
Citation: Hegazy, H.I.; Tag Eldien,

A.S.; Tantawy, M.M.; Fouda, M.M.;

TagElDien, H.A. Real-Time

Locational Detection of Stealthy False

Data Injection Attack in Smart Grid:

Using Multivariate-Based

Multi-Label Classification Approach.

Energies 2022, 15, 5312. https://

doi.org/10.3390/en15145312

Academic Editors: Javier Contreras

and Abu-Siada Ahmed

Received: 24 June 2022

Accepted: 18 July 2022

Published: 21 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Real-Time Locational Detection of Stealthy False Data Injection
Attack in Smart Grid: Using Multivariate-Based Multi-Label
Classification Approach
Hanem I. Hegazy 1, Adly S. Tag Eldien 1, Mohsen M. Tantawy 2, Mostafa M. Fouda 3,4,* and Heba A. TagElDien 1

1 Department of Electrical Engineering, Faculty of Engineering at Shoubra, Benha University,
Cairo 11672, Egypt; hanem.hegazy@feng.bu.edu.eg (H.I.H.); adlytag@feng.bu.edu.eg (A.S.T.E.);
hebaallah.shahat@feng.bu.edu.eg (H.A.T.)

2 Network Planning Department, National Telecommunication Institute (NTI), Cairo 11768, Egypt;
ntimohsen@gmail.com

3 Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
4 Center for Advanced Energy Studies (CAES), Idaho Falls, ID 83401, USA
* Correspondence: mfouda@ieee.org; Tel.: +1-(208)-282-7768

Abstract: Recently, false data injection attacks (FDIAs) have been identified as a significant category of
cyber-attacks targeting smart grids’ state estimation and monitoring systems. These cyber-attacks aim
to mislead control system operations by compromising the readings of various smart grid meters. The
real-time and precise locational identification of FDIAs is crucial for smart grid security and reliability.
This paper proposes a multivariate-based multi-label locational detection (MMLD) mechanism to
detect the presence and locations of FDIAs in real-time measurements with precise locational detection
accuracy. The proposed architecture is a parallel structure that concatenates Long Short-Term Memory
(LSTM) with Temporal Convolutional Neural Network (TCN). The proposed architecture is trained
using Keras with Tensorflow libraries, and its performance is verified using an IEEE standard bus
system in the MATPOWER package. Extensive testing has shown that the proposed approach
effectively improves the presence-detection accuracy for locating stealthy FDIAs in small and large
systems under various attack conditions. In addition, this work provides a customized loss function
for handling the class imbalance problem. Simulation results reveal that our MMLD technique has a
modest advantage in some aspects. First, our mechanism outperforms benchmark models because
the problem is formulated as a multivariate-based multi-label classification problem. Second, it needs
fewer iterations for training and reaching the optimal model. More specifically, our approach is less
complex and more scalable than benchmark algorithms.

Keywords: smart grid; FDIA; LSTM; CNN; MMLD; LSTM-TCN

1. Introduction

Traditional power systems have evolved into the next generation of the power grid,
known as Smart Grid (SG) [1]. The SG integrates modern information and communication
technologies (ICTs) and intelligent information processing into traditional power systems,
allowing energy operators to monitor and control power generation, transmission, distri-
bution, and consumption processes in a more efficient, dependable, and secure manner [2].
Due to the bidirectional information exchange between consumers and operators, the
amount of data produced by a smart grid is far greater than that produced by a standard
power system. Industrial IoT technology allows the transfer of such large amounts of
data. This vital cyber infrastructure makes the smart grid more vulnerable to harmful
cyber-attacks [3–9].

Supervisory Control and Data Acquisition (SCADA) systems continually monitor and
control SG systems to preserve the normal operation of the smart grid [9]. The SCADA
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systems obtain real-time measurements from remote meters. The state estimator then
uses these measurements to estimate system states and develop real-time power network
models [10]. These state estimates are critical for Energy Management System (EMS)
application functions, such as optimal power flow and economic dispatch, etc., and heavily
depend on them.

The main goal of cyber-attacks is to harm or intentionally mislead a smart grid’s state
estimation mechanism, causing regional blackouts or attempting to manipulate energy
market prices and cause severe economic consequences [11]. There are various types of
cyber-attacks, one of them is false data injection attacks (FDIAs) [12,13]. FDIAs attempt
to manipulate the state estimation of the power grid by injecting harmful data into meter
measurements [14,15]. Furthermore, communication networks are subject to data injection
attacks, which can modify measurements during transmission [16].

A stealthy FDIA can evade the typical bad data detection (BDD) unit in the SCADA
system and thus is regarded as one of the most severe threats to state estimation. Various
studies have been conducted to develop different methods of constructing FDIAs [17].
In [18], a Stealthy FDIA can be carried out even if the attacker only has limited knowl-
edge about power grid configuration information and can only change a small set of
system measurements.

To boost smart grid security, several approaches have been adopted to detect FDIAs
in smart grids, which can be divided into two categories: model-based and data-driven
detection algorithms [19]. In recent studies, data-driven detection approaches based on
deep learning have become widely attractive. Deep learning models do not require any
statistical assumption about the system model or a predefined attack. These techniques
allow the system to learn the models during the training process.

In this paper, an online FDIA locational detection approach is proposed using Long
Short-Term Memory and Temporal Convolutional Networks (LSTM-TCN). This model
structure is considered a parallel structure of multivariate input fed into TCN and LSTM
RNN blocks. In order to study the multi-label classification task, a fully connected layer is
used with a sigmoid activation function and the number of meter measurements. To the
best of our knowledge, this work is the first study to investigate the locational detection of a
stealthy FDIA in smart grid as a multivariate-based multi-label classification problem. The
input measurements are applied as multivariate time series data to LSTM and TCN blocks,
they will process each time step with N variables (meter measurements). The MMLD
approach outperforms both LSTM and CCN with univariate input, as shown in Section 5.
The following are our main contributions:

• Using the multivariate-based LSTM-TCN increased the performance of the architecture
and can better distinguish the FDIA multi-label classes. Furthermore, the proposed
model is very fast, stable, and efficient in terms of training and testing time.

• The suggested approach is universal, i.e., it is not dependent on the statistical assump-
tion of the attack model.

• Our design is robust and scalable since it can adapt to detect slight and high L2-norms
of FDIAs and varying topology models.

• Extensive investigations are conducted to evaluate and verify the proposed architec-
ture. A parameter sensitivity test is also carried out to assess the suggested frameworks’
performance and applicability capabilities. Extensive results in the IEEE 118-bus sys-
tem reveal that the proposed architecture achieves a locational detection accuracy
of 98.6% and a presence detection accuracy of 99.8%, on average using only two
layers of the FCN and one layer of LSTM. We can conclude that the proposed frame-
work is a scalable, robust, accurate technique and outperforms the state-of-the-art
benchmarks [20,21].

The remainder of this paper is structured as follows: The related work is discussed
in Section 2. The power system model for state estimation is introduced in Section 3.
The problem formulation and proposed architectures are presented in Section 4. Then,
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Section 5 illustrates the performance of the proposed FDIA locational detection approaches
via extensive simulations. Finally, Section 6 concludes the paper.

