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Abstract: Within the context of sustainable development and a low-carbon economy, electric vehicles
(EVs) are regarded as a promising alternative to engine vehicles. Since the increase of charging EVs
brings new challenges to charging stations and distribution utility in terms of economy and reliability,
EV charging should be coordinated to form a friendly and proper load. This paper proposes a novel
approach for pricing of charging service fees in a public charging station based on prospect theory.
This behavioral economics-based pricing mechanism will guide EV users to coordinated charging
spontaneously. By introducing prospect theory, a model that reflects the EV owner’s response to price
is established first, considering the price factor and the state-of-charge (SOC) of batteries. Meanwhile,
the quantitative relationship between the utility value and the charging price or SOC is analyzed
in detail. The EV owner’s response mechanism is used in modeling the charging load after pricing
optimization. Accordingly, by using the particle swarm optimization algorithm, pricing optimization
is performed to achieve multiple objectives such as minimizing the peak-to-valley ratio and electricity
costs of the charging station. Through case studies, the determined time-of-use charging prices by
pricing optimization is validated to be effective in coordinating EV users’ behavior, and benefiting
both the station operator and power systems.

Keywords: electric vehicle; public charging station; charging service fee; pricing; prospect theory

1. Introduction

As an important section of ecology and sustainable development in the field of trans-
portation, electric vehicles (EVs) have already been recognized as a global solution to the
energy crisis and greenhouse gas emissions [1,2]. Among different technical routes, battery
electric vehicles have been chosen by most of the automobile manufacturers (e.g., Tesla
motors and BYD, etc.), and even countries [3,4]. Charging facilities, especially public charging
stations, are of paramount importance for the promotion of electric vehicles. Figure 1 depicts
the number of development trends of EVs and public charging piles (also called charging
points) in China. Obviously, both of them are in a period of rapid development in recent years,
and the vehicle–pile ratios are almost the same from 2018 to 2021, at about 7.2. By the end
of 2021, EV parc surged to more than 7.8 million units in China, and hence huge charg-
ing demand is starting to emerge. From the perspective of urban service and alleviating
mileage anxiety, public charging stations provide a useful supplement beyond household
charging [5,6].
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Figure 1. Development trends of EVs and public charging piles in China.

As elaborated in the literature, the increase of charging EVs will result in new problems
for charging stations and distribution utilities due to the randomness of EV users’ charging
behavior. An impact assessment of EV integration on the voltage profiles and power lines’
congestion levels was made in ref. [7]. Its results indicated that the load in the peak hour
increases 85% in the scenario with 52% of integrated EVs compared to that without EVs, and
significantly affects the voltage profiles and congestion levels. Power losses and voltage
deviations in the distribution grid caused by charging EVs was analyzed in refs. [8,9].
Similarly, with the increment of EV penetration levels, power losses and maximum voltage
deviations will rise significantly. In addition, uncontrolled dumb charging may cause
unbalance or overloading in transformers [10,11], or harmonic problems.

To reduce the impacts of EVs on power system daily load profiles, power losses and
voltage deviations, etc., academia and industry are actively exploring relevant methods
to coordinate the charging of EVs. In general, coordinated charging can be achieved
by several approaches, of which two mainstream ideas are: (1) direct control, which is
based on the intention of management and can be implemented by the charging station
operator or the EV aggregator, etc. A decentralized charging time switching control was
applied to accomplish approximate valley-filling in ref. [12]. Similarly, interruptions during
the charging process were performed to minimize the total charging cost in ref. [13]. A
hierarchical coordinated charging framework was presented in ref. [14], and charging
power was allocated to achieve electricity cost minimization and peak load controlling.
In ref. [15], Silvestre et al. devised an optimal strategy to control the recharge start time
for a given parking lot to minimize feeder losses or purchased energy cost. This type of
coordination regulates the charging time or power directly, ignoring EV user’s demand
and benefit. (2) Indirect guidance, which is user-friendly and based on the principle
of demand-side response; the price mechanism is often adopted here. For example, an
optimization model for determining the configuration of a distributed generation and
storage system, as well as the optimal charging prices for EVs, was presented to maximize
the EV-parking lot owner’s profit in ref. [16], and EV charging was coordinated to absorb
excess wind energy via two-stage time-of-use tariff schemes in ref. [17]. In addition to the
coordination achieved by user-friendly guidance, a positive economic effect on the station
operator and its customers may be achieved in this price-based mechanism. The charging
price mechanism may benefit both the charging station operators and their customers. In
addition, there is also another research line concentrated on the so-called market-based
approach. Such an approach analyzes the possibilities of coordination by pricing the bids
submitted by participants [18]. In ref. [19], the optimal charging schedule of buses with
restricted access to charging stations from the market-based perspective of an electric bus
aggregator in a day-ahead energy auction was introduced to realize cost-minimization.

One of the crucial issues in daily operation of a public charging station is the charging
price mechanism, i.e., the pricing of the charging fee [5]. Usually, the charging fee should
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include two parts: electricity charge and service charge. The service charge means a fee
collected to pay for services related to the charging in a public station.

