoa≥600 W/m2

1 3 September 2021 Partly cloudy 100
2 9 September 2021 Partly cloudy 21
3 13 September 2021 Partly cloudy 42
4 22 September 2021 Partly cloudy 12
5 8 October 2021 Partly cloudy 44
6 9 October 2021 Partly cloudy 71
7 10 October 2021 Partly cloudy 56
8 11 October 2021 Partly cloudy 47
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The vector X1 is defined as
[
Ipv
]

or
[
Vpv
]
, and the scalar X2 is defined as Pmpp, or Isc,

or Voc.
The following errors were computed: the mean absolute percentage error (MAPE(X1))

and the absolute relative error (ARE(X2)):

MAPE(X1) =
100
M ∑M

i=1

∣∣∣∣X1meas(i)− X1sim(i)
X1meas(i)

∣∣∣∣ (9)

ARE(X2) = 100

∣∣X2meas − X2sim

∣∣
X2meas

(10)

where M is the number of I–V curves.
The histograms plotted in Figure 21 show that the errors between the experimental

and the simulated values were lower than 3%. Therefore, we can conclude that the
hybrid model is suitable for health monitoring because it is accurate and robust to
environmental conditions.
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5. Fault Detection and Diagnosis
5.1. Methodology

PV systems under operation are prone to several faults. Due to natural aging or severe
environmental conditions (e.g., a decrease in contact adhesion and the corrosive action of water
vapor), the series resistance increases, while the shunt resistance decreases. In the following, the
degradation of series and shunt resistances will be considered through two scenarios:

• Fault 1: Rs degradation
• Fault 2: Rsh degradation

Two FDD methodologies are proposed. The first one, denoted “M1”, displayed in
Figure 22a, uses the parameters of the equivalent electric circuit as fault features. The
second one, “M2”, shown in Figure 22b, uses the characteristics Ipv, Vpv, Pmpp, Isc, and Voc
extracted from the I–V curves as fault features.
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5.2. Rs Degradation

The series resistance (Rs) represents the resistance of the cell and the connection
resistance between the cells. Its degradation is due to aging or aggressive environmental
conditions. ∆Rs1, ∆Rs2, and ∆Rs3 are three additional resistances added in series with
the PV panel to emulate three fault levels (f 1, f 2, f 3), corresponding to an increase of
28%, 42%, and 50%, respectively. Table 14 displays the fault scenarios, the environmental
conditions, and the number of I–V curves measured with the I–V tracer. Temperature Tpv
and irradiance Gpoa are also provided.

Table 14. Data acquisition in case of Rs degradation.

No Data
Acquisition Weather Number of I–V Curves

Gpoa ≥ 600 W/m2 Fault Level

1 12 April 2021 Partly cloudy 38 ∆Rs3 = 0.39 Ω
2 17 April 2021 Partly cloudy 16 ∆Rs3 = 0.39 Ω
3 18 April 2021 Partly cloudy 56 ∆Rs3 = 0.39 Ω
4 19 April 2021 Partly cloudy 34 ∆Rs2 = 0.33 Ω
5 26 April2021 Partly cloudy 61 ∆Rs2 = 0.33 Ω
6 27 April 2021 Partly cloudy 61 ∆Rs2 = 0.33 Ω
7 20 April 2021 Partly cloudy 104 ∆Rs1 = 0.22 Ω

5.2.1. FDD with Method M1

As described in Figure 22a, the FDD method M1 uses the vector of parameters as
fault features. In the following, Rs(I−V) stands for the series resistance extracted from the
measured I–V curve, while Rs(analy) is the series resistance estimated from the analytical
model. The lower script ‘f ’ stands for faulty, and ‘h’ for healthy.

From the histograms displayed in Figure 23, we can draw the following conclusions:

• In the healthy case, despite the variations in the environmental conditions (irradiance
and temperature), the series resistance Rsh ∈ [0.737, 0.788] Ω is almost constant;

• In faulty conditions, the series resistances are significantly different from the healthy case;
• A threshold set at εRs,th = 3 ∗ (σRs(analy),h)max ≈ 0.04 Ω will allow for the detection

of each fault.
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The histograms of the residuals are plotted in Figure 24. The fault can be detected
because for each case, ε > εRsth. The severity levels can also be estimated with a good
accuracy, as shown in Table 15.
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Table 15. Accuracy of fault level estimation in case of Rs degradation.