2. Related Work

SGs rely heavily on time series data. Developing prediction models with high loca-
tional detection accuracy is difficult due to the extra factors in these kinds of data, such as
temporal aspects and uncertainty. In particular, when sensors are of poor quality, it might
be tough to predict whether an anomaly happened as a consequence of noisy data collected
by the meters/sensors or as a result of cyber integrity attacks.

Several FDIAs and anomaly detection algorithms have been developed using machine
learning technologies. This section contains a summary of recent studies. For example,
Ref. [20] proposed a multi-label classification approach for FDIA locational detection using
convolutional neural network (CNN) architecture. The work in [21] introduced a traditional
BDD with a CNN architecture , a convolutional neural network with long-short memory
(CNN-LSTM), a convolutional neural network with a gated recurrent unit (CNN-GRU),
and K-nearest neighbors (KNN) schemes for FDIA locational detection. An online and
semi-supervised learning technique was suggested in [22] that can be used in topological
and hierarchical networks for various attack scenarios. In [23], the authors proposed a
reinforcement learning (RL) framework for online cyber-attack detection problems targeting
the smart grid. The authors in [22] proposed supervised and semi-supervised machine
learning approaches to detect unobservable attacks. A Conditional Deep Belief Network
(CDBN) is proposed in [24] to reveal temporal behavior features of the structured false
data injection attacks. For identifying anomalies in smart grid streaming measurement
data, due to the temporal aspects involved in these data, time series analysis and the
adaptation of state-of-the-art abnormality detection algorithms are extremely common in
research. The author in [25] presents an anomaly detector using an LSTM-based encoder–
decoder, and this approach achieved an F1-score of above 0.84. A convolutional neural
network for anomaly detection in video sequences of crowded scenes was proposed in [26].
According to the authors, a mixture of spatial and temporal features is the optimal fit for this
application field. The author in [27] proposed an anomaly detector called Omni Anomaly
for multivariate time series data based on a stochastic recurrent neural network with an
F1-score of about 0.89. There are also more studies that address anomaly detection methods,
such as graph-based modeling [28] and the mechanism of the self-attention network [29].
For example, Ref. [30] employed a TCN approach to discover anomalies in time series data,
in which a multivariate Gaussian distribution (MGD) was used to estimate abnormality
scores as well as match the prediction errors. In [31], the authors proposed LSTM-FCNs
and ALSTM-FCN for the classification of time-series signals.

Most of the previous research centered on identifying the presence of FDIAs. In
contrast, the locational detection of stealthy FDIAs addressed in this research shares some
similarities with multivariate time series tasks and multi-label classification problems in
speech recognition and image processing [32,33]. The results of this paper show that
when FDIA detection has been formulated as a multivariate-based multi-label classification
problem, this increased the performance of our detector in identifying the locations of
stealthy FDIAs.

3. Preliminaries
3.1. Power System Model

At the control center, state estimation provides an efficient process for assessing current
system operating conditions from a set of real-time meter measurements. State estimation
is a necessary step in acquiring the voltage magnitudes and phase angles of all grid buses
in a power system. The power flow equations form the foundation of state estimation,
relating state variables and the measurements vector. In this paper, a DC linearized state
estimation problem in a steady-state power system with n + 1 buses and t transmission
lines is used. Using this linearized power flow model, the state estimation problem is
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therefore to estimate the n phase angle state variables based on m measurements. The
relationship between received measurements and state variables can be expressed in a
vector-matrix form as in [15,18]:

z = Hx + e, (1)

where n is the number of state system variables, m is the number of meter measurements,
and m ≥ n, z ∈ Rm is the measurement vector, which includes power flow measurements
on transmission lines as well as power injection measurements at buses. The vector x ∈ Rn

represents phase angle system state vector, the vector e represents Gaussian noise, whereas
H ∈ Rm×n denotes the Jacobian matrix.

The majority of traditional methods for detecting bad data injection rely on residual
tests. The residual is the difference between the computed value from the estimated state
and the observed measurement vector z, i.e., z−Hx. The associated measurement will be
considered poor data if the L2-norm value of the elements in a normalized residual exceeds
the pre-defined threshold, and these bad measurements and an attack are announced by
the BDD detector as long as the following holds:

R = ‖z−Hx‖2
2 ≥ τ (2)

3.2. False Data Injection Attack (FDIA)

FDIAs are classified into two types of attacks depending on if the false data attacks
are detected or not by BDD approaches:

1. Non-stealthy FDIAs: These unstructured attacks can be detected using traditional
residual-test methods in Equation (2) [10]. The attackers are unaware of the measure-
ment matrix H; the attackers simply generate arbitrary attack vectors and modify
meter measurements.

2. Stealthy FDIAs: They are structured attacks that are not detected by typical methods
of bad data detection.

In the case of stealthy FDIAs, it is assumed that the attackers only require partial
knowledge of the power grid’s topology or the measuring matrix to compromise a small set
of meters [17,34]. For example, the authors in [17] proved that an optimally structured FDIA
attack can be formed when the attacker only has minimal knowledge of the measuring
matrix H by using the min-cut method. They carefully design the false data and let a = Hc,
where c 6= 0 and c ∈ Rn are any arbitrary vector [35]. The measuring vector can then be
described as:

ẑ = Hx + e + a (3)

Such attacks can evade detection by traditional residual test methods in Equation (2),
leading the control unit to believe that the compromised state x̂ = (x + c) is the true state,
and in such cases, the L2-norm of the residual remains unchanged:

‖ẑ−Hx̂|| = ‖z + a−H(x + c)‖ = ‖z−Hx‖ (4)

This paper presents a new data-driven FDIA detection strategy that can detect the
locations of compromised meters in the control center. Such an approach is formulated as a
multivariate input-based multi-label classification approach.

4. FDIA Location-Based Detection Scheme as a Multivariate Multi-Label
Classification Approach

This section provides the proposed mechanism and how it will be implemented. In
addition, it proposes the structures of the proposed MMLD architecture.

4.1. Detection of FDIA Location

Mathematically, detecting the presence of FDIA is equivalent to categorizing the entire
measurement vector into two labels: compromised or not. This type of classification
results in a single-label classification task, whereas identifying the location of the FDI
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attack vector is accomplished by categorizing each reading of the measurement set into two
labels: abnormal/compromised and normal/uncompromised. As a result, FDIA’s location
detection can be considered a multi-label classification problem.

The meters that contained the locations for false data were labeled as compromised
locations, while the meters that were not subjected to an FDIA were labeled as uncom-
promised locations. Frequently, multi-label classification problems are imbalanced, and
downsampling methods are ineffective. To tackle this problem, this work carefully de-
veloped the MMLD structure to extract and represent the associated data information,
resulting in good multi-label classification performance.

4.2. FDIA Proposed Detection Mechanism

This paper defines the LSTM-TCN architecture used as a multivariate multi-label
classifier. These classifiers’ inputs are the time series meters’ measurement vectors. During
the training process, they only require these corresponding measurement vectors alongside
their truth labels. This type of approach is model-free, which means it does not require any
prior statistical knowledge about the power grid topology or Jacobian matrix H.