Currently, there are only a few studies that have conducted research related to charging
pricing. In ref. [20], the fixed admission fee is charged when an EV joins the charging service
system of a charging station. From the perspective of the business model based on charging
service fee, ref. [21] proposed a mobile charging service mode with high service fees or
low service fees depending on different service efficiency. Pricing should consider the
interests of different entities. A payment distribution mechanism based on the cooperative
game theory was proposed to balance the interests of the employer who built the charging
station and the employee (EV owner) in ref. [22]. Based on static non-cooperative game
theory, a model about charging service fee was proposed in ref. [23], which considers
the interests of the three parties: the government, the charging facility operators, and
consumers. In ref. [24], the price model of fast charging price including a service fee was
proposed through solving the Stackelberg game problem between grid-owned stations and
third-party stations to maximize stations’ profits, and the relationship between charging
service fee and electricity production cost is analyzed. In addition, the profit of power
systems should also be considered in the pricing process. With the node voltage of power
systems as the optimization target, ref. [25] introduced the idea of the alliance game pricing
model to conduct a preliminary study to balance interests among the power grid, charging
station operators and EV users in the initial stage of an open charging market. To alleviate
the peak-valley pressure of charging load, refs. [26,27] proposed the time period division
method for the EV charging service fee pricing based on affinity propagation clustering.
Different from refs. [26,27], which considered the profit of power systems only, a bi-level
model was formulated in ref. [28], to optimally determine charging service fees for guiding
EVs and minimizing the total social cost, which means reducing the traffic congestion
and improving the integration of renewable energy. Each station was assigned a charging
service fee to regulate the spatial distribution of the charging load of different stations. In
ref. [28], for a specific station, the charging service fee was fixed, which meant that the
time-based adjustment of the charging service fee in the station was not involved. In the
above studies, the charging price was mostly constant for a charging station, or the interests
of different entities were often not taken into account simultaneously.

In addition, there are some studies related to charging selection and decision making.
Most of them focused on EVs’ charging station selection decisions from the perspective of
spatial selection; the choice of the charging station was made by game theory in refs. [29,30],
and by fuzzy multi-criteria decision-making method in ref. [31]. From the perspective of
temporal selection, a charging pricing algorithm was introduced to maximize the total
welfare of the charging system in ref. [32] by adopting the concept of utility function from
microeconomics. The decision-making problem of determining the start time of charging
and discharging was solved by prospect theory in ref. [33], and by the combination of
the Roth–Erev algorithm and prospect theory in ref. [34]. Few works have addressed the
problem of charging pricing considering the service fee for a charging station based on
user response from the perspective of behavioral economics, especially with the objectives
such as minimizing the peak-to-valley difference and the operation expenses of a charging
station, reducing solar curtailment, and minimizing the peak power of a solar-assisted
charging station.

In this paper, a novel approach based on behavioral economics—prospect theory—
for pricing of charging service fees in an EV public charging station is proposed. Con-
sidering the adjustability of people’s charging decision and behavior, this behavioral
economics-based pricing mechanism will guide EV users to coordinated charging sponta-
neously. By the obtained daily time-varying charging price that consisted of the time-of-use
(TOU) electricity price and time-varying charging service fees, although EV owners will
respond differently based on one’s specific demand and status, the holistic time-based
adjustment of charging loads will be achieved to benefit power systems, charging station
operators, and finally EV users, such as minimizing the peak-to-valley difference ratio and
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the operation expenses of a charging station, and reducing solar curtailment and the peak
power at the point of common coupling (PCC) of the solar-assisted charging station.

This paper is organized into the following sections. The main problems and motivation
for this paper are described in Section 2. Section 3 introduces prospect theory to model the
EV user’s price response behavior towards different charging prices and state-of-charge
(SOC). Then, on the basis of the EV user’s response mechanism and pricing optimization,
the modeling of optimal charging loads are pursued to obtain the daily time-varying
charging price and achieve multiple objectives of coordinated charging in Section 4. In
Section 5, case studies are presented to demonstrate the effectiveness of the novel approach.
Finally, conclusions are drawn in Section 6.

2. Motivating Scenarios

For a public charging station, how to reduce its passive impacts on power systems and
operation costs of the charging station, especial the electricity costs, is a problem that should
be taken into consideration. As elaborated above, a proper charging price mechanism is
absolutely essential. Currently, a charging service fee is charged in Beijing when an EV
is charged in the station, according to the policy of the government administration. The
upper limit of the charging service fee per kWh is 15% of the maximum retail price per liter
of 92# gasoline, and the charging station operator can set specific charging service prices
within the maximum limit. Meanwhile, similar to other loads of power systems, a large
industrial electricity fee is charged as well, according to the TOU electricity tariff shown in
Figure 2.

Figure 2. TOU (Time-of-use) electricity prices for large industrial customers in Beijing.