Fault Level f1 f2 f3

∆Rs(Experimental) (Ω) 0.22 0.33 0.39
∆Rs(Estimated) (Ω) 0.205 0.326 0.439

Relative error on Rs % 1.57 0.37 4.35

From the results shown in Figure 25, it is interesting to notice that the degradation of
the series resistance has almost no effect on the other parameters of the SDM.
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5.2.2. FDD with Method M2

As displayed in Figure 22b, the method M2 was based on the analysis of the residuals
between the main characteristics extracted from measured I–V curves and those obtained
from the hybrid model. The results are displayed in Figure 26. The red points are singular
points in the distribution.
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Figure 26. Effect of series resistance 𝑅  faults on the I–V curve characteristics. (a): Fault effect on 
PV module’s current; (b): Fault effect on PV module’s voltage; (c): Fault effect on maximum 
power; (d): Fault effect on open-circuit voltage; (e): Fault effect on short-circuit current. 
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Figure 26. Effect of series resistance Rs faults on the I–V curve characteristics. (a): Fault effect on
PV module’s current; (b): Fault effect on PV module’s voltage; (c): Fault effect on maximum power;
(d): Fault effect on open-circuit voltage; (e): Fault effect on short-circuit current.

The relative variations of the mean values (compared to the healthy case) for the five
characteristics are displayed in Table 16 (the bold values correspond to the best results). We
can deduce that the maximum power point (Figure 26c) is the most sensitive to the series
resistance degradation. The values of the voltage (Figure 26b) are also more affected than
the PV module’s current values (Figure 26a). The open-circuit voltage (Figure 26d) and the
short-circuit current (Figure 26e) are barely affected. These results are consistent, as the
series resistance mainly affects the voltage source region of the I–V curve.

Table 16. Effect of the Rs on the I–V curve characteristics.

Fault Level f1 f2 f3

∆µMAPEIpv (%) 1.4 1.84 1.99
∆µMAPEVpv (%) 3.15 4.06 4.48
∆µAREPmpp (%) 3.6 4.64 5.1
∆µAREVoc (%) 0.13 0.21 0.32
∆µAREIsc (%) 0.01 0.032 0.067

5.3. Rsh Degradation

The parallel resistance represents all of the paths crossed by the leakage current, either
in parallel with the cell or at the cell’s border. Its degradation results from damage in the
crystal or impurities in or near the junction.

5.3.1. FDD with Method M1

For the experiment, Rsh_add1, Rsh_add2, and Rsh_add3 were the resistances added in
parallel with the PV panel to emulate three fault levels for Rsh degradation. Table 17
summarizes the data acquisition for the faulty cases.

Table 17. Data acquisition for Rsh degradation.

No Data
Acquisition Weather Number of I–V Curves

Gpoa ≥ 600 W/m2 Rsh_add

1 13 April 2021 Partly cloudy 82 60 Ω
2 5 April 2021 Partly cloudy 61 50 Ω
3 3 April 2021 Partly cloudy 39 39 Ω

From the histograms displayed in Figure 27, we can draw the following conclusions:
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• In the healthy case, due to variations in the environmental conditions (irradiance and
temperature), the shunt resistance (Rsh ∈ [54, 71] Ω) varies slightly (Figure 27a);

• In faulty conditions, the shunt resistances are significantly different from the healthy
case (Figure 27a);

• A threshold set at εRshth = 3 ∗ (σRshes,h)max ≈ 4.5 Ω will allow for the detection of
each fault;

• the mean values of the residuals (Figure 27b) are consistent with the calculated varia-
tions ∆Rsh = Rsh,mean,h − Rsh, f [Ω] displayed in Table 18.
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Figure 27. FDD in the case of Rsh degradation. (a): Measured and estimated shunt resistance values;
(b): Residuals.