The proposed methodology for detecting the location of an FDIA is shown in Figure 1.
In the SCADA system, the measurements are first sent to the conventional BDD detector.
Such detectors can be used to detect compromised or noisy readings by measuring the
L2-norm according to Equation (2) and comparing it to a predefined threshold. The BDD
detector triggers an alarm for these compromised meter readings. This detector is capable of
dealing with meter measurements that include meter failures, malfunctions, communication
issues, and non-stealthy FDIAs. Structured FDIAs can bypass the traditional BDD detector.
These compromised measurements are provided to our proposed classifier. It is capable of
detecting the presence of FDIAs as well as the positions of these compromised meters.

52

Input 

Measurement 

vector

LSTM-TCN 

Classifier

M1 compromised or not 

.

.

.

M2 compromised or not 

Mn compromised or not 

Figure 1. FDIA’s proposed location-based detection scheme.

4.2.1. Input

In the proposed detector, the LSTM-TCN blocks receive multivariate data obtained
through dimension shuffling after input measurements. An example of such data is 14-bus
system data, which includes 19 measurements with a single time step associated with each
set of features. Because the input is now seen as multivariate readings, a tensor of shape
(B, N, M) can be used to construct these data, where B is the number of samples in the
dataset, N is the total number of time steps, and M represents the number of measurements
processed every time step.

The measurement vector zt =
(
zt

1, . . . , zt
n
)

is the input vector for time step t for 0 <
t ≤ T. The TCN and LSTM blocks both perceive the same multivariate measurements. This
is achieved by the dimension permutation layer, which transposes the time series’ temporal
dimension. After transformation, a univariate time series of length N is transformed into
a multivariate time series (with N variables) at each time step. The results are verified in
IEEE 14 and IEEE 118-bus systems.

4.2.2. Proposed Architecture

Temporal Convolutional Neural Networks have been shown to be a powerful learning
method for time series classification tasks [36]. The TCN is founded on two basic principles:
(1) causal convolutions, i.e., no information leaking from the future to the past; (2) the
architecture, similar to an RNN, can receive any length sequence and map it to the same
length output sequence. The TCN is composed of a 1D fully convolutional network (FCN)



Energies 2022, 15, 5312 6 of 18

structure with each hidden layer having the same length as the input layer and succeeding
layers keeping the same length as prior ones using causal padding parameters. The
proposed LSTM-TCN architecture for detecting FDIA locations is shown in Figure 2.
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Figure 2. The architecture of LSTM-TCN. 1: compromised meter; 0: uncompromised meter.

The proposed architecture is composed of 2 stacked 1dimensional fully convolutional
networks (1D FCN), which are typically used as feature extractors, and 1 layer of LSTM
followed by a dropout of 0.2 to help to control over-fitting and to speed up convergence.
Each FCN block is accompanied by batch normalization. Batch normalization is applied to
avoid vanishing or exploding gradients. After that, there is a ReLU activation function.

Following the last convolution block, a global average pooling is utilized to decrease
the number of parameters in the model before classification [37]. The time series meter
measurements are conveyed into a dimension shuffle layer and then applied to the LSTM-
TCN blocks. For multi-label classifications of meter readings, the output of the global
pooling layer and the LSTM block are combined and sent onto a fully connected layer.

Fully Convolutions Blocks

Consider L convolutional layers. On each of these layers, a set of 1D filters
h : {1, · · · , k} → R is applied. The feature maps c1,j of the first fully convolutional
layer are formed from the multivariate input measurements z and can be represented as:

ct
1,j = ReLU

(
zt ∗ h1,j + b1,j

)
(5)

where h1,j is the jth kernel, and b1,j is the corresponding bias. b1,j is added to all the
convolution output, and the convolution operation is denoted by ∗. The inputs for Ith
convolutional layer are feature maps produced at (I − 1)th convolutional layer. The output
of the Ith layer is as follows:

ct
I,j = ReLU

(
cI−1,j ∗ h1,j + b1,j

)
(6)

where ct
1,j represents the jth feature map at the Ith convolutional layer for time step t,

0 < t ≤ T. The depth of the convolutional layer and the number of filters at each layer are
the key parameters for that architecture. A batch normalization layer receives the feature
mappings learned from the Ith convolutional layer, and then a global average pooling
is used.

LSTM RNNs Block

A long short-term memory network is a specialized Recurrent Neural Network (RNN)
structure. As stated in ref. [38], by including gating functions into LSTM’s state dynamics,
it avoids the vanishing gradient issue that affects standard recurrent neural networks. At
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each time step, the LSTM has a multivariate input zt. ht−1 and ct−1 are the inputs from the
previous time step. Each LSTM cell contains three gates: the input gate i, forget gate f , and
output gate o. The following is the information flow of an LSTM cell:

ft = σg

(
w f zt + u f ht−1 + b f

)
(7)

it = σg(wizt + uiht−1 + i) (8)

ot = σg(wozt + uoht−1 + bo) (9)

ct = ft ◦ ct−1 + it ◦ tanh(wczt + ucht−1 + bc) (10)

ht = ot ◦ tanh(ct) (11)

where σg and tanh denote the sigmoid and tangent functions, respectively, and ◦ represents
element-wise multiplication. Here, c and h represent the cell state vector and hidden state
vector, respectively.

LSTM Concatenated with FCNs Block

When the LSTM block’s features are combined with the FCN features, we obtain
a more robust collection of features that can better distinguish the dataset’s classes. As
detailed in Section 4, Results, our findings demonstrate that using both the LSTM block’s
attributes and the FCN block’s features enhanced model performance over simply using
basic CNN [20] and LSTM architectures.

Fully Connected Layer

Finally, a fully-connected layer with sigmoid activation is used to generate the class
probabilities of meter measurements at each time step. Then, a multi-label classification
output for any meter j at time series t can be represented as:

ŷt = sigmoid(wd × ci + bd) (12)

where ci is the concatenated features (cI and ht), and wd and bd are the weights and biases
of the dense layer, respectively.

Dimension Shuffle

When dimension shuffling is performed on the input before the LSTM-TCN blocks,
only one time step with N variables will be processed. Due to using dimension shuffling,
the training time is reduced, and model performance is enhanced.

For the IEEE 14-bus power system, Table 1 presents an example of the MMLD network.
In comparison to the benchmark [20], our proposed detector requires fewer parameters
for training.

4.3. Training Procedure

Before applying the proposed FDIA locational detector to classify the meter readings,
the hyperparameters, which include number of filters, number of neurons, activation
function, optimizer, learning rate, batch size, epochs, and number of layers, must be tuned
first. The locational detection accuracy can be affected by the number of layers used: fewer
layers may result in underfitting, while too many layers may result in overfitting. The
goal of the parameter-tuning process is to find the optimal parameters for the proposed
approach during the training phase.
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Table 1. Multivariate-based multi-label locational detection (MMLD) network for the IEEE 14-bus
power system.