In other words, in the public charging stations of China, the charging prices Prchg,t can
be represented as the sum of the TOU electricity price Prgrid,t and the charging service price
(fee) Prservice,t, and hence Prchg,t = Prgrid,t + Prservice,t. Therefore, it is possible to realize
the coordinated charging of EVs by considering the manner in which the charging service
prices are time-varying and flexibly formulated.

This study was motivated by the problems that exist in fast charging stations. Consid-
ering the operation costs and the promotion of sustainable energy generation, a charging
station is likely to be equipped with a photovoltaic (PV) distributed generation system. A
typical topology of a fast charging station, in which PV is included, is depicted in Figure 3.
Since the power at the PCC affects the distribution networks to some extent, it is necessary
to improve the daily load curve at this point.
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Figure 3. Typical topology of the charging station and its information framework for the proposed approach.

In addition, an information framework for the proposed pricing approach is also
depicted in Figure 3. Within this framework, the EV user will sign a contract with the
station. The station publishes their charging price determined by the novel pricing approach
in this paper, based on which EVs will respond artificially or automatically by an on-board
intelligent terminal. This on-board intelligent terminal is an electronic unit that can provide
bidirectional communications between the charging station and vehicles. In general, the
response of an EV to the charging price can be made automatically by the on-board
intelligent terminal in the manner of the pre-embedded program of the EV user’s price
response model. If an individual EV user cannot abide by the terms of the contract and
ignores the recommendation of the intelligent terminal, uncertainty of the EV response will
emerge, and the effect of coordinating charging will be diminished to some extent. In this
paper, the EV response is assumed to be almost certain, since the same response mechanism
was applied in pricing and automatic response of the on-board intelligent terminal; hence,
we do not take behavior uncertainty into consideration in this paper.

3. EV User’s Response to Price

The price mechanism can be applied to guide EV users’ charging behaviors because of
the price sensitivity. For instance, in the case of TOU electricity prices, EVs may change their
charging behaviors depending on the price information provided by the charging station,
and contribute to off-peak power consumption of power systems. This can be even more
flexible, provided that there is a proper mechanism. In addition, the operation expenses
of the station will be reduced to some extent. Prospect theory in behavioral economics is
introduced to describe the EV’s response behavior to charging prices in this paper.

3.1. Prospect Theory of Behavioral Economics

As a theory in cognitive psychology and behavioral economics, prospect theory, pro-
posed by Dr. Kahneman, is often used to precisely characterize the decision-making
process [35–37]. Prospect theory demonstrates that people make decisions based on ex-
pected utility relative to a reference point rather than final outcomes. It is a behavioral
model for real-life choices that can describe how EV users make charging choices between
different options or prospects based on charging price mechanisms.

The value function of prospect theory has the following features. Firstly, most people
are risk-averse towards gains. Secondly, most people are risk-biased towards losses. Thirdly,
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the sensitivity to losses compared to gains is much higher. Kahneman’s value function of
prospect theory is defined in Equation (1).

V(x) =

{
xα x ≥ 0
−λ(−x)β x < 0

(1)

where x is the potential outcome; α and β exhibit the level of unevenness in gain value
and loss value, respectively; and λ is the losses-to-gains ratio. Calibrated by Kahneman,
α = β = 0.88, and λ = 2.25. Recent literature shows that the parameters calibrated by
Kahneman may not be suitable for decision-making in other contexts [38,39]. Therefore,
the suitable parameters for pricing require a mass of real operational data in our proposed
approach. A closed-loop and iterative correction of the parameters based on collected data
and the actual effect of coordination is necessary.

In this paper, we introduce the concept of value function of prospect theory to obtain
the charging price utility value at a point in time to EV users.

3.2. Response Modeling

The factors which affect user’s charging behavior include the charging price and
the SOC of EV. Based on these two influencing factors, the charging value function can
be established.

3.2.1. Response Model Only Considering the Price Factor

The reference point is significant in determining the model [40], and the reference
points among different people may be different [41,42]. The charging prices before pricing
optimization are chosen as the reference point at every time point without considering
this difference among EV users, since the response can be implemented by the same on-
board intelligent terminal rather than people whose behavior is not rational enough [43].
Hence, there are three reference points according to the TOU electricity tariff and the
original service fee, which are the peak rate, the flat rate, and the valley rate, respectively,
depending on the time of the day.

According to prospect theory, if the charging price after optimization is smaller than
the price of the reference point at a specific time point, the charging decision will be
considered to be the gain; on the contrary, the charging decision will be considered to be
the loss. In the case of considering the influencing factor of charging price only, the value
functions describing charging and no-charging can be defined as follows:

Vcg,t =

{ (
Pr∗cg,t − Prcg,t

)α Pr∗cg,t ≥ Prcg,t

−λ
(

Prcg,t − Pr∗cg,t
)β Pr∗cg,t < Prcg,t

(2)

Vnocg,t =

{ (
Prcg,t − Pr∗cg,t

)α Pr∗cg,t < Prcg,t

−λ
(

Pr∗cg,t − Prcg,t
)β Pr∗cg,t ≥ Prcg,t

(3)

where Vcg,t and Vnocg,t stand for the value functions of the decision of whether to charge or
not charge made by the electric vehicle while only considering the price factor, respectively;
Pr*

cg,t and Prcg,t stand for the charging price at the time index t before and after optimized
pricing, respectively. As discussed above, Pr*

cg,t is the sum of the TOU electricity tariff and
the original service fee at time t.