Table 18. Three levels of severity for Rsh degradation.

Fault Level Rshadd
[Ω]

Rshmean,h
[Ω] (Analytical Model) Rshmean,h//Rshadd ∆Rsh [Ω]

1 60 57.89 29.46 28.42
2 50 65.81 28.41 37.39
3 39 63.8 24.20 39.59

The fault effect on the other parameters plotted in Figure 28 shows that there is no
significant variation.
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Figure 28. Effect of Rsh degradation on the other parameters of the SDM.
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5.3.2. FDD with Method M2

The influences of the Rsh degradation on the other characteristics are shown in
Figure 29. The boxplots are used to depict the comparisons between data obtained from
being measured and from being simulated. The red points are singular points in the
distribution. The following is a summary of the findings:

The relative variations of the mean values (compared to the healthy case) for the five
characteristics are presented in Table 19 (bold values are the best results). From these
results, it can be deduced that the maximum power point (Figure 29c) is the most sensitive
to the degradation of the shunt resistance.

The values of the PV module’s current (Figure 29a) are also more significantly affected
than the voltage values (Figure 29b). The open-circuit voltage (Figure 29d) and short circuit
current (Figure 29e) are only slightly affected. These results are consistent with the fact that
the shunt resistance mainly affects the current-source region of the I–V curve.
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Figure 29. Effect of shunt resistance fault Rsh on the I–V curve characteristics. (a): Fault effect on
PV module’s current; (b): Fault effect on PV module’s voltage; (c): Fault effect on maximum power;
(d): Fault effect on open-circuit voltage; (e): Fault effect on short-circuit current.
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Table 19. Fault effect on the I–V curve characteristics.

Fault Level f1 f2 f3

∆µMAPEIpv (%) 1.11 1.98 2.64
∆µMAPEVpv (%) 0.19 0.31 0.66
∆µAREPmpp (%) 1.48 2.44 3.39
∆µAREVoc (%) 0.45 0.51 0.57
∆µAREIsc (%) 0.14 0.46 0.61

6. Conclusions

In this paper, two methodologies (denoted M1 and M2) of fault detection and diag-
nosis (FDD) for PV systems were developed and evaluated. M1 uses the five parameters
(Iph, Rs, Rsh, I0 and n) of the single-diode model as fault features, while M2 uses the five
characteristics (Ipv, Vpv, Pmpp, Voc, and Isc) of the I–V curves as fault signatures. M1 is
based on analytical models of the parameters, and M2 exploits a hybrid model, which is a
combination of the analytical models and a numerical model of the PV cells.

A low-cost embedded I–V tracer was developed and implemented to measure the I–V
curves. It is based on a variable resistance obtained with a switching device. The results
show that an accurate I–V curve with 26 points can be measured in less than 200 ms.

First, the analytical models are validated with experimental data. Despite the scat-
tered uncertainties in the estimation errors of the five parameters, the analytical models
remain valid. In reality, only four parameters can be determined from the measurements.
There is, therefore, a degree of freedom to obtain the correct I–V characteristic for several
combinations of the parameters. The hybrid model is validated with a relative error lower
than 3%. Residuals are calculated between the fault features extracted from experimental
measurements and the simulated models. Two fault cases are studied: series resistance
(Rs) degradation and shunt resistance (Rsh) degradation.

In the case of Rs and Rsh degradation, the results with the method M1 show that the
defect could be detected accurately, and its level estimated. The results also show that the
other parameters are not affected. The results with the method M2 in both fault cases show
that the maximum power point is the most sensitive fault feature. The performances of the
methods are summarized in Table 20.

Table 20. Summary of FDD performance.

FDD Method
Fault Types

Rs Degradation Rsh Degradation

M1

Iph No effect Iph No effect
Rs High Rs No effect
Rsh No effect Rsh High
I0 No effect I0 No effect
n No effect n No effect

M2

Ipv Low Ipv Low
Vpv Low Vpv Low

Pmpp High Pmpp High
Voc Low Voc Low
Isc Low Isc Low
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