Stage Layer (Type) Kernal Output Shape No. of Parameters

0 input_1 − 19× 1 0
1 permute − 1× 19 0
2 Conv1D 5× 1 1× 128 12,288
3 batch_normalization − 1× 128 512
4 RELU − 1× 128 0
5 Conv1D 3× 1 1× 256 98,560
6 batch_normalization − 1× 256 1024
7 RELU − 1× 256 0
8 global_average_pooling1d − 256× 1 0
9 LSTM − 128× 1 98,432

10 dropout − 128× 1 75,776
11 concatenate − 384× 1 0
12 dense − 19× 1 7315

Total no. of parameters: 195,475
No. of trainable parameters: 194,707
No. of non-trainable parameters: 768

4.3.1. Mini-Batch, Cross-Validation, and Early Stopping Technique

To minimize over-fitting and increase the convergence rate of the LSTM-TCN archi-
tecture, the mini-batch gradient descent technique, cross-validation, and early stopping
technique are used. In each mini-batch, randomly selected data of 100 instances from the
training dataset are used to calculate the gradient descent. The training dataset is divided
into 0.7 for training, 0.2 for validation, and 0.1 for testing for each batch.

4.3.2. Loss Function

Cross entropy is mainly used for multi-label classification which shows the error
between actual meter labels yt with respect to the predicted meter labels of the model yt for
each mini-batch. The loss function is used for optimizing the hyperparameter during the
training and can be shown as:

dLi= ∑
t∈θ

− 1
m

m

∑
i=1

yt
i log ŷt

i +
(
1− yt

i
)

log
(
1− ŷt

i
)

(13)

We have five variants of datasets. The L2 norm of FDIA has been varied in each dataset
variant. L2-norm is varied from 1 to 5. Our datasets contain unbalanced labels. Figure 3
is an example of variant 1 dataset in which L2-norm = 1. Due to the unbalanced issue, a
customized loss function is applied. The class-weights information should be calculated.
So, the above equation is updated to:

dLi= ∑
t∈θ

− 1
m

m

∑
i=1

wp ∗ yt
i log ŷt

i + wn ∗
(
1− yt

i
)

log
(
1− ŷt

i
)

(14)

where wp and wn are positive and negative class weights, respectively. Using this custom
loss function, the network will estimate the logit value ŷt

i for each label. These logit values
will be checked with the true value yt

i , and the difference between them will result in
cross-entropy loss. This loss will be weighted according to the class weight of the true
value. The total loss will be a summation of all the weighted-cross entropy, which can be
backpropagated to optimize the network’s parameters.
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5. Experimental Results

This section first emphasizes the training and testing dataset generation followed
by their creation using stealthy FDIAs. Then, evaluation metrics for FDIA detection are
mentioned. In addition, this section investigates the efficiency and robustness of five
proposed models trained on five dataset variants for identifying the presence of FDIAs and
the falsified meters’ location.

5.1. Dataset Generation

This section assesses the proposed FDIA locational detector in IEEE 14- and 118-
bus power grids. The grid topologies are available from MATPOWER [39]. The power
topologies can be summarized as follows:

• IEEE14-bus system:

– Number of transmission lines and buses are 20 lines and 14 buses, respectively.
– Number of total meter measurements are 19, of which 11 are flow measurements

and 9 are injected measurements.

• IEEE118-bus system:

– Number of transmission lines and buses are 186 lines and 118 buses, respectively.
– Number of total meter measurements are 180, of which 110 are flow measure-

ments and 70 are injected measurements.

The training and testing datasets are adopted from [20] and can be summarized as
follows:

1. Meter measurements are indexed based on the network topology. first, the line flow
meters are indexed from k = 1 as follows:

• The unindexed meters connecting bus k are indexed and set as k = k + 1;
• If k > 14 (118), the indexing process is terminated; otherwise, the policy returns

back to first step. Then, the index is continued from line meters, and the injection
meters are labeled based on ascending order of the bus index. An indexed
measurement placement of the IEEE 14-bus system is depicted in [20];

2. By artificially generating the loads on each bus, 110,000 sets of uncompromised data
are obtained by extending the real-world data. The generated loads are distributed
normally, with a mean equal to the base load and a standard deviation equal to
one-sixth of the base load’s value [40,41];

3. Ten thousand sets of loads are randomly chosen to implement the FDIA:
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4. • For each attack, a set of target state variables to compromise is randomly selected.
In the 14-bus power system, the target state variables have a discrete uniform
(2, 5) distribution, whereas the 118-bus power system has a discrete uniform
(2, 10) distribution.

• Transmission line impedance is set according to [18], and the L2-norm of the
injected data (expected value of the Euclidean norm of the attack vector) varies
from 1 to 5. A noise standard deviation of 0.2 was added in both compromised
and uncompromised data.

5. For each set of load and its particular target state variables, a stealthy FDIA is gener-
ated according to the min-cut algorithm in [18].

6. Finally, to take into consideration the noise in measurement, a random Gaussian noise
with a standard deviation of 0.2 was added in both compromised and uncompro-
mised data.

7. After the training data are generated, the above process is repeated 10 times to
generate 10 independent sets of testing data, which naturally introduces
validation variations.

The readings of the meters on neighboring buses or lines that are highly correlated.
The LSTM-TCN also extracts features by observing the meter’s measurements of adja-
cent indices.

Training and Testing Datasets

Under each level of attack, the dataset is prepared as follows [20]:

• For training, input measurements and training labels are generated with a dimension
of 110,000 × B. The training data are composed of 100, 000 samples with no attack
vector and 10,000 instances under attack.

• For testing, a testing set is generated with a dimension of 10,000× B for measurements
and labels. Input measurements are composed of 5000 uncompromised samples and
5000 compromised samples [18]. Over all of the test datasets, the results of all trials
have been averaged.

Here, B represents the number of meter measurements of IEEE-test case, i.e., 19 for the
IEEE 14-bus System and 180 for the IEEE 118-bus System. The measurement vector and
the meter labels yt =

(
yt

1, . . . , yt
n
)
∈ {1, . . . , C}, where c represents the number of classes

are used for training. These labels are used to train the classifier and can be shown as:

yt =

{
1, meter i at instance t is compromised;
0, not compromised.

(15)

The outputs of the classifier (prediction labels) ŷt are continuous numbers between 0 and
1. Thus, the classifier establishes a distinction threshold to categorize the output as 0 or 1.
The sensitivity to application parameters can be increased or decreased by adjusting the
discrimination threshold. In this paper, the discrimination threshold is set to 0.5.

5.2. Evaluation Metrics

The Proposed Approach LSTM-TCN, is trained using the Keras package [42] with
Tensorflow as the backend [43] using two filters each with 5× 1 and 3× 1 kernel sizes,
causal padding, and a RELU activation function followed by a multi-label classification
layer. Furthermore, with an epoch of 100, validation occurs every 100 steps. A batch size
of 100 has been set. The loss function for prediction is the custom cross-entropy, and the
Adam optimizer is used to fit the data, with an initial learning rate of 0.001 and patience
of 5. The proposed scheme is compared with the state-of-the-art models, including the
CNN [20] and LSTM architectures. In our simulation, the Precision, Recall of the predicted
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labels, and F1-score are employed as performance metrics. The precision and recall are
described as follows:

Precision =
True Positive (TP)

True Positive (TP) + False Positive (FP)
, (16)

Recall =
True Positive (TP)

True Positive (TP) + False Negative (FN)
, (17)

where, in this paper TP, FP, and FN are defined as the probability that the detector clas-
sifies a location with compromised meters as compromised, a location with uncompro-
mised meters as compromised, and a location with uncompromised meters as uncompro-
mised [20], respectively:

F1-score = 2× Precision × Recall
Precision + Recall

. (18)

The F1-score is defined as the geometric mean of precision and recall, and it is used
to compare suggested models more effectively. The Locational/Row accuracy (RACC) is
another key evaluation criterion for detecting compromised meters’ locations. The RACC
is defined as the probability that the classifier can classify all the locations of true meters’
measurements as uncompromised, and falsified meters’ measurements as compromised.