According to Equation (2), Figure 4 depicts the charging values in different periods
(peak charging price periods, flat charging price periods, and valley charging price periods,
respectively) of the original charging tariff before optimal pricing. The detailed reference
prices are based on the charging prices in Beijing, that being 1.8044 CNY/kWh in peak
hours, 1.495 CNY/kWh in flat hours, and 1.1946 CNY/kWh in valley hours. Take the
situation in peak charging price hours as an example; if the determined charging price
after optimization is higher than the peak price reference, it means losses to users, and the
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charging value is relatively low. On the contrary, if the determined charging price is lower
compared to the peak price reference, it means gains to users, and the charging value is
relatively high.

Figure 4. Charging values in different periods of the original charging tariff.

As shown in Figure 4, the value function is steeper for losses than gains, indicating
that losses outweigh gains since people are more sensitive to losses compared to gains. In
addition, the charging value function at peak times of the original charging tariff exhibits a
higher value than that at flat or valley times. This is because if the determined charging
price after optimization is 1 CNY/kWh, it means a 0.8044 CNY/kWh reduction at peak
times and a 0.1946 CNY/kWh reduction at valley times. The higher reduction will lead to
more profits, and thus a greater probability of changing the charging decision of EV users
in a certain period. In other words, in Figure 4, the similar slopes in different periods of
the original charging price tariff indicates that if the charging price changes the same, the
charging utility values of the three different periods would be the same, which means with
the same price changes, users behave the same.

Due to the similarity of the analysis, the value function of not charging will not be
detailed here.

3.2.2. Response Model Considering Both the Price Factor and SOC

In addition to the charging price, the current SOC of an electric vehicle is another
factor that affects the charging behavior of electric vehicles. Assuming that current SOC
of an electric vehicle is 100%, this means that this vehicle no longer needs to be charged
anymore, no matter whether the charging price is higher or lower than the original price
reference. Hence, the charging value is zero. If the SOC of an EV is almost 100%, the
charging value for this vehicle is relatively low. Similarly, when the SOC of an EV is close
to the minimum SOC, the demand for charging is significantly increased, and the charging
value at this time is relatively high.

Therefore, based on the willingness of EV users, the value functions represent charging
and no-charging, considering both price factors and SOC, can be defined as:

Vn
cg,t = eVcg,t

(
e1−SOCn − 1

)
(4)

Vn
nocg,t =

{
eVnocg,t

(
esocn−socmin − 1

)
SOCn ≥ SOCmin

0 SOCn < SOCmin
(5)



Energies 2022, 15, 5308 8 of 20

where n stands for the number of electric vehicles; SOCn stands for the state-of-charge of
vehicle n; SOCmin is the minimum allowable SOC of EVs; and Vn

cg,t and Vn
nocg,t are value

functions represent charging and no-charging decisions of electric vehicle n while only
considering the price factor and SOC, respectively.

According to Equation (4), Figure 5 depicts the charging values of different SOCs
at peak price times of the original charging tariff. It can be deduced that a smaller SOC
corresponds to larger charging values at the same time. When the SOC of EV approaches
100%, charging is not an absolute necessity anymore, and the charging value for the EV
user is close to zero at this moment. At a certain SOC, the charging value function still
follows the basic value function of Equation (2), except the natural exponential function
is introduced to express the law of natural growth. This is because, when the SOC is
smaller, the charging value brought by the part e1−SOCn − 1 of Equation (4) increases faster
compared to the higher SOC, which can be easily derived from the derivative operation of
e1−SOCn − 1.

Figure 5. Charging values of different SOCs at peak price times of the original charging tariff.

Figure 6 shows the three-dimensional plots of the charging values considering both
the price factor and SOC, in which the relationship between charging price, SOC and
charging value defined by the equation is clearly revealed. As shown in Figure 6a–c, both
the lower charging price after pricing optimization and the lower SOC of EVs will result
in a higher charging utility value. The highest charging value will appear at the lowest
charging price and the lowest SOC, indicating the demand for charging and the willingness
for price response. If the SOC is 100%, there is no battery capacity for charging. Thus,
the charging value at this moment is zero, since the charging price and SOC are always
independent. In addition, as depicted in Figure 6d, the charging values are higher at peak
price times compared to that at the valley price times. This is due to the same reason as is
shown in Figure 4, and can be described by the following: for the same charging price after
optimization, EV users are more likely to change their charging behaviors at peak price
times compared to valley times because of the bigger reduction in charging price.

Similarly, due to similarity of the analysis, the value function of not charging will not
be detailed here.