First, the proposed approach is assessed when the injection data’s L2-norm is 2 and the
standard deviation of the measurement noise is 0.2. The number of hidden layers ranges
between 2 and 6, and the number of units is determined by the greatest F1-score. To ensure
a fair comparison, the same datasets are used for both training and testing.

5.2.1. IEEE 14-Bus System

Table 2 compares the four metrics in the IEEE 14-bus system between the proposed
architecture, the CNN [20], and LSTM with varying numbers of hidden layers. Overall,
our proposed architecture outperforms the benchmark algorithms in F1-score and RACC,
proving its locational detection efficiency in detecting the location of compromised meters.
The CNN and LSTM approaches provide row accuracies of 97% and 97.72% at layer 6
and 94.24% and 97.72% at layer 2, respectively, but our proposed scheme reaches 98.9%
utilizing only two FCN layers. Table 2 indicates that as the number of hidden layers
grows from 2 to 6, the metrics improve. In addition, as the number of hidden layers of
the LSTM-TCN increases from 2 to 6, the metrics increase and remain nearly constant.
Overall, the proposed architecture is carefully tuned and achieves a high F1-score and
row accuracy. As the number of hidden layers increases, the computational complexity
also increases. We designed our architecture with two FCN hidden layers and one LSTM
layer to achieve a reasonable balance of computational complexity and locational detection
accuracy. We would like to emphasize that the proposed LSTM-TCN structure has high
detection accuracy due to the fact that our proposed structure uses the LSTM and TCN
blocks in parallel to receive measurements as a multivariate time series; then, the blocks
augment and force each other to capture FDIA-caused inconsistencies and co-occurrence
dependent on nearby meters’ measurements, which, when combined, yields an overall
better performance. As shown in Table 3, the proposed architecture outperforms the CNN
and LSTM models in detecting the locations of compromised meters. In the following
scenarios, we demonstrate the locational detection accuracy for eight attack cases using the
IEEE 118-bus test system:

1. The first measurement is compromised and the third is not;
2. The third measurement is compromised and the first is not;
3. Both the first and third measurements are compromised;
4. Neither the first nor third measurements are compromised;
5. The first measurement is compromised and the fifteenth is not;
6. The fifteenth measurement is compromised and the first is not;
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7. Both the first and fifteenth measurements are compromised;
8. Neither the first nor the fifteenth measurements are compromised.

We observe that the co-occurrence of FDIA on the first and third measurements is larger
than the one on the first and fifteenth measurements, and the RACC accuracy is likewise
greater than the one on the first and fifteenth. measurements. This is because the first and
third measurements are substantially linked as a result of their direct connection, and thus
the measurements are highly coupled. As the system grows larger under a low L2-norm of
FDIA, the CNN and LSTM are no longer able to identify the co-occurrence dependency
of nearby measurements. Meanwhile, the suggested MMLD can locate compromised
measurements in huge systems under modest attack conditions.

Table 2. Performance evaluation of the IEEE 14-bus power system under L2-norm = 2.

Model Layers Precision % Recall % F1-Score % RACC % Number of Parameters

CNN

2 97.52 98.78 98.09 94.24 109, 587
3 99.47 99.66 99.57 95.49 243, 987
4 99.51 99.75 99.63 96.42 293, 267
5 99.65 99.78 99.71 97.45 3, 425, 471
6 99.67 99.69 99.68 97.02 372, 371

LSTM

2 99.63 99.83 99.73 97.72 245, 395
3 99.63 99.82 99.72 97.71 377, 491
4 99.61 99.81 99.71 97.63 509, 587
5 99.63 99.82 99.73 97.87 641, 683
6 99.58 99.84 99.71 97.78 773, 779

LSTM-TCN

2 99.81 99.89 99.85 98.65 93, 459
3 99.82 99.91 99.87 98.9 195, 475
4 99.83 99.91 99.87 98.88 291, 987
5 99.85 99.91 99.88 98.99 341, 779
6 99.83 99.92 99.87 98.93 391, 571

Table 3. Location-based Results on the first, third, and fifteenth measurements under L2-norm = 1.

Compromised Location CNN LSTM LSTM-TCN

1st 80.44 82.00 93.78
3rd 80.77 80.50 94.57

1st & 3rd 45.45 71.21 95.45
Neither 81.35 81.14 94.51

1st 76.18 81.12 93.93
15th 80.44 79.75 94.46

1st & 15th 74.65 77.46 94.37
Neither 81.41 81.28 94.53

5.2.2. IEEE 118-Bus System

Table 4 shows the performance evaluation in the IEEE 118-bus power system. This
comparison shows that precision and recall are around 100%, and the RACCs (means
detecting compromised meters’ locations) of the CNN and LSTM are always around 93%
and 94%, respectively. LSTM suffers from the degradation problem. As the number of
hidden layers increases from layer 3 to layer 6, RACC decreases. Meanwhile, our proposed
architecture’s RACC reaches 98.9%. This demonstrates that the LSTM-TCN detector can
detect the presence of an FDIA as well as its location when the bus system is large. In
conclusion, the proposed MMLD is scalable as the size of the system grows.

The outputs of the LSTM-TCN’s ŷt
n are continuous within [0, 1], as stated in Section 3.2,

and they are quantified to zero or one by a distinction threshold. The threshold value, in
general, dictates the tradeoff between the True Positive Rate (TPR) and the False Positive
Rate (FPR). A lower threshold, in particular, leads to a higher TPR and a lower FPR. The area
under the ROC/AUC is commonly used as a performance indicator of the discriminatory
capability to depict relative trade-offs between TPR and FPR [44]. This tradeoff is examined
by plotting FPR versus TPR as the threshold varies from 0 to 1, as shown in Figure 4. As
shown, we can observe that the suggested mechanism with only two FCN layers has a
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higher true positive rate together with a lower false-positive rate than the CNN and LSTM,
both of which have four FCN layers. In addition, it has an AUC close to 1, indicating that it
has a superior discriminatory ability.

In the proposed mechanism, the True Positive Rate rises to 0.999 extremely quickly
as the False Positive Rate rises from 0 to 0.00005. Thus, the True Positive Rate against the
False Positive Rate is only depicted from 0 to 0.001.

Table 4. Performance evaluation of the IEEE 118-bus power system under L2-norm = 2.

Model Layers Precision % Recall % F1-Score % RACC % Number of Parameters

CNN

2 98.37 99.18 99.62 87.38 4, 248, 244
3 98.64 99.55 99.1 89.58 4, 347, 188
4 99.36 99.66 99.51 93.29 4394, 420
5 98.96 99.56 99.26 93.33 4, 396, 980
6 99.24 99.45 99.38 92.38 4, 397, 492

LSTM

2 99.94 99.97 99.95 94.7 4, 346, 548
3 99.95 99.97 99.96 94.74 4, 478, 644
4 99.94 99.96 99.95 93.99 4, 610, 740
5 99.92 99.93 99.93 91.87 4, 742, 836
6 99.91 99.92 99.91 90.89 4, 874, 932

LSTM-TCN

2 99.98 99.98 99.98 98.39 320, 308
3 99.98 99.99 99.99 98.39 442, 932
4 99.99 99.99 99.99 98.95 518, 836
5 99.98 99.99 99.99 98.68 568, 628
6 99.98 99.99 99.98 98.08 618, 420
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Figure 4. ROC curves for the proposed mechanism, CNN, and LSTM in IEEE 118-bus system under
L2-norm = 2.

5.2.3. Robustness

As shown in Figure 5, the LSTM-TCN has the highest F1-Score and row accuracy
when compared to the benchmarks of the CNN and LSTM. The F1-Score of the schemes
grows as the L2-norm of the attack injection increases, as seen in Figure 5a. This is because
as the attack becomes more intense, the patterns of normal and infected data become more
recognized. Similarly, as seen in Figure 5b, the proposed mechanism outperforms the
benchmark scheme in row accuracy. In the proposed mechanism, with only two layers
of the FCN, reach a RACC of 96.15% and 99.89%, while the CNN and LSTM with four
layers each achieve 92.03% and 98.8% and 94.69% and 99.53% at variant 1 and variant
5 of the L2-norm, respectively. Overall, when the L2-norm of the injection data varies
from 1 to 5, the proposed detection approach can always obtain an F1-Score near 100. The
MMLD approach is sensitive to slight and high L2-norms of injected data, as it achieves
high presence location accuracy at low values of the L2-norm.
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Figure 5. F1-score and RACC comparison in the IEEE 14-bus system: (a) F1-score comparison versus
the L2-norm of the injection attack; (b) RACC comparison versus L2-norm of the injection attack.

5.2.4. Scalability

The scalability of the proposed architecture is investigated in the IEEE 118-bus system
to test its scalability in large systems. As depicted in Figure 6, the detection accuracy
attained by benchmark models and LSTM-TCN is evaluated. As shown, the proposed
detection scheme is more sensitive to lower values of the L2-norm of the injected attack
than the CNN and LSTM. At variant 1 and variant 5 of the L2-norm, the LSTM-TCN reaches
93.69% and 98.95%, while the CNN and LSTM achieve only 79.17% and 77.75% and 96.57%
and 96.07%, respectively. Overall, the proposed detection scheme can always achieve very
high locational detection accuracy when the L2-norm of the FDIA varies from 1 to 5. This
means that the suggested LSTM-TCN mechanism’s detection accuracy is unaffected by the
size of the attack. As the F1-score for the benchmark models, and the proposed model is
almost around 100%. The F1-score (presence accuracy) versus the L2-norm of the injection
data in IEEE 118-bus system is not plotted. All these models can efficiently detect the
presence of the FDIA.
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Figure 6. Presence detection accuracy versus L2-norm of the injection data in IEEE 118-bus system.

5.2.5. Model Complexity

When the number of trainable parameters grows, so does the number of calculations,
implying a rise in inference resource requirements, both in terms of RAM and processing
power. Overfitting and other optimization issues arise as a result of this. Reducing the
number of trainable parameters has various advantages. The first is that the gradient
is a smaller object, which can make training goes faster. The second advantage is that
overfitting is less likely, lowering the need for a dropout layer. A small number of the
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trainable parameter is helpful in lowering the model’s complexity and can lead to speedier
implementations.

From Table 2 at layer 3, we observe that CNN and LSTM models need total parameters
of 243,987 and 377,491 for achieving RACCs of 95.49% and 97.71%, respectively. Meanwhile,
the proposed technique needs 195,475 parameters to reach a detection accuracy of 98.99%.
In addition, for the 118-bus system, as depicted in Table 4, the CNN and LSTM models need
total parameters of 4,347,188 and 4,478,644 for achieving RACCs of 89.58% and 94.74%,
respectively. Meanwhile, the proposed technique needs 442932 parameters to reach a
detection accuracy of 98.39%. In conclusion, the LSTM-TCN outperforms the CNN and
LSTM in terms of locational detection accuracy while requiring fewer trainable parameters.
Overall, the LSTM-TCN has lower complexity than the CNN and LSTM models.

Training loss is generally lower than the validation loss because the validation dataset
is used to validate the model with data that the model has never seen. For this reason,
the validation loss generally is higher compared with the training loss. Figure 7 shows
that LSTM-TCN has a training and validation loss that almost stabilized at 0.002724 and
0.002897, while the CNN and LSTM have losses of 0.013281 and 0.011759 and 0.004960 and
0.006681, respectively. For LSTM-TCN, due to splitting training and validation datasets
with the same distribution, using early stopping and dropout mechanism during training,
the training and validation losses are nearly the same, which means the proposed model is
a good fit for data. A small difference between the losses values might mean a good fit. As
a result, it can be concluded that the proposed mechanism has the lowest losses and hence
is a good fit for FDIA detection.
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Figure 7. Learning curves in the IEEE 14-bus system under L2-norm = 2.
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6. Conclusions

Many application domains, including smart grids, rely heavily on time series data.
Time series analysis and the use of state-of-the-art anomaly detection algorithms in such
data are particularly popular in practice and research due to the temporal features involved.
In this work, a multivariate-based multi-label locational detection (MMLD) mechanism
is proposed to detect the presence and identify the locations of compromised meters in
a smart grid. The MMLD architecture concatenates Long Short-Term Memory (LSTM)
with a Temporal Convolutional Neural Network (TCN). The mechanism is universal in
the sense that it is built without relying on any statistical assumptions of the attack model.
Furthermore, the robustness, scalability, and practicability of the proposed model have been
investigated by intensive simulations in IEEE 14- and 118-bus systems. In particular, it has
been demonstrated that MMLD can identify the presence as well as the locations of FDIAs
for the entire bus system under different attack situations. In addition, it has been shown
that the locational detection accuracy may be increased even further through formulating
the problem as a multivariate and multi-label classification problem, and hence, the MMLD
outperforms the-state-of the-art benchmark techniques.