Energies 2022, 15, 5308 9 of 20

Figure 6. Charging values considering both the price factor and SOC: (a) At peak price times of the
original charging price tariff; (b) at flat price times of the original charging price tariff; (c) at valley
price times of the original charging price tariff; (d) comparison of charging values at peak and valley
price times of the original charging price tariff.

4. Charging Load Model and Pricing Optimization
4.1. Typical Charging Load

Assume that the charging power of electric vehicles is constant, and vehicles charged
in the station will be fully charged every time. Hence, for each electric vehicle, the charging
duration, the charging ending time and the charging capacity of EV batteries can be
calculated according to the charging starting time and the initial SOC. Subsequently, the
number of electric vehicles to be charged, and the charging load of all vehicles can be
counted to obtain the total charging load of electric vehicles at each moment in the charging
station. The related equations are as follows:

Tn
chg = (1− SOCn)× Ebat/P (6)

Tn
e = Tn

s + Tn
chg (7)

Pn
load,t =

{
P Tn

s ≤ t <Tn
e

0 (t < Tn
s) ∪ (t ≥ Tn

e)
(8)

Pev,t =
nsum

∑
n=1

Pn
load,t (9)
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where Tn
s, Tn

e, and Tn
chg stand for the charging starting time, the charging ending time,

and the charging duration, respectively; Ebat is the capacity of EV; P is the rated charging
power of an individual vehicle; Pn

load,t is the charging power of EV n at time t; nsum is the
total number of EVs; and Pev,t is the total charging power of the charging station at time t.

4.2. Optimal Pricing Based on EV Response Model
4.2.1. Charging Load Model after Pricing Optimization Based on Prospect Theory

Denote the charging probability of vehicle n at time t by P̃n
chg,t, and the probability of

not charging by P̃n
nochg,t. Hence,

P̃n
chg,t + P̃n

nochg,t = 1 (10)

Based on Equations (4) and (5), the charging probability of the nth vehicle at the time
point t is:

P̃n
chg,t =

Vn
cg,t

Vncg,t + Vnnocg,t
(11)

Then, the matrix of charging probability of all n vehicles at every time point can be
obtained by their charging values.

MP̃,chg =


P̃1

chg,1 P̃2
chg,1 · · · P̃n

chg,1

P̃1
chg,2

. . .
...

...
. . .

...
P̃1

chg,t · · · · · · P̃n
chg,t

 (12)

Since the sum of the charging probabilities at all times for an electric vehicle is 1, for
each column of the above matrix, the normalization should be performed according to
Equation (13).

P̃n
chg,t

′ =
P̃n

chg,t
tsum

∑
t=1

P̃n
chg,t

(13)

where tsum is the number of the time index considered in the optimization.
According to Equations (12) and (13), and the charging capacity of vehicles derived

from the state-of-charge at the charging beginning time, the optimized charging power
with pricing is depicted as:

MPev =


P1

load,1 P2
load,1 · · · Pnsum

load,1

P1
load,2

. . .
...

...
. . .

...
P1

load,tsum
· · · · · · Pnsum

load,tsum

 (14)

where Pn
load,t is the equivalent charging load of the nth vehicle at time t.

Thus, the total charging loads of the charging station after pricing optimization is:

Pev,t =
nsum

∑
n=1

Pn
load,t (15)

4.2.2. Objective Functions of the Pricing Optimization

Take charging prices of the tariff as the optimization variables, the objective functions
for coordinated charging of the electric vehicle charging station will be presented in the
following description.
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Since the charging loads may bring new impacts to the power grid, usually it is
expected that the charging load curve of the station will be relatively stable during operation.
Therefore, one objective function of the coordinated charging pricing optimization should
be minimizing the peak-to-valley ratio of the charging station, shown as Equation (16).

min f1 = min
{
(Ppeak − Pvalley)/Ppeak

}
= min

{
maxPev,t −minPev,t

maxPev,t

}
t ∈ {1, 2, . . . , tsum} (16)

where Ppeak and Pvalley stand for the maximum and minimum daily charging loads of the
charging station, respectively.

In addition, to reduce the operation cost and benefit the operator of the charging
station, the EV user can be guided to charge at valley price times of the TOU electricity
tariff by flexibly pricing the charging service fee under the premise of not increasing user’s
charging cost, thereby reducing electricity costs of the charging station. This objective
function is as follows:

min f2 = min

{
tsum

∑
t=1

Pev,t × Prgrid,t

}
(17)

Since the decision variables of Equations (16) and (17) are the charging prices after
optimization, these two objectives are coupled to each other. Therefore, a multi-objective
optimization can be performed following this function:

min f3 = min
{

ω1

(
f1

max f1

)
+ ω2

(
f2

max f2

)}
(18)

where ω1 and ω2 stand for the weight coefficients of the two objectives, ω1 + ω2 = 1, and
hence transfer the multi-objective optimization problem to a single-objective optimization.

In a charging station with PV distributed generation system integrated, the most ideal
operation mode is to realize the local consumption of photovoltaic power by charging
load. At the same time, if the photovoltaic system is not integrated to the power grid, it is
necessary to maximize the utilization of photovoltaic power and reduce the impact of the
charging load on the power grid. Therefore, reducing solar curtailment can be chosen as
the objective function for a PV charging station.

min f4 =
tsum

∑
t=1

Pcurtail,tτ

Pcurtail,t =

{
Ppv,t − Pev,t Ppv,t ≥ Pev,t
0 Ppv,t < Pev,t

(19)

where Pcurtail,t and Ppv,t stand for the power of solar curtailment at time t and the power
generated by the PV system, respectively; and τ stands for the time interval.

When the PV power is equal to the power of the charging load of EVs, the charging
station does not need to purchase electricity from the power grid. When the PV power is
insufficient to supply the charging of EVs vehicle at that time, the charging station needs to
purchase electricity from the power grid to compensate for the power difference, as shown
in the Equation (20). In order to reduce the impact of EVs on the utility grid, it is necessary
to minimize the peak load of the charging station, and hence reduce the capacity electricity
price cost; the objective function is as shown in Equation (20).

min f5 = max
(

Ppcc,t
)

t ∈ {1, 2, · · ·, tsum}

Ppcc,t =

{
Pev,t − Ppv,t Pev,t ≥ Ppv,t

0 Pev,t < Ppv,t

(20)

where Ppcc,t is the power at the PCC of the charging station; that is, the demanded power of
the whole station to the utility grid.
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4.2.3. Constrains of the Pricing Optimization

The constraint conditions that should be satisfied in the pricing optimization for
coordinated charging are outlined as follows:

For conservation of energy, the total charging loads of the charging station before and
after pricing optimization are the same since the same time interval is considered, as shown
in Equation (21).

tsum

∑
t=1

Pev,t =
tsum

∑
t=1

P∗ev,t (21)

where P*
ev,t is the charging load without pricing optimization at time t.

The number of EVs in charging should not exceed the number of charging piles Npile,
as shown in Equation (22).

maxPev,t

P
≤ Npile t ∈ {1, 2, . . . , tsum} (22)

The power at the PCC of the charging station should not exceed the capacity of the
distribution transformer Pgrid, as shown in Equation (23).

maxPpcc,t ≤ Pgrid t ∈ {1, 2, . . . , tsum} (23)

Usually, the government administration tends to give a ceiling for the charging service
fee, as shown in Equation (24).

Prservice,t ≤ Prlimit t ∈ {1, 2, . . . , tsum} (24)

where Prlimit stands for the upper limit of the charging service fee, which is considered to
be 30% of the price of 92# gasoline on that day in this paper.

4.3. Optimization Process and Solution

Considering the complexity of the constrained non-linear optimization, the improved
particle swarm optimization (PSO) algorithm is adopted to solve the problem in this paper.
PSO is one of the random search heuristic algorithms, which has excellent performance
for continuous solution space. For simplicity, its basic principle and equations will not be
detailed here.

The solution of the optimization is the daily charging service prices with the maximum
dimension 24 × 1, and for each dimension, the solution is a real number within the range
of zero to the upper limit of the charging service fee defined in Equation (24). The lower
dimensions and limited solution space will result in small computational cost, which makes
PSO qualified for the pricing optimization. It should be noticed that the proposed pricing
method is mainly used for day-ahead or same-day pricing, and can be used for ultra-short
term pricing.

Figure 7 is the flow chart of the proposed pricing approach for coordinated charging of
the charging station based on prospect theory. Through optimization, the charging prices
at each time step can be obtained, together with the ideal coordinated charging loads of the
charging station based on this obtained tariff.

Specific steps are as follows.
Step 1: Input the relevant parameters of the pricing optimization, such as the original

charging prices which are composed of the TOU electricity tariff and the original charging
service fee, and the initial SOC of the EVs, etc.

Step 2: Randomly initialize the optimal charging prices as particles of PSO, considering
the constraint of the upper limit of the charging service fee. Start the first iteration of PSO.

Step 3: Calculate the value of charging value function only considering the price factor
at first. Afterward, calculate the value of charging value function considering both the
price factor and SOC. Then, calculate the charging probability matrix of vehicles at each
time based on the charging values of these vehicles, and normalize each element in the
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matrix. Finally, based on the charging probability matrix and the energy demand of each
vehicle, calculate the optimal charging power with pricing optimization.

Step 4: Calculate the fitness value of the objective functions in the case of these particles.
Step 5: Update the location and velocity of particles according to rules of improved PSO.
Step 6: Determine whether the iteration process of PSO is finished. If so, continue to

step 7. Otherwise, go back to step 3, and start a new iteration until the iteration is done.
Step 7: Find the best fitness value and optimal value of particles.
Step 8: Output the optimal charging prices for coordinated charging of the charging

station to guide the EVs.

Figure 7. Flow chart of the proposed pricing approach.