Author Contributions: Conceptualization, H.I.H., A.S.T.E., M.M.F. and H.A.T.; Methodology, H.I.H.,
A.S.T.E., M.M.T., M.M.F. and H.A.T.; Software, H.I.H., A.S.T.E., M.M.T., M.M.F. and H.A.T.; Supervi-
sion, A.S.T.E., M.M.T., M.M.F. and H.A.T.; Writing original draft, H.I.H., A.S.T.E., M.M.T., M.M.F. and
H.A.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: “Datasets of the IEEE 14-bus system” at https://github.com/wsy
CUHK/WSYCUHK_FDIA/tree/master/Data. “Datasets of the IEEE 118-bus system” at https:
//drive.google.com/drive/folders/17Y_greDnRVUfbYQ1jz6EEAYZwKzaxwnE.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fadlullah, Z.M.; Fouda, M.M.; Kato, N.; Takeuchi, A.; Iwasaki, N.; Nozaki, Y. Toward intelligent machine-to-machine communica-

tions in smart grid. IEEE Commun. Mag. 2011, 49, 60–65. [CrossRef]
2. Fouda, M.M.; Fadlullah, Z.M.; Kato, N.; Lu, R.; Shen, X.S. A Lightweight Message Authentication Scheme for Smart Grid

Communications. IEEE Trans. Smart Grid 2011, 2, 675–685. [CrossRef]
3. Fadlullah, Z.M.; Fouda, M.M.; Kato, N.; Shen, X.; Nozaki, Y. An early warning system against malicious activities for smart grid

communications. IEEE Netw. 2011, 25, 50–55. [CrossRef]
4. Fouda, M.M.; Fadlullah, Z.M.; Kato, N. Assessing attack threat against ZigBee-based home area network for Smart Grid

communications. In Proceedings of the 2010 International Conference on Computer Engineering & Systems, Cairo, Egypt,
30 November–2 December 2010; pp. 245–250. [CrossRef]

5. Fouda, M.M.; Fadlullah, Z.M.; Kato, N.; Lu, R.; Shen, X. Towards a light-weight message authentication mechanism tailored for
Smart Grid communications. In Proceedings of the 2011 IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), Shanghai, China, 10–15 April 2011; pp. 1018–1023. [CrossRef]

6. Liang, G.; Zhao, J.; Luo, F.; Weller, S.R.; Dong, Z.Y. A Review of False Data Injection Attacks Against Modern Power Systems.
IEEE Trans. Smart Grid 2017, 8, 1630–1638. [CrossRef]

7. Faheem, M.; Shah, S.; Butt, R.; Raza, B.; Anwar, M.; Ashraf, M.; Ngadi, M.; Gungor, V. Smart grid communication and information
technologies in the perspective of Industry 4.0: Opportunities and challenges. Comput. Sci. Rev. 2018, 30, 1–30. [CrossRef]

8. Wang, W.; Lu, Z. Cyber security in the Smart Grid: Survey and challenges. Comput. Netw. 2013, 57, 1344–1371. [CrossRef]
9. Yan, Y.; Qian, Y.; Sharif, H.; Tipper, D. A Survey on Cyber Security for Smart Grid Communications. IEEE Commun. Surv. Tutor.

2012, 14, 998–1010. [CrossRef]
10. Huang, Y.; Tang, J.; Cheng, Y.; Li, H.; Campbell, K.A.; Han, Z. Real-Time Detection of False Data Injection in Smart Grid Networks:

An Adaptive CUSUM Method and Analysis. IEEE Syst. J. 2016, 10, 532–543. [CrossRef]
11. Liu, Y.; Ning, P.; Reiter, M.K. False Data Injection Attacks against State Estimation in Electric Power Grids. In Proceedings of the

16th ACM Conference on Computer and Communications Security, CCS ’09, Chicago, IL USA, 9–13 November 2009; pp. 21–32.
[CrossRef]

https://github.com/wsyCUHK/WSYCUHK_FDIA/tree/master/Data
https://github.com/wsyCUHK/WSYCUHK_FDIA/tree/master/Data
https://drive.google.com/drive/folders/17Y_greDnRVUfbYQ1jz6EEAYZwKzaxwnE
https://drive.google.com/drive/folders/17Y_greDnRVUfbYQ1jz6EEAYZwKzaxwnE
http://doi.org/10.1109/MCOM.2011.5741147
http://dx.doi.org/10.1109/TSG.2011.2160661
http://dx.doi.org/10.1109/MNET.2011.6033036
http://dx.doi.org/10.1109/ICCES.2010.5674861
http://dx.doi.org/10.1109/INFCOMW.2011.5928776
http://dx.doi.org/10.1109/TSG.2015.2495133
http://dx.doi.org/10.1016/j.cosrev.2018.08.001
http://dx.doi.org/10.1016/j.comnet.2012.12.017
http://dx.doi.org/10.1109/SURV.2012.010912.00035
http://dx.doi.org/10.1109/JSYST.2014.2323266
http://dx.doi.org/10.1145/1653662.1653666


Energies 2022, 15, 5312 17 of 18

12. Ibrahem, M.I.; Nabil, M.; Fouda, M.M.; Mahmoud, M.M.E.A.; Alasmary, W.; Alsolami, F. Efficient Privacy-Preserving Electricity
Theft Detection with Dynamic Billing and Load Monitoring for AMI Networks. IEEE Internet Things J. 2021, 8, 1243–1258.
[CrossRef]

13. Badr, M.M.; Ibrahem, M.I.; Mahmoud, M.; Fouda, M.M.; Alsolami, F.; Alasmary, W. Detection of False-Reading Attacks in Smart
Grid Net-Metering System. IEEE Internet Things J. 2022, 9, 1386–1401. [CrossRef]

14. Kurt, M.N.; Yılmaz, Y.; Wang, X. Distributed Quickest Detection of Cyber-Attacks in Smart Grid. IEEE Trans. Inf. Forensics Secur.
2018, 13, 2015–2030. [CrossRef]

15. Liu, Y.; Ning, P.; Reiter, M.K. False Data Injection Attacks against State Estimation in Electric Power Grids. ACM Trans. Inf. Syst.
Secur. 2011, 14, 1–33. [CrossRef]

16. Hao, J.; Piechocki, R.J.; Kaleshi, D.; Chin, W.H.; Fan, Z. Sparse Malicious False Data Injection Attacks and Defense Mechanisms in
Smart Grids. IEEE Trans. Ind. Inform. 2015, 11, 1198–1209. [CrossRef]

17. Deng, R.; Xiao, G.; Lu, R.; Liang, H.; Vasilakos, A.V. False Data Injection on State Estimation in Power Systems—Attacks, Impacts,
and Defense: A Survey. IEEE Trans. Ind. Inform. 2017, 13, 411–423. [CrossRef]

18. Bi, S.; Zhang, Y.J. Using Covert Topological Information for Defense Against Malicious Attacks on DC State Estimation. IEEE J.
Sel. Areas Commun. 2014, 32, 1471–1485. [CrossRef]

19. Musleh, A.S.; Chen, G.; Dong, Z.Y. A Survey on the Detection Algorithms for False Data Injection Attacks in Smart Grids. IEEE
Trans. Smart Grid 2020, 11, 2218–2234. [CrossRef]

20. Wang, S.; Bi, S.; Zhang, Y.J.A. Locational Detection of the False Data Injection Attack in a Smart Grid: A Multilabel Classification
Approach. IEEE Internet Things J. 2020, 7, 8218–8227. [CrossRef]

21. Mukherjee, D.; Chakraborty, S.; Ghosh, S. Deep learning-based multilabel classification for locational detection of false data
injection attack in smart grids. Electr. Eng. 2022, 104, 259–282. [CrossRef]

22. Ozay, M.; Esnaola, I.; Yarman Vural, F.T.; Kulkarni, S.R.; Poor, H.V. Machine Learning Methods for Attack Detection in the Smart
Grid. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 1773–1786. [CrossRef]

23. Kurt, M.N.; Ogundijo, O.; Li, C.; Wang, X. Online Cyber-Attack Detection in Smart Grid: A Reinforcement Learning Approach.
IEEE Trans. Smart Grid 2019, 10, 5174–5185. [CrossRef]

24. Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [CrossRef]

25. Malhotra, P.; Ramakrishnan, A.; Anand, G.; Vig, L.; Agarwal, P.; Shroff, G. LSTM-based Encoder-Decoder for Multi-sensor
Anomaly Detection. arXiv 2016, arXiv:1607.00148.