5. Case Studies and Validation
5.1. Scenario I—A Fast Charging Station for Electric Taxis

A fast charging station with 45 units of 25 kW fast chargers is chosen as the first
case study. This charging station is located in Beijing and serves 428 electric taxis daily.
The energy capacity of the electric taxi is 30 kWh. Through investigation and statistics,
the minimum SOC for electric taxis is 30%, and the initial SOC when the vehicle arrives
at the station is distributed normally with mean µ = 0.5471 and standard deviation
σ = 0.1335. The charging station operator charges vehicles based on the charging prices.
The original charging prices are composed of the TOU electricity tariff of Beijing and a
constant 0.8 CNY/kWh charging service fee. This paper intends to set the optimal charging
service prices for a taxi driver who works during the daytime. The charging period is from
6:00 to 23:00, and hence the length of the period for optimization is 18.

To decrease the operation expenses, if we take minimizing the electricity purchase
cost of the charging station as the objective function, results of pricing optimization-based
coordinated charging are shown in Figures 8 and 9.
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Figure 8. Comparison of charging loads before and after pricing optimization in Scenario I, only
reducing the operation cost as the objective.

Figure 9. Comparison of prices before and after pricing optimization in Scenario I, only reducing the
operation cost as the objective: (a) Original and optimal charging prices; (b) original and optimal
charging service prices.

As shown in Figure 8, in the case of uncoordinated charging, the peak-to-valley ratio
was 0.502. However, with the coordination of optimal charging prices, the peak-to-valley
ratio increased to 0.8797, and the load peak increased significantly, which may cause
the overload of the distribution transformer. This is because the model of the pricing
optimization is a single-objective problem, only considering the operation cost of the
charging station. By calculating based on the prices in Figure 9, the electricity purchase
cost of the charging station reduced to 4002.4 CNY/day with price based coordinated
charging, from 4727.1 CNY/day in the case of the original charging prices. Moreover, the
revenue of the station operator increased from 4580.6 CNY/day to 5256.4 CNY/day. Thus,
an additional 14% of profits are earned by the proposed pricing optimization.

The results before and after pricing optimization in Scenario I, only considering the
reduction of operation cost, are shown in Table 1.

Table 1. Results before and after pricing optimization in Scenario I, only reducing the operation cost
as the objective.

Index Before Pricing Optimization After Pricing Optimization

Peak-to-valley ratio of the charging station 0.502 0.8797
Electricity purchase cost of the station (CNY/day) 4727.1 4002.4

Revenue of the station operator (CNY/day) 4580.6 5256.4
EV users charging cost (CNY/day) 9307.7 9258.8
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Through the above analysis, it can be determined that single-objective optimization of
the charging prices may result in undesired results. Hereby, a multi-objective optimization
with the objectives of reducing both the peak-to-valley ratio and the operation cost is
performed in this paper. As shown in Figures 10 and 11, due to the balancing of the two
objectives, the peak-to-valley ratio of charging loads of the station is reduced to 0.3714 from
the value 0.502 before pricing optimization, and the value 0.8797 while considering the
operation cost only. At the same time, the electricity purchase cost of the charging station is
reduced to 4474.1 CNY/day with price-based coordinated charging, from 4727.1 CNY/day
in the case of the original charging prices. The revenue of the station operator increased
slightly from 4580.6 CNY/day to 4591.8 CNY/day since the EV users’ charging cost has
reduced to some extent. It is obvious that both the regulation of charging loads and the cost
reduction for EV users and station operators has been realized by adjusting the charging
service fee from a constant value to variable values.

Figure 10. Comparison of charging loads before and after pricing optimization in Scenario I, reducing
both the peak-to-valley ratio and the operation cost as the objectives.

Figure 11. Comparison of prices before and after pricing optimization in Scenario I, reducing both
the peak-to-valley ratio and the operation cost as the objectives: (a) Original and optimal charging
prices; (b) original and optimal charging service prices.

The results before and after pricing optimization in Scenario I, considering the reduc-
tion of both the peak-to-valley ratio and the operation cost, are shown in Table 2.
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Table 2. Results before and after pricing optimization in Scenario I, reducing both the peak-to-valley
ratio and the operation cost as the objectives.

Index Before Pricing Optimization After Pricing Optimization

Peak-to-valley ratio of the charging station 0.502 0.3714
Electricity purchase cost of the station (CNY/day) 4727.1 4474.1

Revenue of the station operator (CNY/day) 4580.6 4591.8
EV users’ charging cost (CNY/day) 0.502 0.3714

5.2. Scenario II—A Fast Charging Station with PV Integrated

In this case, the fast charging station with 120 kWp PV integrated is studied. This PV
system only provides energy to the station, and excess energy generated cannot be fed back
to the grid. Therefore, solar curtailment occurs frequently. The rated charging power of
piles in the station that serves 50 commuting vehicles is 25 kW. The battery energy of EVs is
30 kWh. The original charging price in this charging station is constant, at 1.2 CNY/kWh,
including 0.4 CNY/kWh electricity price and 0.8 CNY/kWh charging service fee. Since
only office hours from 7:00 to 17:00 are taken into consideration in the pricing optimization,
the number of the time index is 11.