26. Zhou, S.; Shen, W.; Zeng, D.; Fang, M.; Wei, Y.; Zhang, Z. Spatial–temporal convolutional neural networks for anomaly detection
and localization in crowded scenes. Signal Process. Image Commun. 2016, 47, 358–368. [CrossRef]

27. Su, Y.; Zhao, Y.; Niu, C.; Liu, R.; Sun, W.; Pei, D. Robust Anomaly Detection for Multivariate Time Series through Stochastic
Recurrent Neural Network. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD ’19, Anchorage, AK, USA, 4–8 August 2019; pp. 2828–2837. [CrossRef]

28. Chen, Z.; Chen, D.; Zhang, X.; Yuan, Z.; Cheng, X. Learning Graph Structures With Transformer for Multivariate Time-Series
Anomaly Detection in IoT. IEEE Internet Things J. 2022, 9, 9179–9189. [CrossRef]

29. Zhao, H.; Wang, Y.; Duan, J.; Huang, C.; Cao, D.; Tong, Y.; Xu, B.; Bai, J.; Tong, J.; Zhang, Q. Multivariate Time-Series Anomaly
Detection via Graph Attention Network. In Proceedings of the 2020 IEEE International Conference on Data Mining (ICDM),
Sorrento, Italy, 17–20 November 2020; pp. 841–850. [CrossRef]

30. He, Y.; Zhao, J. Temporal Convolutional Networks for Anomaly Detection in Time Series. J. Phys. Conf. Ser. 2019, 1213, 042050.
[CrossRef]

31. Karim, F.; Majumdar, S.; Darabi, H. Insights Into LSTM Fully Convolutional Networks for Time Series Classification. IEEE Access
2019, 7, 67718–67725. [CrossRef]

32. Zhao, F.; Huang, Y.; Wang, L.; Tan, T. Deep semantic ranking based hashing for multi-label image retrieval. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1556–1564. [CrossRef]

33. Sainath, T.N.; Vinyals, O.; Senior, A.; Sak, H. Convolutional, Long Short-Term Memory, fully connected Deep Neural Networks.
In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane,
Australia, 19–24 April 2015; pp. 4580–4584. [CrossRef]

34. Anwar, A.; Mahmood, A.N.; Tari, Z. Identification of vulnerable node clusters against false data injection attack in an AMI based
Smart Grid. Inf. Syst. 2015, 53, 201–212. [CrossRef]

35. Esmalifalak, M.; Liu, L.; Nguyen, N.; Zheng, R.; Han, Z. Detecting Stealthy False Data Injection Using Machine Learning in Smart
Grid. IEEE Syst. J. 2017, 11, 1644–1652. [CrossRef]

36. Wang, Z.; Yan, W.; Oates, T. Time series classification from scratch with deep neural networks: A strong baseline. In Proceedings
of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 1578–1585.
[CrossRef]

37. Lin, M.; Chen, Q.; Yan, S. Network In Network. arXiv 2013, arXiv:1312.4400.
38. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
39. Zimmerman, R.D.; Murillo-Sanchez, C.E.; Gan, D. Matpower. PSERC. 1997. Available online: http://www.pserc.cornell.edu/ma

tpower (accessed on 11 March 2020).

http://dx.doi.org/10.1109/JIOT.2020.3026692
http://dx.doi.org/10.1109/JIOT.2021.3087580
http://dx.doi.org/10.1109/TIFS.2018.2800908
http://dx.doi.org/10.1145/1952982.1952995
http://dx.doi.org/10.1109/TII.2015.2475695
http://dx.doi.org/10.1109/TII.2016.2614396
http://dx.doi.org/10.1109/JSAC.2014.2332051
http://dx.doi.org/10.1109/TSG.2019.2949998
http://dx.doi.org/10.1109/JIOT.2020.2983911
http://dx.doi.org/10.1007/s00202-021-01278-6
http://dx.doi.org/10.1109/TNNLS.2015.2404803
http://dx.doi.org/10.1109/TSG.2018.2878570
http://dx.doi.org/10.1109/CVPR.2018.00745
http://dx.doi.org/10.1016/j.image.2016.06.007
http://dx.doi.org/10.1145/3292500.3330672
http://dx.doi.org/10.1109/JIOT.2021.3100509
http://dx.doi.org/10.1109/ICDM50108.2020.00093
http://dx.doi.org/10.1088/1742-6596/1213/4/042050
http://dx.doi.org/10.1109/ACCESS.2019.2916828
http://dx.doi.org/10.1109/CVPR.2015.7298763
http://dx.doi.org/10.1109/ICASSP.2015.7178838
http://dx.doi.org/10.1016/j.is.2014.12.001
http://dx.doi.org/10.1109/JSYST.2014.2341597
http://dx.doi.org/10.1109/IJCNN.2017.7966039
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www. pserc. cornell. edu/matpower
http://www. pserc. cornell. edu/matpower


Energies 2022, 15, 5312 18 of 18

40. Moslemi, R.; Mesbahi, A.; Velni, J.M. A fast, decentralized covariance selection-based approach to detect cyber attacks in smart
grids. IEEE Trans. Smart Grid 2017, 9, 4930–4941. [CrossRef]

41. Sedghi, H.; Jonckheere, E. Statistical structure learning to ensure data integrity in smart grid. IEEE Trans. Smart Grid 2015,
6, 1924–1933. [CrossRef]

42. Chollet, F. Keras: The Python Deep Learning Library. Astrophysics Source Code Library. 2018; Record ascl:1806.022. Available
online: https://github.com/fchollet/keras (accessed on 14 December 2021).

43. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv 2016, arXiv:1603.04467.

44. Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [CrossRef]

http://dx.doi.org/10.1109/TSG.2017.2675960
http://dx.doi.org/10.1109/TSG.2015.2403329
https://github.com/fchollet/keras
http://dx.doi.org/10.1016/j.patrec.2005.10.010

	Introduction
	Related Work
	Preliminaries
	Power System Model
	False Data Injection Attack (FDIA)

	FDIA Location-Based Detection Scheme as a Multivariate Multi-Label Classification Approach
	Detection of FDIA Location
	FDIA Proposed Detection Mechanism
	Input
	Proposed Architecture

	Training Procedure
	Mini-Batch, Cross-Validation, and Early Stopping Technique
	Loss Function


	Experimental Results
	Dataset Generation
	Evaluation Metrics
	IEEE 14-Bus System
	IEEE 118-Bus System
	Robustness 
	Scalability
	Model Complexity


	Conclusions
	References