In this case, considering the existence of solar curtailment and the peak power effect on
the utility gird, a multi-objective optimization of reducing solar curtailment and minimizing
the peak power at the PCC of the charging station is performed to generate an optimal
charging price tariff for a PV charging station.

Optimized by PSO, Figure 12a depicts the charging loads before and after pricing
optimization in Scenario II. It can be seen that solar curtailment exists between the times of
11:00 and 16:00 because of the mismatch of uncoordinated commuting charging and PV
generation. Through the application of coordinated charging based on optimal charging
prices, the daily solar curtailment has been reduced from 195.24 kWh to 11.15 kWh. The
solar curtailment rate has also been reduced from 30% to 1.7%. Meanwhile, the peak
power at the PCC of the charging station has been reduced significantly, from 80.52 kW
to 4.27 kW, which can be seen clearly in Figure 12b. The power capacity demand for the
utility grid decreases significantly. Therefore, it is conceivable that the basic electricity fee
of the charging station is expected to decrease as well.

Figure 12. Comparisons before and after pricing optimization in Scenario II, reducing both solar
curtailment and the peak power at the PCC as the objectives: (a) Charging loads; (b) power at
the PCC.

As shown in Figure 13, the charging prices have changed from the constant 1.2 CNY/kWh
to variable values. Based on prospect theory, since the EV users will change their charging
behavior according to the charging prices, the PV power curve and the optimal charging
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prices are generally opposite in trends. The electricity purchase cost of the charging station
has reduced to 3.66 CNY/day with price-based coordinated charging, from 77.3 CNY/day
in the case of the original charging prices. The revenue of the station operator has increased
slightly from 702.23 CNY/day to 755.64 CNY/day at the same time. Thus, it can be
determined that the purpose of coordinated charging is achieved. The results before and
after pricing optimization in Scenario II, considering the reduction of both solar curtailment
and the peak power at the PCC, are shown in Table 3.

Figure 13. Comparison of the charging prices whether with the optimal pricing or not in Scenario II,
reducing both solar curtailment and the peak power at the PCC as the objectives.

Table 3. Results before and after pricing optimization in Scenario II, reducing both solar curtailment
and the peak power at the PCC as the objectives.

Index Before Pricing Optimization After Pricing Optimization

Solar curtailment (kWh/day) 195.24 11.15
Peak power at the PCC (kW) 80.52 4.27

Electricity purchase cost of the station (CNY/day) 77..3 3.66
Revenue of the station operator (CNY/day) 702.23 755.64

EV users’ charging cost (CNY/day) 779.53 759.29

6. Conclusions

Towards a proper charging price mechanism and coordinated charging, this paper
proposes a novel approach for pricing of charging service fees in an EV public charging
station based on prospect theory. Firstly, the EV user’s response to price is modelled on the
basis of prospect theory, including the response model considering the price factor and the
response model considering both the price factor and SOC. The quantitative relationship
between the utility value and the charging price or SOC is analysed in detail. Secondly, on
the basis of the price response model, charging load model after pricing optimization is
established. Finally, charging pricing optimization can be performed to achieve multiple
objectives such as minimizing the peak-to-valley difference and electricity expenses of the
station, and reducing solar curtailment and the peak power at the PCC of the charging
station using the PSO algorithm. The results of the case studies indicate that: (1) EV
users’ charging behavior, which directly corresponds to the charging loads, is related to the
charging prices and current SOC. The introduction of prospect theory for the quantitative
description of decision making can effectively characterize the price response behavior
of EV users during charging. (2) Based on the policy of China, the flexible pricing of
time-varying charging prices with the proposed novel pricing approach can guide EV
users to adjust charging hours, and hence coordinated charging of the charging station
is achieved. The reduction of electricity costs, solar curtailment, and peak power at the
PCC of the charging station could benefit both the station operator and power systems. In
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addition, based on the limitations of this paper that need to be addressed, many potential
extensions of the work reported in this paper are possible, such as:

• The EV response is assumed to be almost certain since the same response mechanism
was applied in the pricing and automatic response of the on-board intelligent terminal,
and hence we do not take behavior uncertainty into consideration in this paper. EV
user’s behavior modeling with uncertainty is worth studying in the future, especially
in the case of manual response.

• Since the parameters of prospect theory calibrated by Kahneman may not be suitable
for decision-making in other contexts, the suitable parameters for pricing require
a mass of real operational data. It is necessary to perform case studies based on
the precise description of the price response model in a charging station when real
operational data are collected, or assuming that massive historical data are available.

• Since the response can be implemented by the same on-board intelligent terminal, we
did not consider reference points difference among different people in modeling. The
reference point is significant in determining the response model, and the reference
points among different people may be different. This is another limitation that needs
to be addressed in future research.
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